首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere. We obtained dramatic new information, both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio spectral arcs, from above 30 to about 1 megahertz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Detailed studies are in progress and are out-lined briefly.  相似文献   

2.
Venus has daytime and nighttime ionospheres at the positions probed by radio occulation. The main layers are thin by terrestrial standards, with the nighttime peak concentration of electrons being about two orders of magnitude below that of the daytime peak. Above the nighttime peak were several scale-height regimes extending to a radius of at least 7500, and probably to 9700, kilometers from the center of Venus. Helium and hydrogen at plasma temperatures of 600 degrees to 1100 degrees K seem indicated in the regimes from 6300 to 7500 kilometers, with cooler molecular ions in lower regions. Above the daytime peak a sharp plasmapause was discovered, marking a sudden transition from appreciable ionization concentrations near Venus to the tenuous conditions of the solar wind. This may be indicative of a kind of interaction of the magnetized solar wind with a planetary body that differs from the two different kinds of interaction characterized by Earth and by Moon. For Venus and probably for Mars, the magnetic field of the solar wind may pile up in front of the conducting ionosphere, form an induced magnetosphere that ends at the plasmapause, above which any ionosphere that tends to form is swept away by the shocked solar wind that flows between the stand-off bow-shock and the magnetopause. The neutral atmosphere was also probed and a surface reflection may have been detected, but the data have not yet been studied in detail. Results are consistent with a super-refractive atmosphere, as expected from Soviet measurements near the surface. Thus, two unusual features of Venus can be described in terms of a light trap in the lower atmosphere, and a magnetic trap in the conducting ionosphere.  相似文献   

3.
The NASA-GSFC magnetic field experiment on Mariner 10 is the first flight of a dual magnetometer system conceived to permit accurate measurements of weak magnetic fields in space in the presence of a significant and variable spacecraft magnetic field. Results from a preliminary analysis of a limted data set are summarized in this report, which is restricted primarily to Venus encounter. A detached bow shock wave that develops as the super Alfvénic solar wind interacts with the Venusian atmosphere has been observed. However, the unique coincidence of trajectory position and interplanetary field orientation at the time of bow shock crossing led to a very disturbed shock profile with considerably enhanced upstream magnetic fluctuations. At present it is not possible to ascertain the nature and characteristics of the obstacle responsible for deflecting the solar wind flow. Far downstream disturbances associated with the solar wind wake have been observed.  相似文献   

4.
Ulysses spacecraft radio and plasma wave observations indicate that some variations in the intensity and occurrence rate of electric and magnetic wave events are functions of heliographic latitude, distance from the sun, and phase of the solar cycle. At high heliographic latitudes, solartype Ill radio emissions did not descend to the local plasma frequency, in contrast to the emission frequencies of some bursts observed in the ecliptic. Short-duration bursts of electrostatic and electromagnetic waves were often found in association with depressions in magnetic field amplitude, known as magnetic holes. Extensive wave activity observed in magnetic clouds may exist because of unusually large electron-ion temperature ratios. The lower number of intense in situ wave events at high latitudes was likely due to the decreased variability of the high- latitude solar wind.  相似文献   

5.
PSR B1931+24 (J1933+2421) behaves as an ordinary isolated radio pulsar during active phases that are 5 to 10 days long. However, when the radio emission ceases, it switches off in less than 10 seconds and remains undetectable for the next 25 to 35 days, then switches on again. This pattern repeats quasi-periodically. The origin of this behavior is unclear. Even more remarkably, the pulsar rotation slows down 50% faster when it is on than when it is off. This indicates a massive increase in magnetospheric currents when the pulsar switches on, proving that pulsar wind plays a substantial role in pulsar spin-down. This allows us, for the first time, to estimate the magnetospheric currents in a pulsar magnetosphere during the occurrence of radio emission.  相似文献   

