首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The use of N and P by mixed and by sole cropping (crop rotation) of maize and cowpeas were compared in a field experiment on an Alfisol at the Nyankpala Agricultural Experiment Station in the northern Guinea Savanna of Ghana, using two levels of N (0 and 80 kg N ha-1 year-1 as urea) and P application (0 and 60 kg P ha-1 year-1 as Volta phosphate rock). Maize grain yields were significantly reduced in the mixed cropping system. This yield difference became smaller with the application of N and P fertilizer. The N and P concentrations in maize ear leaves at silking indicated that a deficiency in N and P contributed to the maize yield depression in mixed cropping. Competition for soil and fertilizer N between maize and cowpeas was suggested by: (1) A similarity in total N uptake between the two cropping systems; (2) efficient use of soil nitrate by the cowpeas; and (3) low N2 fixation by the cowpeas, calculated with the aid of an extended-difference method. In general, N2 fixation was low, with the highest values in the sole cropping (53 kg ha-1) and a substantial reduction in the mixed cropping system. The application of N fertilizer further reduced N2 fixation. This was substantiated by nodule counts. The lower N2 fixation in the mixed cropping system was only partly explained by the lower density of cowpeas in this system. In addition, dry spells during the cropping season and shading by the maize component could have reduced the nodulation efficiency. No N transfer from the legume/rhizobium to the non-legume crop was observed. Impaired P nutrition in the mixed compared with the sole-cropped maize might have been due to less P mobility in the soil. This was indicated by lower soil moisture contents in the topsoil under mixed cropping, especially during the dry year of 1986. The results show that mixed cropping of maize and cowpeas did not lead to improved use of soil and fertilizer N and P or to an enhanced N2 fixation. On the contrary, an annual rotation of maize and cowpeas was clearly superior.  相似文献   

2.
A field experiment was conducted to obtain the N balance sheet for sole crops and intercrops of sorghum [Sorghum bicolor (L.) Moench] and pigeonpeas [Cajanus cajan (L.) Millsp.]. Intercropping gave a significant advantage over sole cropping in terms of dry matter production and grain yield, as calculated on the basis of the land equivalent ratio and area-time equivalent ratio. The N fertilizer use efficiency and atmospheric N2 fixation by pigeonpea were estimated using 15N-labeling and natural abundance methods. The N fertilizer use efficiency of sorghum was unaltered by the cropping system, while that of the pigeonpea was greatly reduced by intercropping. Although intercropping increased the fractional contribution of fixed N to the pigeonpeas, no significant difference was observed between the cropping systems in total symbiotically fixed N. There was no evidence of a significant transfer of N from the pigeonpea to the sorghum. This study showed that use of soil N and fertilizer N by pigeonpeas was almost the same as that by sorghum in sole cropping, indicating the potential competence of pigeonpeas to exploit soil N. However, when N was exhausted by a companion crop in intercropping, the pigeonpea crop increased its dependency on atmospheric N2 fixation. We conclude that knowledge of how N from different sources is shared by companion crops is a prerequisite to establishing strategies to increase N use, and consequently land productivity, in intercropping systems.  相似文献   

3.
Nitrogen use in maize-grain legume cropping systems in semi-arid Kenya   总被引:1,自引:0,他引:1  
Locally suitable cultivars of maize, beans, and cowpeas were grown in field experiments for four seasons in semi-arid Kenya. For three seasons, the dry matter production and grain yield of maize and beans were not increased by N fertilizer additions up to 120 kg N ha-1. Fertilizer recoveries measured by 15N isotope dilution techniques were low, less than 20%. Inoculated and uninoculated beans failed to fix N2. By contrast the cowpea derived 50% of its N from fixation, equivalent to 197 kg N ha-1. The N content of the grain generally exceeded 40 kg N ha-1, and the N content of the seeds from the grain legumes were greater than those from the cereals. Large inputs of N fertilizer or N by fixation are required if maize-grain legume cropping system in semiarid Kenya are to be sustained in the long term.  相似文献   

