首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Amplified fragment length polymorphism (AFLP) markers were evaluated for determining the phylogenetic relationships, and the diversity in the Saccharum complex using 30 clones belonging to S. officinarum, S. robustum, S. spontaneum, S. barberi, S. sinense and the related genus Erianthus. The phenetic tree of the species clones based on AFLP data was consistent with the known taxonomical relationships. AFLP gave higher resolution of closely related species into discrete groups than that by RAPD and RFLP markers, reported earlier. The levels of diversity within the various Saccharum species were also found to be higher than those obtained previously with the same set of clones using RAPD markers. The intraspecies similarity in S. barberi and S. sinense was much higher than interspecies similarity suggesting a clear separation of the two, which are considered ‘horticultural species’. The genetic similarity matrix derived from a single primer combination highly correlated (r = 0.980) with that obtained from all the 12 primer combination used in the study, thus highlighting the efficiency of a single primer combination in delineating species relationships. All the primer combinations could identify markers that are specific to each of the species and the genus Erianthus. Among the species, specific markers were highest in S. spontaneum followed by S. robustum, S. barberi, S. officinarum and S. sinense. Erianthus had a distinct profile with 30% of the total amplified fragments being specific to it. This offers great scope for identifying intergeneric hybrids, which has been very difficult using morphological traits and RAPD markers. High degree of correspondence between the results from the cluster analysis based on Jaccard's similarity index, Neighbour Joining tree based on Sokal and Michener distance matrix and AFTD (Analyses Factorielle on Table of Distances) analysis clearly demonstrated that AFLP markers would be an appropriate tool in providing better information about the relationships among the species, estimation of diversity, and in revealing species and genus specific markers that could be directly applied in sugarcane breeding programmes.  相似文献   

2.
Saccharum spontaneum L. a wild relative of sugarcane is the most variable and diverse among the Saccharum species. This species had been successfully exploited in sugarcane improvement programmes since 1915 and most of the present day commercial varieties are derivatives of interspecific hybrids involving S. spontaneum. The S. spontaneum germplasm available today in the World collections is diverse and represent different geographical groups. In the present investigation, an attempt was made to characterize 40 S. spontaneum clones collected from 4 different geographical areas in India using 20 random, 2 ISSR and 2 telomere primers. Of the 491 bands generated by these primers 83.9% were polymorphic. The genetic diversity estimated based on these markers was found to be moderate (48.9%). The pair-wise genetic distance between the accessions ranged from 29.8 to 60.0. The accessions from Arunachal Pradesh were found to be the most diverse, while Tamil Nadu accessions showed relatively less diversity. Diversity between Tamil Nadu and Kerala collections was found to be low, while the diversity between the Orissa group and the rest was found to be high. The collections from Mayurbanj and Cuttack regions of Orissa were found to be distinct. Arunachal Pradesh accessions, being more diverse, are a potential source for exploitation in sugarcane breeding programmes.  相似文献   

3.
In order to study relationships within and among species of the highly complex polyploid genus Saccharum, 30 clones from 5 species (S. barberi, S. officinarum, S. robustum, S. sinense, and S. spontaneum) and 6 cultivated clones were analyzed using 15 sugarcane simple sequence repeat (SSR) markers and two multivariate statistical methods. The origins of two species, S. barberi and S. sinense, are unclear, and it has been hypothesized that they arose from crosses of S. officinarum × S. spontaneum. S. robustum is suggested to be ancestral to S. officinarum, which, when crossed with S. spontaneum, principally comprise the genomes of commercial cultivars. Although our analyses supported S. robustum as being an ancestor of S. officinarum, and show the composition of commercial clones as expected, our results concerning the species S. barberi and S. sinense indicated them to be much less related to the main Saccharum germplasm pool than previous molecular marker investigations, suggesting that introgression from other genera may exist in their ancestry. The differing results of our analysis of S. barberi and S. sinense are likely attributable to more equal and larger numbers of clones studied in each species. Given the extremely high ploidy, the use of only 15 SSR markers enabled clear distinction of Saccharum species and clones, and also identified likely mislabeled accessions. In addition, the replication of DNA extraction, polymerase chain reactions, and fragment electrophoresis increased the robustness of our analysis.  相似文献   

