首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This paper presents an experimental study on thedevelopment of an efficient energy dissipator ascompared to Garde's energy dissipator (Garde et al.1986) for pipe outlets. The recommended designs werelaboratory tested on scale models with pipe outletdiameter of 10 cm and 7.5 cm for Froude number rangingfrom 1.70 to 5.50. The performance of the newdissipator improved tremendously by using new shapes,sizes and locations of the appurtenances for the samelength of stilling basin. This was possible due tobetter spreading of efflux jet by using a propersplitter block. The formation of a strong vortexinfront of the solid impact wall, in place of a grid,and an additional horizontal shear at the bottomproduced more fine grained eddies and turbulence,which finally reduced the energy of the outgoing flow. The low bottom velocities at the end of the basinresulted in reduction of the scour. The performanceof various models has been compared by estimating thescour index based on maximum depth of scour and itslocation at the end of run time.  相似文献   

2.
This paper reports on model studies on energy dissipatorswhich were performed with a view towards developing a shorterand more efficient type of stilling basin for circular pipeoutlets at low Froude numbers. The stilling basin models weretested for two pipe outlet diameters. The outlet Froude numberfor testing ranged from 1.70 to 5.50. The studies reported inthis paper expand on the improvement suggested by Goel andVerma (1999). In all, 133 test runs were made on 19 newmodels. Various configurations of stilling basin models withdifferent sizes, shapes and locations of appurtenances andbasin lengths were tested. The use of a wedge-shaped splitterblock, an impact wall, and the use of wedge-shaped blocks asbaffle blocks resulted in efficient energy dissipation inshorter lengths of stilling basin. A non-dimensional numbertermed as scour index has been used to compare theperformances of various stilling basin models. It was foundthat the length of stilling basin could be reducedconsiderably without affecting the performance by choosing asuitable configuration of the stilling basin. Of theconfigurations tested, the stilling basin model M-24 with tworows of wedge-shaped baffle blocks in a basin length of sixtimes the diameter of pipe outlet (6d) performed better incomparison to USBR impact type VI stilling basin.  相似文献   

3.
合理地选择溢洪道建筑物消能型式,是关系到整个水利工程安全与经济的重要问题.通过溢洪道设计规范进行消能方式水力学计算,结合物理模型试验对传统底流消能与跌坎型底流消能水力特性进行了对比分析,结果表明:传统底流消能在校核洪水下泄流量时,底流消能方水流进入消力池后产生一定程度的远驱式水跃,消力池消能主要位于消力池后部,消力池后部及出口水面壅高较大,且波动剧烈,没有形成相对稳定的消能水体,消力池消能效果不佳,需要增加消力池长度;跌坎型底流消能消力池底板高程降低1 m时,临底流速较底流消能得到大幅度降低,池内水流扩散充分,剪切明显,消力池后段形成了稳定的水体,消能效果良好,出水渠内水流流态得到改善,难以对消力池产生冲刷破坏.跌坎型底流消能空化数增大降低了空蚀发生概率,可避免消力池产生空蚀破坏,最大水跃位置向前移动7 m,水流不会冲击底板和尾坎,水流垂直溅起,因此消力池内流态稳定,雾化影响较小,其具有适应性强,消能效率高、流态稳定等优点.  相似文献   

4.
The Upper Swat Canal (USC) System became operational in 1917–1918 in North West Frontier Province (NWFP) of Pakistan. The rehabilitation and modernization of the USC was undertaken with a view to overcoming the shortage of water supplies for irrigation. The water allowance was enhanced from 0.39 to 0.77 Ls−1 ha−1 in the study area. Recently, the operation and management of a secondary canal or ‘distributary’ was transferred to the Farmers Organization (FO). This distributary named ‘Chowki’ offtakes from the Maira Branch of the USC. The cultivable command area (CCA) of this distributary is 4,306 ha and it serves 1,485 beneficiaries. A management committee on Chowki Distributary was formed in 2003. This distributary consists of one main and two minor channels having twenty-eight direct outlets. The Simulation of Irrigation Canal (SIC) hydrodynamic model was used to evaluate the flexibility of Chowki Distributary. The model was calibrated at 100, 80 and 70% of the design discharge (Q d) and it was validated at 90, 85 and 60% of the design discharge. The observed and simulated water levels were in close agreement with each other for the calibration and validation periods. The statistical analysis and paired t-test indicate that the model results are not statistically different from the measured values at 1% significance level. The simulated results of the SIC model were applied to studying flexibility of the outlet structures along the Chowki Distributary. The flexibility analysis demonstrates that poor performance is inbuilt into the system due to inadequate control over the accuracy of the crest setting during the construction of the outlets.  相似文献   