4.
Summary The effect of salts on the balance of fertilizer N applied as 15N-labelled ammonium sulphate and its interaction with native soil N was studied in a pot experiment using rice (Oryza sativa L.) as a test crop. The rice crop used 26%–40% of the applied N, the level of applied N and salts showing no significant bearing on the uptake of fertilizer N. Losses of fertilizer N ranged between 54% and 68% and only 5%–8% of the N was immobilized in soil organic matter. Neither the salts nor the rate of N application had any significant effect on fertilizer N immobilization. The effective use of fertilizer N (fertilizer N in grain/fertilizer N in whole plant) was, however, better in the non-saline soil. The uptake of unlabelled N (N mineralized from soil organic matter and that originating from biological N2 fixation in thes rhizosphere) was inhibited in the presence of the salts. However, in fertilized soil, the uptake of unlabelled N was significantly enhanced, leading to increased A values [(1-% Ndff/% Ndff)x N fertilizer applied, where Ndff is N derived from fertilizer], an index of interaction with the added N. This added N interaction increased with increasing levels of added N. Since the extra unlabelled N taken up by fertilized plants was greater than the fertilizer N immobilized, and the root biomass increased with increasing levels of added N, a greater part of the added N interaction was considered to be real, any contribution by an apparent N interaction (pool substitution or isotopic displacement) to the total calculated N interaction being fairly small. Under saline conditions, for the same level of fertilizer N addition, the added N interaction was lower, and this was attributed to a lower level of microbial activity, including mineralization of native soil N, rootdriven immobilization of applied N, and N2 fixation.  相似文献   

5.
A field experiment on dhaincha, sunflower, and sorghum plants grown in monocropping and intercropping systems was conducted to evaluate growth and nitrogen (N2) fixation using 13carbon (C) and 15N natural abundance techniques. Intercropping of sesbania/sorghum showed a greater efficiency than monocropping in producing dry matter during the entire growth period, whereas the efficiency of producing dry matter in the sesbania/sunflower intercropping was similar to that in the monocropping system. Moreover, sorghum plants (C4) were more competitive than sesbania (C3) for soil N uptake, whereas sesbania seemed to be more competitive than its associated sunflower (C3). Nitrogen uptake in the mixed stand of sesbania/sorghum was improved as a result of the increase in soil N uptake by the component sorghum and the greater root nodule activity of component sesbania without affecting the amount of N2 fixed. The Δ 13C in plant materials was affected by plant species and the cropping system.  相似文献   

6.
Azam  F.  Ashraf  M.  Lodhi  Asma  Sajjad  M. I. 《Biology and Fertility of Soils》1990,10(2):134-138
Summary A pot experiment was conducted to study the N availability to wheat and the loss of 15N-labelled fertilizer N as affected by the rate of rice-straw applied. The availability of soil N was also studied. The straw was incorporated in the soil 2 or 4 weeks before a sowing of wheat and allowed to decompose at a moisture content of 60% or 200% of the water-holding capacity. The wheat plants were harvested at maturity and the roots, straw, and grains were analysed for total N and 15N. The soil was analysed for total N and 15N after the harvest to determine the recovery of fertilizer N in the soil-plant system and assess its loss. The dry matter and N yields of wheat were significantly retarded in the soil amended with rice straw. The availability of soil N to wheat was significantly reduced due to the straw application, particularly at high moisture levels during pre-incubation, and was assumed to cause a reduction in the dry matter and N yields of wheat. A significant correlation (r=0.89) was observed between the uptake of soil N and the dry matter yield of wheat with different treatments. In unamended soil 31.44% of the fertilizer N was taken up by the wheat plants while 41.08% of fertilizer N was lost. The plant recovery of fertilizer N from the amended soil averaged 30.78% and the losses averaged 45.55%  相似文献   

7.
Summary We used 15N technology to investigate N2 fixation by Sesbania speciosa and Sesbania rostrata and its transfer to a lowland rice crop after incorporation of the Sesbania spp. into soil as green manure. During the first 50 days after establishment in November–December 1989, S. speciosa and S. rostrata produced 1126 and 923 kg dry matter ha-1 respectively. They gathered 31 and 23 kg N ha-1 respectively, of which 62%±5% and 55%±3% respectively, came from N2 fixation. Both these species produced a greater biomass during September–October 1989, with S. rostrata producing more than S. speciosa. These results reflected differential responses by the plants to different day lengths at different times of the year. Furthermore, the dry matter yield and %N of 15N-labelled S. speciosa were smaller than those of the unlabelled plants, possibly due to inhibition of N2 fixation in root nodules by the chemical N fertilizers added during labelling. These differences were not so pronounced in the stem-nodulated S. rostrata. The increased grain yield of rice fertilized with N in the form of chemical fertilizer or green manure was a result of an increased number of panicles per hill. The rice crop manured with S. speciosa produced a lower grain yield, with a lower grain weight than that manured with S. rostrata. This was due to a low uptake of soil N by rice manured with S. speciosa. Recovery of N from the green manure in rice straw with S. speciosa was significantly higher than from rice manured with S. rostrata, because of the higher applied N uptake by rice manured with the former.  相似文献   

