首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The seismologically delineated transition zone, at depths between 400 and 670 kilometers, is a fundamental discontinuity in the earth that separates the upper mantle from the lower mantle. Xenoliths from within or close to the transition zone are dominated by pyropic garnet and associated pyroxene or mineralogically heterogeneous garnet lherzolite. These xenoliths show evidence for the high-pressure (90 to 120 kilobars) transformation of pyroxene to a solid solution of pyroxene in garnet (majorite) and silicon in octahedral coordination; low-pressure (less than 80 kilobars) exsolution of clinopyroxene or orthopyroxene from the original majorite is preserved. Although mineral modes and rock proportions below the transition zone and the relative amount of eclogite present cannot be accurately assessed from the xenoliths, it is likely that both majorite and beta-spinel help produce the observed seismic gradient of the transition zone.  相似文献   

2.
The earth's mantle is degassed along mid-ocean ridges, while rehydration and possibly recarbonaton occurs at subduction zones. These processes and the speciation of C-H-O fluids in the mantle are related to the oxidation state of mantle peridotite. Peridotite xenoliths from continental localities exhibit an oxygen fugacity (fo(2)) range from -1.5 to +1.5 log units relative to the FMQ (fayalite-magnetite-quartz) buffer. The lowest values are from zones of continental extension. Highly oxidized xenoliths (fo(2) greater than FMQ) come from regions of recent or acive subduction (for example, Ichinomegata, Japan), are commonly amphibole-bearing, and show trace element and isotopic evidence of fluid-rock interaction. Peridotites from ocean ridges are reduced and have an averae fo(2) of about -0.9 log units relative to FMQ, virtually coincident with values obtained from mid-ocean ridge basalt (MORB) glasses. These data are further evidence of the genetic link between MORB liquids and residual peridotite and indicate that the asthenosphere, although reducing, has CO(2) and H(2)O as its major fluid species. Incorporation of oxidized material from subduction zones into the continental lithosphere produces xenoliths that have both asthenospheric and subduction signatures. Fluids in the lithosphere are also dominated by CO(2) and H(2)O, and native C is generally unstable. Although the occurrence of native C (diamond) in deep-seated garnetiferous xenoliths and kimberlites does not require reducing conditions, calculations indicate that high Fe(3+) contents are stabilized in the garnet structure and that fo(2) deareases with increasing depth.  相似文献   

3.
Pyroxene-garnet transformation in coorara meteorite   总被引:1,自引:0,他引:1  
Majorite is a new garnet in a veinlet of the Coorara meteorite. Its chemical composition is compatible with derivation mostly from original pyroxene, not from olivine as originally reported. Silicon is partly in sixfold coordination. Ringwoodite, a spinel of olivine composition, occurs as purple grains set in a matrix of fine-grained garnet. The similar mineralogy and texture of the Coorara and Tenham meteorites suggest a common parent body.  相似文献   

4.
Temperatures of equilibration for the majority (81 percent) of the eclogite xenoliths of the Roberts Victor kimberlite pipe in South Africa range between 1000 degrees and 1250 degrees C, falling essentially on the gap of the lower limb of the subcontinental inflected geotherm derived from garnet peridotite xenoliths. In view of the Archean age (>2.6 x 10(9) years) of these eclogites and their stratigraphic position on the geotherm, it is proposed that the inflected part of the geotherm represents the convective boundary layer beneath the conductive lid of the lithospheric plate. The gradient of 8 Celsius degrees per kilometer for the inflection is characteristic of a double thermal boundary layer and suggests layered convection rather than whole mantle convection for the earth.  相似文献   

5.
The tetragonal garnet (Mg,Fe)SiO(3) is a high-pressure phase of pyroxene that is thought to be a major constituent of the earth's upper mantle. Its crystal structure is similar to that of cubic garnet, but it is slightly distorted to tetragonal symmetry so that its x-ray powder diffraction pattern shows a very small line splitting. A suite of tetragonal garnets with different compositions in the MgSiO(3)-rich portion of the MgSiO(3)-FeSiO(3) system was synthesized at about 20 gigapascals and 2000 degrees C. The lattice parameters a and c of quenched samples were determined by whole-powder-pattern decomposition analysis of Fe Kalpha x-ray powder diffraction data, which has the capacity to resolve to a high degree heavily overlapping reflections. It was found that the lattice parameters can be obtained from the following equations; a (in angstroms) = 11.516 + 0.088x and c (in angstroms) = 11.428 + 0.157x, where x, teh mole fraction of FeSiO(3), is 0.0 相似文献   

6.
Lower crustal granulite xenoliths recovered from a kimberlite pipe in western Africa contain native iron (Fe(0)) as a decomposition product of garnet and ilmenite. Magnetic measurements show that less than 0.1 percent (by volume) of iron metal is present. Data from geothermometry and oxygen geobarometry indicate that the oxide and metal phases equilibrated between iron-wüstite and magnetite-wüstite buffers, which may represent the oxidation state of the continental lower crust, and the depleted lithospheric upper mantle. Ferromagnetic native iron could be stable to a depth of approximately 95 kilometers and should be considered in the interpretation of long-wavelength static magnetic anomalies.  相似文献   