5.
房凯  李凯  臧东年 《农业工程》2017,7(6):106-108
借助遗传算法,在传统的计算模型基础上建立两个非线性规划模型,第1个模型计算收缩水深,判定是否需设置消力池,第2个模型计算消力池深度。通过模型计算,和传统的计算方法相比,结果一致,方法可行。   相似文献   

6.
On-farm irrigation networks are designed for optimum performance at a specific upstream pressure head. In pressurized water distribution systems operating on demand, the upstream pressure head of the on-farm network can be subject to high and continuous fluctuations depending on the number of the hydrants being simultaneously opened. In this paper, a methodology combining network design and performance analysis of a sprinkler network is described and applied to an irrigation distribution system operating at two different water demands (1,200 and 600 l s−1) using a case study in Italy. Four designs of the same sprinkler network were optimized at different upstream designing pressure and were evaluated at all the possible operating conditions of the system. The expensive large pipe size diameter design presented the best performance and the highest reliability at a wide range of hydrant pressure while the small pipe size designs have the tendency to fail during the peak water demand period as a result of low hydrant pressure. Flow regulators within the hydrants showed to have an important role in stabilizing the network performance at elevated upstream pressure head.  相似文献   

7.
The study investigates the ability of artificial neural networks (ANN) with artificial bee colony (ABC) algorithm in daily reference evapotranspiration (ET0) modeling. The daily climatic data, solar radiation, air temperature, relative humidity, and wind speed from two stations, Pomona and Santa Monica, in Los Angeles, USA, are used as inputs to the ANN–ABC model so as to estimate ET0 obtained using the FAO-56 Penman–Monteith (PM) equation. In the first part of the study, the accuracy of ANN–ABC models is compared with those of the ANN models trained with Levenberg–Marquardt (LM) and standard back-propagation (SBP) algorithms and those of the following empirical models: The California Irrigation Management System (CIMIS) Penman, Hargreaves, and Ritchie methods. The mean square error (MSE), mean absolute error (MAE) and determination coefficient (R2) statistics are used for evaluating the accuracy of the models. Based on the comparison results, the ANN–ABC and ANN–LM models are found to be superior alternative to the ANN–SBP models. In the second part of the study, the potential of the ANN–ABC, ANN–LM, and ANN–SBP models in estimation ET0 using nearby station data is investigated.  相似文献   

8.
Flow conditions, which could not be explained, occurred in the stilling basin and outfall channel of the Feni Regulator sited at the western end of the Feni River closure dam. This regulator controls outflows from the upstream reservoir which supplies irrigation water to Muhuri Project in Bangladesh. Analysis of flood discharge data revealed that the design discharge for the structure was not exceeded; yet abnormal scour occurred in the outfall channel and the brick block rip-rap placed thereon was damaged. A model study was conducted to understand the causes of such unusual local erosion downstream of the stilling basin and to provide answers to two main questions:
  • -Is potential scour serious in terms of the stability of the structure?
  • -What protection measures could be taken to stabilize the scour at a safe level?
  • Using a 1:30 scale model, the probable maximum scour was simulated, and the performance of alternative rip-rap designs including that of the existing one were examined. The results of this study supplemented by field scour data collected during subsequent flood seasons indicated that even if the flow rate through the regulator approaches the design flood discharge, the downstream scour is not likely to extend up to an elevation of ? 10.7 m, a scour level observed in the previous year at a lower discharge. It also showed that the existing rip-rap blocks were marginally undersized and consequently the rip-rap was prone to failure if flow conditions departed from uniform. A suitable method of scour protection downstream of the stilling basin at the regulator exit also evolved from the study.  相似文献   