8.
Summary An attempt has been made to estimate quantitatively the amount of N fixed by legume and transferred to the cereal in association in intercropping systems of wheat (Triticum aestivum L.) — gram (Cicer arietinum L.) and maize (Zea mays L.) —cowpea (Vigna unguiculate L.) by labelling soil and fertilizer nitrogen with 15N. The intercropped legumes have been found to fix significantly higher amounts of N as compared with legumes in sole cropping if the intercropped cereal-legume received the same dose of fertilizer N as the sole cereal crop. But when half of the dose of the fertilizer N applied to sole cereal crop was received by intercropped plants, the amount of N fixed by legumes in association with cereals was significantly less than that fixed by sole legumes. Under field conditions 28% of the total N uptake by maize (21.2 kg N ha–1) was of atmospheric origin and was obtained by transfer of fixed N by cowpea grown in association with maize. Under greenhouse conditions gram and summer and monsoon season cowpea have been found to contribute 14%–20%, 16% and 32% of the total N uptake by associated wheat and summer and monsoon maize crops, respectively. Inoculation of cowpea seeds with Rhizobium increased both the amount of N fixed by cowpea and transferred to maize in intercropping system.  相似文献   

9.
Abstract

One‐third of all the cultivated land area is used for multiple cropping and half of the total grain yield is produced with multiple cropping in China. There have been numerous studies on nutrient acquisition by crops in legume/non‐legume intercropping systems, but few on nutrient uptake in cereal/cereal intercropping. This paper describes a field experiment in which integrated wheat/maize and maize/faba bean systems were compared with sole wheat and sole faba bean cropping to assess the effects of intercropping on nutrient uptake by wheat, maize, and faba bean under various application rates of nitrogen (N) and phosphorous (P) fertilizers. Results show that both N and P fertilizers and intercropping enhanced N uptake by wheat, while only P fertilizer and intercropping increased P acquisition by wheat. The advantage of N uptake by border rows of wheat intercropped with maize declined with increasing N fertilizer application rate, but that of P acquisition was not affected by P fertilizer. The amounts of both N and P taken up by maize intercropped with faba bean were much higher than those by maize intercropped with wheat throughout the period of intercropping. Both fertilization and intercropping did not influence the N and P uptake by faba bean.  相似文献   

10.
Summary A pot experiment was conducted to compare the yields from five commercially cultivated varieties (Bas-198, Bas-370, Bas-Pak, Bas-385, and IR-6) of rice (Oryza sativa L.) and to establish the relative significance of soil N and fertilizer N (15N-labelled ammonium sulphate) in affecting crop performance. Another aim was to study the interaction of fertilizer N and soil N as influenced by different rice varieties. Among the five varieties tested, Bas-Pak gave the maximum dry matter and N yield. The N-use efficiency (percentage of applied N taken up by the plants) of different varieties ranged between 33.7 and 43.7%, Bas-Pak being the most efficient. Significant losses of fertilizer N occurred from the soil-plant system. The maximum N loss (52.1% of applied N) was observed with IR-6 and the minimum loss (39.2%) with Bas-Pak. A substantial increase in the uptake of soil N following the application of fertilizer and an interaction between the two N sources were observed with all varieties except Bas-385. The interaction was attributed to greater root proliferation following the application of fertilizer. It was concluded that a varietey with greater potential to use soil N is likely to give a better yield and that, of the two N sources, the availability of soil N was more important in determining the yield performance of different varieties of rice.  相似文献   

11.
The effects of 15N-labelled ammonium nitrate, urea and ammonium sulphate on yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L. cv. Mexi-Pak-65) were studied in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 64.0–74.8%, 61.5–64.7% and 61.7–63.4% of the N from ammonium nitrate, urea and ammonium sulphate, respectively. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea and ammonium sulphate. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the three N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied with the method of application of fertilizer N. Ammonium nitrate, urea and ammonium sulphate gave 59.3%, 42.8% and 26.3% more added N interaction, respectively, when applied by the broadcast/worked-in method than with band placement. A highly significant correlation between soil N and grain yield, dry matter and added N interaction showed that soil N was more important than fertilizer N in wheat production. A values were not significantly correlated with added N interaction (r=0.719). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N stood proxy for unlabelled soil N.  相似文献   