4.
An isolate ofPuccinia hordei (ND89-3) originally collected in Morocco is virulent on most barley genotypes reported to possess resistance, except cultivar Estate (CI 3410), which possesses theRph3 gene and exhibits a low to intermediate level of resistance (infection type 12). Isolate ND89-3 possesses one of the widest virulence spectrums reported forP. hordei. Accessions ofHordeum vulgare (1,997 in total) andH. spontaneum (885 in total), mostly originating from the Mediterranean region and parts of North Africa, were evaluated with isolate ND89-3 at the seedling stage to identify new sources of leaf rust resistance. Fifty-eight accessions ofH. vulgare, and 222 accessions ofH. spontaneum exhibited low infection types to this isolate. Further evaluations of these resistant accessions with isolates ofP. hordei virulent forRph3,Rph7, andRph12 suggested that most of the resistantH. vulgare accessions possess theRph3 gene. Data suggested additional sources of effective resistance inH. vulgare are rather limited. FiveH. vulgare accessions and 167H. spontaneum accessions were identified as possible sources of new genes for leaf rust resistance. These accessions likely possess resistance genes that are different fromRph1 toRph12, or gene combinations thereof based on their reaction to four leaf rust isolates. Utilization of these accessions in barley breeding will broaden the germplasm resources available for genetic control ofP. hordei. North Dakota Agricultural Experiment Station Journal Series No. 2123. The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

5.
Inter-Simple Sequence Repeat (ISSR) and Randomly Amplified Polymorphic DNA (RAPD) markers were used to analyze genetic distance among H. vulgare subsp. spontaneum populations from west Turkey. Fifty-five RAPD and 10 ISSR primers were used to detect variation among sample. A total of 55 polymorphic loci were found using 65 primers. Two distinct cluster groups were clearly established among populations. The minimum variation was detected between Pinarbasi and Bornova (GD = 0.192) populations and the maximum was found between Icmeler and Aydin populations (GD = 0.926). As two dominant markers, RAPD and ISSRs are effective and promising marker systems for detecting genetic variation.  相似文献   

6.
Sesuvium portulacastrum L. (seapurslane) is a halophyte used as pioneer species in sand dune fixation and stabilization of saline soil. Studies on the morphological and molecular diversity were carried out for the 14 clones of Sesuvium collected from the different coastal regions of India. Significant differences were observed for morphological traits viz., length, width, diameter and area of leaf, internodal distance and stem diameter for different clones when compared with the clone from Gujarat state (GJ1). A UPGMA dendrogram for morphological traits based on the Pearson’s similarity coefficient clustered the clones into three groups considering 80% polymorphism as criteria. Molecular diversity among the clones was studied using Randomly Amplified Polymorphic DNA (RAPD), Internal Transcribed Spacer (ITS) and markers specific to Ac homologous region. Of the total 749 RAPD loci amplified with 70 random primers, 294 were polymorphic with 39.25% diversity. A phylogenetic tree constructed with UPGMA and SHAN, grouped the clones into three major clades based on RAPD data. The molecular diversity studied with ITS and markers specific to Ac homologous region revealed 37.50% and 66.66% polymorphism and clustered the clones into three and four clades, respectively. The genetic diversity analysis revealed wide variations among the S. portulacastrum clones, reflecting a high level of diversity within the species which might be due to anthropogenic impact and geographic environmental conditions. Further, the various clones from the different eco-geographic coastal localities might have originated from native places of wild abundance. To the best of our knowledge, this is the first attempt to evaluate both morphological and genetic diversity among the Sesuvium clones collected from the distant habitats of the coastal regions of the India.  相似文献   

7.
Erianthus rockii, a wild relative of sugarcane, is drought and cold tolerant, and both are potentially important agronomic traits to the sugarcane industry worldwide. As such it is of interest as a source of parental germplasm to sugarcane breeders and is currently being used in sugarcane introgression programs in both China and Australia. To date morphological characters have been used to verify the putative hybrids produced. Two crosses were generated between two different Saccharum species and two E. rockii accessions. Over 400 AFLP markers were used to identify the intergeneric hybrid progeny as well as determine hybrid diversity. Both crosses generated hybrids but efficiency levels were very different and are probably related to the different Saccharum parent used in each cross. Cross 1 was between a Saccharum officinarum and E. rockii and generated 100% hybrid progeny. Cross 2, however, was between a sugarcane hybrid (S. officinarum × Saccharum spontaneum) and E. rockii and only 10% of the progeny were intergeneric hybrids. Inheritance of markers in the progeny was analysed and for both crosses there were equal numbers of markers from both parents indicating n + n transmission of chromosomes. This is the first verification of E. rockii hybrids with molecular markers. It may now be possible to exploit genes of value from E. rockii in sugarcane breeding programs.  相似文献   