    9.
    Irrigation is the dominant user of water worldwide, but provision of potable water and water for industry are higher priorities and give higher social and economic returns. Irrigation will continue to lose water to competing sectors and the productivity of irrigation systems (since food demand continues to grow) remains a central issue in water management. Performance assessment of irrigation has traditionally been difficult when based on field measurements of flows, deliveries and depths over large areas. Furthermore, performance measures have shifted from narrow engineering indicators to broader productivity issues of production achieved per unit of water consumed. Remote sensing, applied to the estimation of evapotranspiration (ET) over large areas, provides analysts of irrigation systems with extraordinary new tools for the objective assessment of consumption and production – constituting a quantum leap in the assessment of irrigation system performance. Awareness and utilisation of these tools is spreading, but important areas remain to be “converted” from traditional approaches that rely on an array of estimated parameters. The next challenge for remote sensing will be to map the frontier between the reliability of the irrigation service and the productivity achieved. Reliability provides the inducement for farmers to invest in higher productivity – to the benefit of themselves and society – and understanding better how the individual maximises profits within an uncertain irrigation environment can provide important guidance to managers and system designers.  相似文献   

    10.
    河南省薄山水库输水道出口消力塘采用四级消能工进行消能。 由于高速水流产生的气蚀破坏,消能工遭到严重破坏。为解决此问题,进行了水工模型实验。根据实验资料,决定采用坡顶墩替代原三角形分水墩。经运行多年,消能情况良好。另外,对气蚀破坏的原因及处理改善措施作了比较完整的论述,并对高速水流消能工的设计及运行管理提出了一些建议。  相似文献   

    11.
    Limited precipitation restricts yield of winter wheat (Triticum aestivum L.) grown in the North China Plain. Water stress effects on yield can be avoided or minimized by application of irrigation. We examined the multiseasonal irrigation experiments in four locations of the piedmont and lowland in the region, and developed crop water-stress sensitivity index, relationship between seasonal evapotranspiration (ET) and yield, and crop water production functions. By relating relative yield to relative ET deficit, we found that the crop was more sensitive to water stress from stem elongation to heading and from heading to milking. For limited irrigation, irrigation is recommended during the stages sensitive to water stress. Grain yield was 258–322 g m−2 in the piedmont and 260–280 g m−2 in the lowland under rainfed conditions. The corresponding seasonal ET was 242–264 mm in the piedmont and 247–281 mm in the lowland. Irrigation significantly increased seasonal ET and therefore grain yield as a result of increased kernel numbers per m−2 and kernels per ear. On average, one irrigation increased grain yield by 21–43% and two to four irrigations by 60–100%. Grain yield was linearly related to seasonal ET with a slope of 1.15 kg m−3 in the lowland and 1.73 kg m−3 in the piedmont. Water-use efficiency was 0.98–1.22 kg m−3 for rainfed wheat and 1.20–1.40 kg m−3 for the wheat irrigated 2–4 times. Grain yield response to the amount of irrigation (IRR) was developed using a quadratic function and used to analyze different irrigation scenarios. To achieve the maximum grain yield, IRR was 240 mm in the piedmont and 290 mm in the lowland. When the maximum net profit was achieved, IRR was 195 mm and 250 mm in the piedmont and lowland, respectively. The yield response curve to IRR showed a plateau over a large range of IRR, indicating a great potential in saving IRR while maintaining reasonable high levels of grain yield.  相似文献   