12.
玉米/大豆间作具有一定的养分利用优势,但是不同供氮水平对玉米/大豆间作体系干物质累积和氮素吸收的调控作用不同。本试验采用田间裂区设计,运用Logistic模型分析,模拟了4个氮水平下玉米/大豆间作作物干物质积累和氮素吸收的动态变化。结果表明,玉米、大豆干物质累积和氮素吸收动态符合Logistic模型,相关系数R2均在0.9以上。在N0(不施氮肥)、N1(180 kg·hm-2)、N2(240 kg·hm-2)和N3(300 kg·hm-2)供氮水平时,间作玉米最大生长速率(Imax-B)分别比单作提高34.2%、46.7%、25.9%和25.1%,而相应的供氮水平下,大豆的Imax-B分别降低27.7%、30.3%、16.5%和23.7%,但整个间作系统的Imax-B平均增加32.1%;玉米和大豆干物质的其他模拟参数与Imax-B规律一致。氮素吸收动态与干物质积累表现出同步的变化特点,在N1水平下,单位面积间作玉米的氮素最大吸收量(K-N)、最大吸收速率(Imax-N)和瞬时吸收速率(r-N)比相应单作分别提高18.4%、48.9%和25.8%,而间作大豆的K-NImax-Nr-N值比单作处理分别降低15.9%、29.9%和16.69%,整个间作系统氮素分别提高0.4%、13.7%和7.8%;施氮水平对大豆r-N无显著性影响。间作显著地提高了氮素当量比(LERN>1),其中N0水平下LERN值最高,随着施氮量的增加,LERN有下降趋势。在本试验条件下,N2供氮水平下玉米/大豆间作体系干物质积累量和氮素吸收量最高,间作优势最明显。  相似文献   

13.
Studies were conducted on paddy soils to ascertain N2 fixation, growth, and N supplying ability of some green-manure crops and grain legumes. In a 60-day pot trial, sunhemp (Crotalaria juncia) produced a significantly higher dry matter content and N yield than Sesbania sesban, S. rostrata, cowpeas (Vigna unguiculata), and blackgram (V. mungo), deriving 91% of its N content from the atmosphere. Dry matter production and N yield by the legumes were significantly correlated with the quantity of N2 fixed. In a lowland field study involving sunhemp, blackgram, cowpeas, and mungbean, the former produced the highest stover yield and the stover N content, accumulating 160–250 kg N ha-1 in 60 days, and showed great promise as a biofertilizer for rice. The grain legumes showed good adaptability to rice-based cropping systems and produced a seed yield of 1125–2080 kg ha-1, depending on the location, species, and cultivar. Significant inter- and intraspecific differences in the stover N content were evident among the grain legumes, with blackgram having the highest N (104–155 kg N ha-1). In a trial on sequential cropping, the groundnut (Arachis hypogaea) showed a significantly higher N2 fixation and residual N effect on the succeeding rice crop than cowpeas, blackgram, mungbeans (V. radiata), and pigeonpeas (Cajanus cajan). The growth and N yield of the rice crop were positively correlated with the quantity of N2 fixed by the preceding legume crop.  相似文献   

14.
根区一次施氮提高水稻氮肥利用效率的效果和原理   总被引:6,自引:2,他引:6  
我国水稻氮肥施用量大,农民习惯氮肥表面撒施,氮肥通过氨挥发以及径流等途径损失严重,造成经济损失和环境污染。农村劳动力缺乏,土地流转迅速,省时省力、节肥高效的施肥方式亟待探索和推广。大田条件下,在环太湖水稻高施氮区,比较常规氮肥用量下(225 kg/hm2)的农民习惯分次施用(40%︰30%︰30%分次施用)与根区一次施用(偏根系5 cm,土表下10 cm穴施)两种施肥方式对水稻产量及氮肥利用率的影响。结果表明不种植水稻的前提下,习惯施氮处理表层土壤NH_4~+-N最高,自表层向下逐渐降低,各层养分均随时间推移而下降。根区一次施氮可显著提高施肥点周围土壤中的NH_4~+-N含量及其贮存时间,施肥后30,60和90 d,根区施氮处理NH_4~+-N最高值分别达到542.6、412.1和39.8 mg/kg。且根区一次施氮处理施肥点周围土壤高NH_4~+-N含量至少可保持60 d。种植水稻后,相对习惯分次施氮而言,根区一次施氮显著提高水稻分蘖数、各器官的氮含量、氮积累量及氮肥利用效率。根区一次施氮处理水稻氮积累量高达196.7 kg/hm2,相对习惯施氮增加34.9%。氮肥表观利用率分别达到59.8%(差值法)和42.5%(15N标记法),相对习惯施肥分别增加22.6和30.6个百分点。肥料氮损失由分次施用的73.0%下降到29.7%。根区一次施氮显著增加肥料养分在土壤中的贮存时间,降低肥料养分损失的风险,提高水稻氮肥利用效率,是一种节肥高效的施肥方式,值得进一步研发施肥机械和推广应用。  相似文献   