6.
Power is supplied to a planet's magnetosphere from the kinetic energy of planetary spin and the energy flux of the impinging solar wind. A fraction of this power is available to drive numerous observable phenomena, such as polar auroras and planetary radio emissions. In this report our present understanding of these power transfer mechanisms is applied to Uranus to make specific predictions of the detectability of radio and auroral emissions by the planetary radio astronomy (PRA) and ultraviolet spectrometer (UVS) instruments aboard the Voyager spacecraft before its encounter with Uranus at the end of January 1986. The power available for these two phenomena is (among other factors) a function of the magnetic moment of Uranus. The date of earliest detectability also depends on whether the predominant power source for the magnetosphere is planetary spin or solar wind. The magnetic moment of Uranus is derived for each power source as a function of the date of first detection of radio emissions by the PRA instrument or auroral emissions by the UVS instrument. If we accept the interpretation of ultraviolet observations now available from the Earth-orbiting International Ultraviolet Explorer satellite, Uranus has a surface magnetic field of at least 0.6 gauss, and more probably several gauss, making it the largest or second-largest planetary magnetic field in the solar system.  相似文献   

7.
Cravens TE 《Science (New York, N.Y.)》2002,296(5570):1042-1045
The discovery of x-ray emission from comet Hyakutake was surprising given that comets are known to be cold. Observations by x-ray satellites such as the R?ntgen Satellite (ROSAT) indicate that x-rays are produced by almost all comets. Theoretical and observational work has demonstrated that charge-exchange collisions of highly charged solar wind ions with cometary neutral species can explain this emission. X-ray observations of comets and other solar system objects may be used to determine the structure and dynamics of the solar wind.  相似文献   

8.
Results are presented from a preliminary analysis of data obtained near Mercury on 29 March 1974 by the NASA-GSFC magnetic field experiment on Mariner 10. Rather unexpectedly, a very well-developed, detached bow shock wave, which develops as the super-Alfvénic solar wind interacts with the planet, has been observed. In addition, a magnetosphere-like region, with maximum field strength of 98 gammas at closest approach (704 kilometers altitude), has been observed, contained within boundaries similar to the terrestrial magnetopause. The obstacle deflecting the solar wind flow is global in size, but the origin of the enhanced magnetic field has not yet been uniquely established. The field may be intrinsic to the planet and distorted by interaction with the solar wind. It may also be associated with a complex induction process whereby the planetary interior-atmosphere-ionosphere interacts with the solar wind flow to generate the observed field by a dynamo action. The complete body of data favors the preliminary conclusion that Mercury has an intrinsic magnetic field. If this is correct, it represents a major scientific discovery in planetary magnetism and will have considerable impact on studies of the origin of the solar system.  相似文献   

9.
Some exploding stars (supernovae) are powerful emitters of centimeter radio radiation. Detailed observations have shown that these supernovae quickly become detectable in the radio range, first at shorter wavelengths (higher frequencies) and later at progressively longer and longer wavelengths (lower frequencies). This part of the phenomenon appears to be well explained by a monotonic decrease in the amount of ionized material surrounding the radio-emitting regions as the shock from the explosion travels outward. The radio emission itself is of a nonthermal, synchrotron origin, as is the case in most bright cosmic radio sources. Once the absorption effects become negligible, the radio intensity declines with time until reaching the detection limit of the telescope. Models suggest that the absorbing material originates in a dense wind of matter lost by the supernova progenitor star, or by its companion if it is in a binary system, in the last stages of evolution before the explosion. The synchrotron radio emission can be generated either externally by the shock wave from the explosion propagating through this same high density stellar wind or internally by a rapidly rotating neutron star, which is the collapsed core of the exploded star. Present results appear to favor the former model for at least the first several years after the supernova explosion, although the latter model remains viable.  相似文献   

10.
The Voyager 2 plasma wave instrument detected many familiar plasma waves during the encounter with Neptune, including electron plasma oscillations in the solar wind upstream of the bow shock, electrostatic turbulence at the bow shock, and chorus, hiss, electron cyclotron waves, and upper hybrid resonance waves in the inner magnetosphere. Low-frequency radio emissions, believed to be generated by mode conversion from the upper hybrid resonance emissions, were also observed propagating outward in a disklike beam along the magnetic equatorial plane. At the two ring plane crossings many small micrometer-sized dust particles were detected striking the spacecraft. The maximum impact rates were about 280 impacts per second at the inbound ring plane crossing, and about 110 impacts per second at the outbound ring plane crossing. Most of the particles are concentrated in a dense disk, about 1000 kilometers thick, centered on the equatorial plane. However, a broader, more tenuous distribution also extends many tens of thousands of kilometers from the equatorial plane, including over the northern polar region.  相似文献   