    12.
    The use of N fertilizers in agriculture is crucial, and agricultural techniques need to be implemented that improve significantly N fertilizer management by reducing downward movements of solutes through the soil. To achieve this, it is essential to develop and test models against experimental conditions in order to improve them and to make sure that they can be applied to a broad range of soil and climatic conditions. A field experiment was carried out in the French department of Gard. The soil was a clay loam (26.7% clay, 44.7% fine and coarse silt, and 28.6% fine and coarse sand). Salad vegetables (Cichorium endivia, Lactuca sativa) were cultivated during two consecutive periods (spring and summer crops). The crops were planted on punched and permeable plastic mulching bands. The field was irrigated with a sprinkler watering system. Local measurements were made combining a neutron probe, tensiometers, and ceramic porous cups to estimate NO3-N concentrations. The model is one-dimensional and is based on Richards' equation for describing saturated-unsaturated water flow in soil. At the soil surface, the model is designed to handle flux-type or imposed-pressure boundary conditions. In addition, provision is made in the model, for example, to account for a mulch plastic sheet that limits evaporation. The model accounts for heat transport by diffusion and by convection, while the modeling of the displacement of nitrate and ammonium in the soil is based on the convection-dispersion equation. Nitrate uptake by the crop is modeled assuming Michaelis-Menten kinetics. Nitrogen cycle modeling accounts for the following major transformations: mineralization of organic matter, nitrification of ammonium, and denitrification. The results showed that the overall trend of the water potential in the soil profile was correctly described during the crop seasons. Mineralization was high for the spring crop (4.7 kg NO3-N day–1 ha–1), whereas the other sink components, such as root uptake, drainage, and denitrification, were smaller (1.9, 1.4, and 0.2 kg NO3-N day–1 ha–1, respectively). For the summer crop, intensive denitrification was found in the soil layer at 0.15–0.90 m (5.7 kg NO3-N day–1 ha–1), while the mineralization was always an important component (9.2 kg NO3-N day–1 ha–1) and the sink terms were 1.7 and 1.7 kg NO3-N day–1 ha–1 for root uptake and drainage, respectively. Similar high denitrification rates were found in the literature under intensive irrigated field conditions. Received: 25 October 1995  相似文献   

    13.
    Elevation and infiltration in a level basin. I. Characterizing variability   总被引:3,自引:0,他引:3  
    Spatial characterization of soil physical properties could improve the estimation of surface irrigation performance. The aim of this research was to characterize the spatial and time variability of a set of irrigation-related soil properties. The small-scale experimental level-basin (729 m2) was located on an alluvial loam soil. A corn crop was established in the basin and irrigated five times during the season. A detailed survey of the soil properties (generally using a 3 × 3 m network) was performed. Classic statistical and geostatistical tools were used to characterize the variables and their interactions. Semivariograms were validated for the studied variables, except for the clay fraction, the saturated hydraulic conductivity and the infiltration parameters. The resulting geostatistical range was often in the interval of 6–10 m. For the three surveys of soil surface elevation the range was smaller, about 4 m. No correlation was found between saturated hydraulic conductivity and the other soil physical properties. Soil surface elevation showed a high correlation between surveys. After the first irrigation, the standard deviation of elevation increased from an initial 9.6 mm to 20.8 mm. The soil physical parameters were used to map the soil water management allowable depletion. In a companion paper these results are used to explain the spatial variability of corn yield and soil water recharge due to irrigation. Received: 24 February 1998  相似文献   

    14.
    In this work, remote sensing-based assessments of actual evapotranspiration using METRIC integrated with a water balance model provided accurate estimates of irrigation performance. This new methodology was applied and tested in the Genil–Cabra Irrigation Scheme located in southern Spain during the 2004–2005 irrigation season. The performance indicators used, the annual relative irrigation supply (ARIS) and the irrigation water productivity (IWP), required ET input data which were calculated using either METRIC or standard FAO methodology. The new procedure that used METRIC detected overirrigation (ARIS of 1.27) in situations where the ARIS calculated with the standard FAO methodology indicated near-optimal irrigation (ARIS of 0.98). Additionally, the proposed methodology allows the estimation of the volume of applied water at the field scale. Comparisons between the ARIS and IWP values obtained from actual applied water records against those calculated with the new methodology resulted in good agreement. It is concluded that the integration of the METRIC method to calculate actual ET with a water balance model allowed the determination of performance indicators in an irrigation scheme in a reliable and accurate fashion, requiring only very limited information at the field level.  相似文献   