8.
Forty-three wild cranberry (Vaccinium macrocarpon Ait.) clones collected from four Canadian provinces and five cranberry cultivars were assessed for genetic variability by using random amplified polymorphic DNA (RAPD)-PCR. Fourteen primers generated 161 polymorphic RAPD-PCR bands. A substantial degree of genetic diversity was found among the wild cranberry collections. Cluster analysis by the unweighted pair-group method with arithmetic averages (UPGMA) separated the wild clones and three cultivars into five main clusters, and identified the two remaining cultivars as outliers. Furthermore, within four clusters, the genotypes tended to form sub-clusters that were in agreement with the principal coordinate (PCO) analysis. Geographical distribution explained 10% of total variation as revealed by analysis of molecular variance (AMOVA). The RAPD markers detected a sufficient degree of polymorphism to differentiate among cranberry clones and cultivars, making this technology valuable for germplasm management and the more efficient choice of parents in current cranberry breeding programs.  相似文献   

9.
Detection of genetic relationships between 19 chickpea cultivars and five accessions of its wild progenitor Cicer reticulatum Ladizinsky were investigated by using RAPD and ISSR markers. On an average, six bands per primer were observed in RAPD analysis and 11 bands per primer in ISSR analysis. In RAPD, the wild accessions shared 77.8% polymorphic bands with chickpea cultivars, whereas they shared 79.6% polymorphic bands in ISSR analysis. In RAPD analysis 51.7% and 50.5% polymorphic bands were observed among wild accessions and chickpea cultivars, respectively. Similarly, 65.63% and 56.25% polymorphic bands were found in ISSR analysis. The dendrogram developed by pooling the data of RAPD and ISSR analysis revealed that the wild accessions and the ICCV lines showed similar pattern with the dendrogram of RAPD analysis. The ISSR analysis clearly indicated that even with six polymorphic primers, reliable estimation of genetic diversity could be obtained, while nearly 30 primers are required for RAPD. Moreover, RAPD can cause genotyping errors due to competition in the amplification of all RAPD fragments. The markers generated by ISSR and RAPD assays can provide practical information for the management of genetic resources. For the selection of good parental material in breeding programs the genetic data produced through ISSR can be used to correlate with the relationship measures based on pedigree data and morphological traits to minimize the individual inaccuracies in chickpea.  相似文献   

10.
A hybrid between Erianthus arundinaceus (Retz.) Jeswiet and Saccharum spontaneum L. which are wild related species of sugarcane (Saccharum L., Family Poaceae), was repeatedly crossed as female parent with sugarcane commercial varieties to develop near commercial sugarcane clones. The cytoplasm type of the hybrid derivatives were confirmed to be of E. arundinaceus through the mitochondrial and chloroplast DNA polymorphism of nad 4/3-4 intron segment and psbC–trnS segment, respectively. The E. arundinaceus × S. spontaneum hybrid with somatic chromosome number 2n = 62 was confirmed to have 30 chromosomes from E. arundinaceus through genomic in situ hybridization (GISH). The (E. arundinaceus × S. spontaneum) × sugarcane hybrid (2n = 118) had 24 chromosomes from E. arundinaceus whereas its next generation hybrid with sugarcane (2n = 108) had only 12 Erianthus chromosomes. The commercial sugarcane hybrid Co 15015, which is the third generation hybrid with 2n = 106 was confirmed to have two E. arundinaceus chromosomes through GISH. It is the first report of sugarcane with both alien cytoplasm and chromosome contributions from E. arundinaceus.  相似文献   

11.
Summary Fifty-seven accessions ofMusa including cultivated clones of 6 genomic groups (AA, AB, AAA, AAB, ABB, ABBB),M. balbisiana Colla (BB),M. acuminata Colla ssp.banksii F. Muell. (AA),M. acuminata Colla ssp.malaccensis Ridl. (AA) andM. velutina Wendl. & Drude were examined for random amplified polymorphic DNA (RAPD) genetic markers using PCR with sixty 10-mer random primers. Forty-nine of 60 tested primers gave reproducible DNA amplification patterns. The number of bands resolved per amplification was primer dependent and varied from 1 to a maximum of 24. The size range of the amplification products also differed with the selected primer sequence/genotype and ranged from 0.29 to 3.0 kb. RAPD data were used to generate Jaccard's similarity coefficients which were analyzed phenetically. Phenetic analysis separated clones into distinct groupings that were in agreement with clusterings revealed when data were subsequently analyzed by principal coordinate analysis (PCO). In both the phenetic and the PCO analyses, previously unclassified cultivars grouped with cultivars previously classified for their genomic group based on morphological keys. The implications of RAPD analysis forMusa germplasm classification, clonal identification, and management are discussed.  相似文献   