11.
Bennett radio-frequency ion mass spectrometers have returned the first in situ measurements of the Venus dayside ion composition, including evidence of pronounced structural variability resulting from a dynamic interaction with the solar wind. The ionospheric envelope, dominated above 200 kilometers by O(+), responds dramatically to variations in the solar wind pressure, Which is observed to compress the thermal ion distributions from heights as great as 1800 kilometers inward to 280 kilometers. At the thermal ion boundary, or ionopause, the ambient ions are swept away by the solar wind, such that a zone of accelerated suprathermnal plasma is encountered. At higher altitudes, extending outward on some orbits for thousands of kilometers to the bows shock, energetic ion currents are detected, apparently originating from the shocked solar wind plasma. Within the ionosphere, observations of pass-to-pass differences in the ion scale heights are indicative of the effects of ion convection stimlulated by the solar wind interaction.  相似文献   

12.
Doppler-shifted hydrogen Lyman-alpha (Lyα) emission from galaxies is currently measured and used in cosmology as an indicator of star formation. Until now, the Milky Way emission has not been detected, owing to far brighter local sources, including the H (hydrogen) glow, i.e., solar Lyα radiation backscattered by interstellar atoms that flow within the solar system. Because observations from the Voyager spacecraft, now leaving the heliosphere, are decreasingly affected by the H glow, the ultraviolet spectrographs are detecting Lyα diffuse emission from our Galaxy. The surface brightness toward nearby star-forming regions is about 3 to 4 rayleighs. The escape fraction of the radiation from the brightest H II regions is on the order of 3% and is highly spatially variable. These results will help in constraining models of Lyα radiation transfer in distant galaxies.  相似文献   

13.
库车白杏茎直径和茎液流速日变化及其与环境因子的关系   总被引:2,自引:1,他引:1  
[目的]通过对库车白杏(Armeniaca vulgaris‘Kuchebaixing')茎干直径、茎液流速日变化及其与环境因子的关系分析,探讨环境因子对茎干直径和茎液流速变化的影响,为进一步认识库车白杏生长与环境的关系提供科学依据.[方法]利用以色列PhyTech公司生产的Phytalk植物生理生态监控系统对库车白杏的茎干直径、茎液流速及其环境因子日变化过程进行同步自动采集,并采用逐步回归分析方法进行分析.[结果]库车白杏茎直径变化过程曲线呈不规则锯齿状24h左右的周期性波动变化,晴天茎直径变化过程曲线比较平滑,阴天和雨天波动较大;茎直径变化与空气相对湿度、空气温度、太阳总辐射和土壤水势呈线性正相关,而与土壤温度和饱和水汽压差呈线性负相关.库车白杏茎液流速呈明显的昼夜节律变化,雨天的茎流速率变化过程有较大的起伏震荡;茎液流速与空气温度、空气相对湿度和土壤温度呈线性正相关,而与太阳总辐射、饱和水汽压差和风速呈线性负相关.[结论]库车白杏茎直径日变化呈白天收缩,傍晚、夜间复原或膨胀,与空气相对湿度、空气温度、太阳总辐射、土壤水势、土壤温度和饱和水汽压差紧密相关;茎液流速日变化呈单峰型曲线,与空气温度、空气相对湿度、土壤温度、太阳总辐射、饱和水汽压差和风速紧密相关.  相似文献   

14.
Using soft x-ray observations of the bright new comet C/1999 S4 (LINEAR) with the Chandra x-ray observatory, we have detected x-ray line emission created by charge exchange between highly ionized solar wind minor ions and neutral gases in the comet's coma. The emission morphology was symmetrically crescent shaped and extended out to 300,000 kilometers from the nucleus. The emission spectrum contains 6 lines at 320, 400, 490, 560, 600, and 670 electron volts, attributable to electron capture and radiative deexcitation by the solar wind species C(+5), C(+6), N(+7), O(+7), and O(+8). A contemporaneous 7-day soft x-ray light curve obtained using the Extreme Ultraviolet Explorer demonstrates a large increase in the comet's emission coincident with a strong solar flare on 14 and 15 July 2000.  相似文献   