15.
We studied the effects of 15N-labelled ammonium nitrate and urea on the yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L., cv. Mexi-Pak-65) in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 33.6–51.5 and 30.5–40.9% of the N from ammonium nitrate and urea, respectively. Splitting the fertilizer N application had a significant effect on the uptake of fertilizer N by the wheat. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the two N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied according to the fertilizer N split; six split applications gave the highest added N interaction compared to a single application or two split applications for both fertilizers. Ammonium nitrate gave 90.5, 33.5, and 48.5% more added N interaction than urea with one, two, and six split N applications. A values were not significantly correlated with the added N interaction (r=0.557). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N replaced unlabelled soil N.  相似文献   

16.
Nitrogen acquisition by field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) grown on a sandy loam soil and availability of N in three subsequent sequences of a cropping system were studied in an outdoor pot experiment. The effect of crop residues on the N availability was evaluated using 15N-labelled residues. Field pea fixed 75% of its N requirement and the N2 fixation almost balanced the N removed with the seeds. The barley crop recovered 80% of the 15N-labelled fertilizer N supplied and the N in the barley grain corresponded to 80% of the fertilizer N taken up by the crop. The uptake of soil-derived N by a test crop (N catch crop) of white mustard (Sinapis alba L.) grown in the autumn was higher after pea than after barley. The N uptake in the test crop was reduced by 27% and 34% after pea and barley residue incorporation, respectively, probably due to N immobilization. The dry matter production and total N uptake of a spring barley crop following pea or barley, with a period of unplanted soil in the autumn/winter, were significantly higher after pea than after barley. The barley crop following pea and barley recovered 11% of the pea and 8% of the barley residue N. The pea and barley residue N recovered constituted only 2.5% and <1%, respectively, of total N in the N-fertilized barley. The total N uptake in a test crop of mustard grown in the second autumn following pea and barley cultivation was not significantly influenced by pre-precrop and residue treatment. In the short term, the incorporation of crop residues was not important in terms of contributing N to the subsequent crop compared to soil and fertilizer N sources, but residues improved the conservation of soil N in the autumn. In the long-term, crop residues are an important factor in maintaining soil fertility and supplying plant-available N via mineralization.  相似文献   

17.
Summary A pot experiment was conducted to study the availability of soil and fertilizer N to wetland rice as influenced by wheat straw amendment (organic amendment) and to establish the relative significance of the two sources in affecting crop yield. Straw was incorporated in soil at 0.1, 0.2, and 0.3% before transplanting rice. Inorganic N as 15N-ammonium sulphate was applied at 30, 60, and 90 g g-1 soil either alone or together with wheat straw in different combinations. After harvesting the rice, the plant and soil samples were analyzed for total N and 15N. Straw incorporation significantly decreased the dry matter and N yield of rice, the decrease being greater with higher rates of straw. The reduction in crop yield following the straw incorporation was attributed mainly to a decrease in the uptake of soil N rather than fertilizer N. The harmful effects of organic matter amendment were mitigated by higher levels of mineral N addition. The uptake of applied N increased and its losses decreased due to the straw incorporation. Mineral N applied alone or together with organic amendment substantially increased the uptake of unlabelled soil N. The increase was attributed to a real added N interaction.  相似文献   