    15.
    Accurate estimation of reference crop evapotranspiration (ETo) is required for several hydrological studies and thus, in the past, a number of ETo estimation methods have been developed with different degree of complexity and data requirement. The present study was carried out to develop artificial neural network (ANN) based reference crop evapotranspiration models corresponding to the ASCE’s best ranking conventional ETo estimation methods (Jensen et al. ASCE Manual and Rep. on Engrg. Pract. no. 70, 1990). Among the radiation methods, FAO-24 radiation (or Rad) method for arid and Turc method for humid region, and among the temperature methods, FAO-24 Blaney–Criddle (or BC) method were studied. The ANN architectures corresponding to the above three less data-intensive methods were developed for four CIMIS (California Irrigation Management Information System) stations, namely, Davis, Castroville, Mulberry, and West Side Field station. The comprehensive ANN architecture developed by Kumar et al. (J Irrig Drain Eng 128(4):224–233, 2002) corresponding to Penman–Monteith (PM) ETo for Davis was also tried for the other three stations. Daily meteorological data for a period of more than 10 years (01 January 1990 to 30 June 2000) were collected from these stations and were used to train, test, and validate the ANN models. Two learning schemes, namely, standard back-propagation with learning rate of 0.2 and standard back-propagation with momentum having learning rate of 0.2 and momentum term of 0.95 were considered. ETo estimation performance of the ANN models was compared with the FAO-56 PM method. It was found that the ANN models gave better closeness to FAO-56 PM ETo than the best ranking method in each category (radiation and temperature). Thus these models can be used for ETo estimation in agreement with climatic data availability, when not all required climatic variables are observed.  相似文献   

    16.
    Yield response factor (K y) is an important basis for implementing efficient irrigation and optimal water allocation. Because K y varies in different sites, understanding its spatial distribution plays an important role in optimization irrigation in Haihe basin. After determining the K y and ET0 of winter wheat, an exponentially increasing function was found between the two parameters. Then, spherical and exponential semivariograms were chosen as proper theoretical models for ET0 and K y, respectively, with R 2 of more than 0.970. By comparing six interpolation methods as well as two procedures, i.e. ‘calculate first, interpolate later’ (CI) and ‘interpolate first, calculate later’ (IC), IC-RK (residual kriging) was considered as an optimal method in interpolating K y. Mapping of K y for winter wheat indicated an increasing trend from the western and northern mountainous region to the eastern plain region in the basin, with the K y of 0.783–1.668 for the dry growing season, 0.760–1.460 for the average growing season and 0.749–1.293 for the wet growing season. Moreover, the K y values were more than 1.0 over the most of this basin, indicating that yield loss was more important than evapotranspiration deficit, and there were greater effect of water stress on the yield of winter wheat.  相似文献   

    17.
    Evapotranspiration (ET) is one of the indicators of water use efficiency. Periodic information of ET based on remote sensing is useful for an on-demand irrigation (ODI) management. The main objective of this paper was to develop an ET data assimilation scheme to optimize the parameters of an agro-hydrology model for ODI scheduling. The soil, water, atmosphere, and plant (SWAP) simulation model has been utilized for this purpose. We computed remote sensing-based ET for a wheat field in the Sirsa Irrigation Circle, Haryana, in India using 18 cloud-free moderate resolution imaging spectroradiometer images taken between December 2001 and April 2002. The surface energy balance algorithm for land (SEBAL) was used for this purpose. Because ET estimates from SEBAL provide information on the surface soil moisture state, they were treated as observations to estimate unknown parameters of the SWAP model via a stochastic data assimilation (genetic algorithm) approach. The SWAP parameters were optimized by minimizing the residuals between SEBAL and SWAP model-based ET values. The optimized parameters were used as input to SWAP to estimate soil water balance for ODI scheduling. The results showed that the selected parameters (i.e. sowing, harvesting, and irrigation scheduling dates) were successfully estimated with the data assimilation methodology. The SWAP model produced reasonable states of water balance by assimilating ET observations. The root mean square of error was 0.755 and 2.132 cm3/cm3 for 0–15 and 15–30 cm soil depths the same layers, respectively. With optimized parameters for ODI, SWAP predicted higher yield and water use efficiency than traditional farmer’s irrigation criteria. The data assimilation methodology produced can be considered as an operational tool at the field scale to schedule irrigation or predict irrigation requirements from remote sensing-based ET.  相似文献   