7.
Rocks containing high-pressure mineral assemblages derived from the mantle transition zone between depths of about 400 and 670 kilometers occur as xenoliths and megacrysts on the island of Malaita in the southwest Pacific on the Ontong Java Plateau. Observed ultrahigh pressure mineral chemistries include majorite, calcium- and magnesium-perovskite, aluminous silicate phases, and microdiamond. Based on an empirical barometer, majoritic garnets in these xenoliths record pressures of up to 22 gigapascal. The occurrence of material with perovskite chemistry and several enigmatic aluminous phases indicates pressures of up to 27 gigapascal. Samples were brought to the surface at about 34 million years ago by potassic ultramafic magmas, which evidently originated in the lower mantle.  相似文献   

8.
Sen G  Jones RE 《Science (New York, N.Y.)》1990,249(4973):1154-1157
The maximum depth at which large (>1000 km(3)) terrestrial mafic magma chambers can form has generally been thought to be the Moho, which occurs at a mean depth of about 35 kilometers beneath the continents and 8 kilometers beneath ocean basins. However, the presence of layers of cumulus magnesium-rich spinel and olivine and intercumulus garnet in an unusual mantle xenolith from Oahu, Hawaii, suggests that this rock is a fragment of a large magma chamber that formed at a depth of about 90 kilometers; Hawaiian shield-building magmas may pond and fractionate in such magma chambers before continuing their ascent. This depth is at or near the base of the 90-million-year-old lithosphere beneath Oahu; thus, rejuvenated stage alkalic magmas containing mantle xenoliths evidently also originate below the lithosphere.  相似文献   

9.
The reaction dolomite + 2 coesite --><-- diopside + 2 diamond + 2O(2) defines the coexistence of diamond and carbonate in mantle eclogites. The oxygen fugacity of this reaction is approximately 1 log unit higher at a given temperature and pressure than the oxygen fugacities of the analogous reactions that govern the stability of diamond in peridotite. This difference allows diamond-bearing eclogite to coexist with peridotite containing carbonate or carbonate + diamond. This potential coexistence of diamond-bearing eclogite and carbonate-bearing peridotite can explain the presence of carbon-free peridotite interlayered with garnet pyroxenites that contain graphitized diamond in the Moroccan Beni Bousera massif at the Earth's surface and the preferential preservation of diamond-bearing eclogitic relative to peridotitic xenoliths in the Roberts Victor kimberlite.  相似文献   

10.
Oxygen isotope zoning in garnet   总被引:1,自引:0,他引:1  
Oxygen isotope zoning was examined within garnet with the use of the stable isotope laser probe. Four metamorphic garnets from the regional metamorphic terrane in Vermont and the skarn deposit at Carr Fork, Utah, were examined and were found to be concentrically zoned in delta(18)O values. The largest variations in delta(18)O values were observed in the regional metamorphic garnets, where delta(18)O values change by 3 per mil from core to rim. These oxygen isotope zoning profiles reflect the changes in the delta(18)O values of the rocks during garnet growth, which are caused by infiltration of fluids and by dehydration reactions during metamorphism.  相似文献   

11.
Hotspots, basalts, and the evolution of the mantle   总被引:2,自引:0,他引:2  
The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean.  相似文献   

12.
Zonation of oxygen isotope ratios, fluorine, and rare earth element abundances across garnet crystals from the Permian Oslo Rift reflect temporal variation of the hydrothermal system in which the garnets grew. A sharp rimward decrease in the (18)O/(16)O ratio (of 5 per mil) across the interface between aluminum-rich garnet cores and iron-rich rims indicates influx of meteoric fluids to a system initially dominated by magmatic fluids. This influx may record the transition from ductile to brittle deformation of the hydrothermally altered rocks. In contrast, fluorine and light rare earth element concentrations increase at the core-rim interface. These data may reflect enhanced advective transport and notable kinetic control on trace element uptake by the garnets during brittle deformation.  相似文献   

13.
Analytical transmission electron microscopy, electron microprobe analyses, and singlecrystal x-ray diffraction data support the conclusion that high potassium contents, up to 1.5 weight percent K(2)O, of some diopside and omphacite inclusions from diamonds represent valid clinopyroxene compositions with K in solid solution. This conclusion contradicts the traditional view of pyroxene crystal chemistry, which holds that K is too large to be incorporated in the pyroxene structure. These diopside and omphacite inclusions have a high degree of crystal perfection and anomalously large unit-cell volumes, and a defect-free structure is observed in K-bearing regions when imaged by transmission electron microscopy. These observations imply that clinopyroxene can be a significant host for K in the mantle and that some clinopyroxene inclusions and their diamond hosts may have grown in a highly K-enriched environment.  相似文献   