18.
Field experiments were conducted at the Teaching and Research Farm, Ladoke Akintola University of Technology, Ogbomoso, Nigeria in 2007 and 2008 to determine the effects of phosphorus fertilizer application on performance of intercropped maize and soybean. The experiments, arranged as a split plot in a randomized complete block design, replicated four times. A cropping system with sole maize, sole soybean and maize/soybean intercrop formed the main plot treatments while P rates with 0, 15 and 30 kg P2O5 ha?1 were the subplot treatments. For both years, neither P fertilizer application nor cropping systems had a significant effect on maize grain yield. However, soybean grain yield was significantly higher (92.3% in 2007 and 44.5% in 2008) under sole cropping than under maize/soybean intercropping. On average, N fixed by soybean increased with the increase in P rate (from 51.8% without P to 60.5% with 30 P), but there was no significant difference in N fixed by sole soybean and soybean/maize intercrop. However, the interaction effect on N fixed between cropping systems and P rates was significant (P ≤ 0.05). N, P and K contents in maize grain were significantly higher (>100%) in intercropped maize than in sole maize. The cropping systems had no significant effect on post-harvest soil chemical characteristics. The land equivalent ratio was 1.52 in 2007 and 1.78 in 2008. The result shows that in utilizing legumes for N enrichment, the alleviation of P deficiency can enhance N2-fixation by legumes. Furthermore, P replenishment in a maize/soybean intercrop may improve maize grain quality even though yield is not increased.  相似文献   

19.
施氮和豌豆/玉米间作对土壤无机氮时空分布的影响   总被引:3,自引:1,他引:3  
为探明甘肃河西走廊绿洲灌区豌豆/玉米间作体系土壤无机氮时空分布现状和过量施用氮肥对环境的影响,2011年在田间试验条件下,采用土钻法采集土壤剖面样品,采用Ca Cl2溶液浸提、流动分析仪测定土壤无机氮含量的方法,研究了不同氮水平[0 kg(N)·hm?2、75 kg(N)·hm?2、150 kg(N)·hm?2、300 kg(N)·hm?2、450 kg(N)·hm?2]下豌豆/玉米间作体系土壤无机氮时空分布规律。结果表明:作物整个生育期内,灌漠土无机氮以硝态氮为主,其含量是铵态氮的7.55倍。在玉米整个生育期内,与不施氮相比,75 kg(N)·hm?2、150 kg(N)·hm?2、300 kg(N)·hm?2和450 kg(N)·hm?2处理的土壤硝态氮含量分别增加29.7%、67.5%、88.2%和134.3%。与豌豆收获期相比,在玉米收获时土壤硝态氮含量平均降低44.2%。间作豌豆和间作玉米分别比对应的单作在0~120 cm土层硝态氮含量降低6.1%和5.1%。豌豆/玉米间作体系土壤无机氮累积量在不同施氮量和不同生育时期都是表层(0~20 cm)最高。豌豆收获后,0~60 cm土层土壤无机氮累积量间作豌豆和间作玉米分别比相应单作降低4.9%和1.9%,60~120 cm土层降低10.8%和9.2%;玉米收获后0~60 cm土层平均降低28.2%和9.4%,60~120 cm土层平均降低23.5%和12.5%。土壤无机氮残留量间作豌豆比单作豌豆在0~60 cm土层降低4.9%,60~120 cm降低10.9%。因此,施用氮肥显著增加了土壤无机氮含量和累积量,且主要影响土壤硝态氮。过量的氮肥投入会因作物不能及时全部吸收而被大水漫灌和降雨等途径淋洗到土壤深层,造成氮肥损失和农田环境污染。间作能显著降低土壤无机氮浓度和累积量,特别在作物生长后期对土壤无机氮累积的降低作用更加明显。  相似文献   

20.
A pot experiment was conducted to compare the uptake and dry matter production potential of NH inf4 sup+ and NO inf3 sup- and to study the effect of Baythroid, a contact poison for several insect pests of agricultural crops, on growth and N uptake of maize (Zea mays L.). Nitrogen was applied as (15NH4)2SO4, K15NO3, or 15NH4NO3 and in one treatment Baythroid was combined with 15NH4NO3. Source of N had, in general, a nonsignificant effect on dry matter and N yield, but uptake of NO inf3 sup- was significantly higher than that of NH inf4 sup+ when both N sources were applied together. Substantial loss of N occurred from both the sources, with NH inf4 sup+ showing greater losses. Baythroid was found to have a significant positive effect on dry matter yield of both root and shoot; N yield also increased significantly. Uptake of N from both the applied and native sources increased significantly in the presence of Baythroid and a substantial added nitrogen interaction (ANI) was determined. The positive effect of Baythroid was attributed to: (1) a prolonged availability of NH inf4 sup+ due to inhibition of nitrification, (2) an increased availability of native soil N through enhanced mineralization, and (3) an enhanced root proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号