    18.
    结合国外某水电站工程,通过物理模型对水电站引水沉沙池的水力学特性进行试验研究,通过试验资料深入分析了沉沙池内水流的流态特征,流速分布等水力特性,并通过在沉沙池工作段首部加设整流栅,对入池水流进行调节,使沉沙池内水流流场分布均匀,使调节后的流场分布更利于泥沙的沉降,研究成果为工程设计提供了重要的技术支撑。  相似文献   

    19.
    Root length density (LV), mid-day leaf water potential (Ψ leaf) and yield of wheat were studied in 1983 – 1984 and 1984 – 1985 on a Phoolbagh clay loam (Typic Haplaquoll) and on a Beni silty clay loam (Aquic Hapludoll) in the Tarai region of Uttar Pradesh under naturally fluctuating shallow (0.4 – 0.9 m, SWT) and medium-depth (0.8 – 1.3 m, MWT) water table conditions with six water regimes: rainfed (I0); irrigation at cown root initiation (I1); at crown root initiation and milk (I2); at crown root initiation, maximum tillering and milk (I3); at crown root initiation, maximum tillering, flowering and milk (I4); and at crown root initiation, maximum tillering, flowering, milk and dough (I5). Maximum rooting depth (0.8 m under SWT and 1.05 m under MWT conditions) was attained at the dough stage (115 days after sowing, DAS) and was more strongly influenced by fluctuations in water table depth than by the water regime. For wet regimes (I2– I5), roots were concentrated at and above the water table interface and had greater horizontal development, whereas in dry regimens (I0 and I1), due to deficient moisture conditions in the upper soil layer (0.45 m) they invaded lower horizons and had a greater vertical distribution Ψ leaf was not significantly affected by water regime (I1– I5) up to 94 DAS during a wet year (1983 – 1984) and up to 74 DAS during a dry year (1984 – 1985), but was significantly affected thereafter. Grain yields with water regimens I1– I5 during a wet year and for the I2– I5 treatments during a dry year at either water table depth were not significantly different, but there was a (non-significant) trend to lower yield with increasing soil water deficit. Under SWT in I2, the average grain yield wsa 5130 kg ha–1 and under the I3 regime, 5200 kg ha–1. Likewise, under MWT in I3, it was 5188 kg ha–1 and under the I4 regime, 5218 kg ha–1. The results indicate that application of irrigation of more than 120 and 180 mm under SWT and MWT conditions, respectively, did not raise yield. Irrigation given as per schedule I2 under SWT and I3 under MWT conditions in the Tarai situation, appears to be more effective than a very wet regime (I5). Received: 9 December 1997  相似文献   

    20.
    混流泵出水歧管流场分析及结构改进   总被引:1,自引:1,他引:0  
    针对排灌作业混流泵出水歧管头部涡旋严重,歧管侧面出水流道内存在较为严重的涡旋及局部脱流问题,提出了相应的结构改进方案,以提高侧面出口断面速度分布均匀性、减小流道的水力损失为目标,将建立的参数化三维模型导入至IECM中完成网格的划分,利用CFD三维湍流数值模型进行有限体积法分析,逐步改进出水歧管流道的结构。结果表明,管道的连接圆滑过渡程度、岔管的夹角会影响流场的分布,通过这2个关键因素的改进来提高出水歧管的流道性能,从而减小水力损失。  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号