15.
Additional plasma measurements in the vicinity of Venus are presented which show that (i) there are three distinct plasma electron populations-solar wind electrons, ionosheath electrons, and nightside ionosphere electrons; (ii) the plasma ion flow pattern in the ionosheath is consistent with deflected flow around a blunt obstacle; (iii) the plasma ion flow velocities near the downstream wake may, at times, be consistent with the deflection of plasma into the tail, closing the solar wind cavity downstream from Venus at a relatively close distance (within 5 Venus radii) to the planet; (iv) there is a separation between the inner boundary of the downstream ionosheath and the upper boundary of the nightside ionosphere; and (v) during the first 4.5 months in orbit the measured solar wind plasma speed continued to vary, showing a number of high-speed, but generally nonrecurrent, streams.  相似文献   

16.
Cross-correlation and cross-spectral methods are used in a laboratory modeling experiment to compute the drift velocity of a structure which undergoes internal rearrangement as it drifts in a uniform direction. Emphasis is placed on the problems of making such measurements in remote probing experiments, particularly in the study of irregularities in the solar wind plasma by radio star scintillation techniques, where the number of observing sites is limited to two or three.  相似文献   

17.
The origin of the solar wind in solar coronal holes has long been unclear. We establish that the solar wind starts flowing out of the corona at heights above the photosphere between 5 megameters and 20 megameters in magnetic funnels. This result is obtained by a correlation of the Doppler-velocity and radiance maps of spectral lines emitted by various ions with the force-free magnetic field as extrapolated from photospheric magnetograms to different altitudes. Specifically, we find that Ne7+ ions mostly radiate around 20 megameters, where they have outflow speeds of about 10 kilometers per second, whereas C3+ ions with no average flow speed mainly radiate around 5 megameters. Based on these results, a model for understanding the solar wind origin is suggested.  相似文献   

18.
High-resolution molecular line and continuum radio images from the Hat Creek Radio Observatory and the Very Large Array suggest that the core of the W49A star-forming region is undergoing gravitational collapse. The radio continuum shows a 2-parsec ring of at least ten distinct ultracompact H-II regions, each associated with at least one O star. The ring is a region of large-scale, organized massive star formation. Recombination line velocities and HCO(+) excitation requirements indicate that the ring is rotating around 50,000 solar masses of material. Because the HCO(+) (1-0) line shows red-shifted absorption but blue-shifted emission, the molecular cloud core is believed to be collapsing toward the center of the ring. The HCO(+) radial velocities, as well as H-I, H(2)CO, and magnetic-field measurements, fit a simple model of inside-out gravitational collapse of a once magnetically supported cloud.  相似文献   

19.
During the 10 February 1990 flyby of Venus, the Galileo spacecraft skimmed the downstream flank of the planetary bow shock. This provided an opportunity to examine both the global and the local structure of the shock in an interval during which conditions in the solar wind plasma were quite steady. The data show that the cross section of the shock in planes transverse to the flow is smaller in directions aligned with the projection of the interplanetary magnetic field than in directions not so aligned. Ultralow-frequency waves were present in the unshocked solar wind, and their amplitude peaked when the spacecraft was downstream of the foreshock. At large distances down the tail, the Mach number of the flow normal to the shock is low, thus providing the opportunity to study repeated crossings of the collisionless shock in an interesting parameter regime. Some of the shock crossings reveal structure that comes close to the theoretically predicted form of intermediate shocks, whose existence in collisionless plasmas has not been confirmed.  相似文献   

20.
The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed levels of transport. Here I report the results of a new two-dimensional model that shows that outward transport of high-temperature materials in protoplanetary disks is a natural outcome of disk formation and evolution. This outward transport occurs around the midplane of the disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号