14.
Peridotite xenoliths from the Cascade arc in the United States and in the Japan arc have neodymium and osmium isotopic compositions that are consistent with addition of 5 to 15 percent of subducted material to the present-day depleted mantle. These observations suggest that osmium can be partitioned into oxidized and chlorine-rich slab-derived fluids or melts. These results place new constraints on the behavior of osmium (and possibly other platinum group elements) during subduction of oceanic crust by showing that osmium can be transported into the mantle wedge.  相似文献   

15.
Dislocation core structures in garnet [grossularite (Ca(2.9)Fe(II)(0.1))(Al(1.9)Fe(III)(0.1)Si(3.0)O(12)] have been examined with near atomic resolution transmission electron microscopy. Dissociated dislocations have been observed as parallel a/4<111> partial dislocations that are separated by stacking faults. The partial dislocations have narrow cores ( approximately 3 burgers vectors), and the stacking fault zone between the narrow partial dislocations is apparently a low-energy configuration that results from the occupancy of previously unfilled dodecahedral and tetrahedral sites. Previous studies of garnet dislocations suggested that dissociation involves departures from garnet stoichiometry (that is, trace amounts of impurities), but evidence of detectable amounts of impurities has not been found even in the highest resolution images. These results have implications for mantle mineral rheology and transformations as well as for ceramics of material science interest.  相似文献   

16.
Diamonds and the african lithosphere   总被引:1,自引:0,他引:1  
Data and inferences drawn from studies of diamond inclusions, xenocrysts, and xenoliths in the kimberlites of southern Africa are combined to characterize the structure of that portion of the Kaapvaal craton that lies within the mantle. The craton has a root composed in large part of peridotites that are strongly depleted in basaltic components. The asthenosphere boundary shelves from depths of 170 to 190 kilometers beneath the craton to approximately 140 kilometers beneath the mobile belts bordering the craton on the south and west. The root formed earlier than 3 billion years ago, and at that time ambient temperatures in it were 900 degrees to 1200 degrees C; these temperatures are near those estimated from data for xenoliths erupted in the Late Cretaceous or from present-day heat-flow measurements. Many of the diamonds in southern Africa are believed to have crystallized in this root in Archean time and were xenocrysts in the kimberlites that brought them to the surface.  相似文献   

17.
Binns RA 《Science (New York, N.Y.)》1967,156(3779):1222-1226
The Farmington chondrite contains two small xenoliths of granular cristobalite, each surrounded by a thin reaction rim of diopsidic clinopyroxene. Similarities between the blackened structure and drusy cavities, characteristic of this meteorite, and those of an experimentally heat-treated chondrite suggest that Farmington was reheated rather than shocked, but neither the exact stage in the history of this stone at which reaction rims developed around the xenoliths nor the source of the calcium necessary to form rim diopside have been established with certainty.  相似文献   

18.
The Miniature Thermal Emission Spectrometer (Mini-TES) on Spirit has studied the mineralogy and thermophysical properties at Gusev crater. Undisturbed soil spectra show evidence for minor carbonates and bound water. Rocks are olivinerich basalts with varying degrees of dust and other coatings. Dark-toned soils observed on disturbed surfaces may be derived from rocks and have derived mineralogy (+/-5 to 10%) of 45% pyroxene (20% Ca-rich pyroxene and 25% pigeonite), 40% sodic to intermediate plagioclase, and 15% olivine (forsterite 45% +/-5 to 10). Two spectrally distinct coatings are observed on rocks, a possible indicator of the interaction of water, rock, and airfall dust. Diurnal temperature data indicate particle sizes from 40 to 80 microm in hollows to approximately 0.5 to 3 mm in soils.  相似文献   

19.
Plagioclase and olivine crystals in the crystalline rocks from the Sea of Tranquillity show little or no evidence of either static or dynamic deformation. The large disorientations in many of the pyroxene crystals are commonly consistent with slip on the system T -(100), t = [001], but these distortions are not due to plastic flow. They are ascribed to rapid growth and quenching phenomena as deduced from studies of chondrules and of quenched natural and experimentally produced melts. Some of the silicates in the breccias and regolith show evidence of shock deformation, from mild to intense, as indicated by pervasive featuring, shock lamallae, and partial transformatiion of pyroxene and plagioclase crystals to glass.  相似文献   

20.
Experimental determinations of the diffusion coefficients of samarium and neodymium in almandine garnet and theoretical considerations show that one cannot assign a sufficiently restricted range of closure temperature, TC, to the samarium-neodymium decay system in garnet for the purpose of constraining the cooling rate. However, it is shown that the samarium-neodymium cooling age of garnet can be used to calculate both cooling rate and TC if the temperature and age at the peak metamorphic conditions are known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号