12.
The present study was conducted to isolate and characterize rhizobial strains from root nodules of cultivated legumes, i.e. chickpea, mungbean, pea and siratro. Preliminary characterization of these isolates was done on the basis of plant infectivity test, acetylene reduction assay, C-source utilization, phosphate solubilization, phytohormones and polysaccharide production. The plant infectivity test and acetylene reduction assay showed effective root nodule formation by all the isolates on their respective hosts, except for chickpea isolate Ca-18 that failed to infect its original host. All strains showed homology to a typical Rhizobium strain on the basis of growth pattern, C-source utilization and polysaccharide production. The strain Ca-18 was characterized by its phosphate solubilization and indole acetic acid (IAA) production. The genetic relationship of the six rhizobial strains was carried out by random amplified polymorphic DNA (RAPD) including a reference strain of Bradyrhizobium japonicum TAL-102. Analysis conducted with 60 primers discriminated between the strains of Rhizobium and Bradyrhizobium in two different clusters. One of the primers, OPB-5, yielded a unique RAPD pattern for the six strains and well discriminated the non-nodulating chickpea isolate Ca-18 from all the other nodulating rhizobial strains. Isolate Ca-18 showed the least homology of 15% and 18% with Rhizobium and Bradyrhizobium, respectively, and was probably not a (Brady)rhizobium strain. Partial 16S rRNA gene sequence analysis for MN-S, TAL-102 and Ca-18 strains showed 97% homology between MN-S and TAL-102 strains, supporting the view that they were strains of B. japonicum species. The non-infective isolate Ca-18 was 67% different from the other two strains and probably was an Agrobacterium strain.  相似文献   

13.
Summary An analysis of the amplification fragments polymorphism of DNA coming from different accessions of germplasm belonging to species and cultivars of the genus Vitis, was carried out using 40 primer decamers of arbitrary sequence. The RAPD profiles showed a great intraspecific diversity. In many cases a single primer produced a unique pattern for each species. A phylogram tree based upon presence/absence data of the principal DNA bands divided the species according to their geographical origins. The intraspecific polymorphism of DNA fragments was not sufficient for an unambiguous identification of Vitis vinifera cultivars but the RAPD profiles turned out to be highly reproducible. The high capacity of this technique to generate DNA markers offers a new possibility for the study of the genetic relationships in the genus Vitis.Abbreviations PCR Polymerase chain reaction - RAPD Random amplified polymorphic DNA  相似文献   

14.
Randomly amplified polymorphic DNA (RAPD) analysis was employed to assess genetic divergence among 29 neem accessions collected from two agro-ecological regions of India (11 agro-climatic sub-zones), which cover three states, Punjab, Haryana and Rajasthan. Out of 24, 10-mer random primers used for studying genetic divergence, 14 were polymorphic, generating a total of 73 amplification products with an average of 5.21 products per polymorphic primer and estimated gene diversity of 0.49. Genetic relationships among accessions were evaluated by generating a similarity matrix based on Jaccard’s coefficient, ranging from 0.70 to 0.96. The phenetic dendrogram generated by UPGMA analysis grouped accessions into five clusters. RAPD performed within accessions (individual seedlings collected from the same mother plant) showed no variation indicating homogeneous population within accessions. Primers OPA-18, OPC-08 and OPI-03 were found most informative based on their resolving power. The degree of genetic variation detected among the 29 accessions with RAPD analysis suggests that RAPD can be used for studying genetic diversity in neem. The study also demonstrated that neem germplasm collected from northwestern plains of India shows no eco-geographical isolation based on sub-zones because accessions collected from different sub-regions are grouping together in the genetic tree.  相似文献   

15.
A RAPD analysis was conducted to clearify the mode of evolution of barley in the western Mediterranean basin. Twenty-nine barley accessions (Hordeum vulgare) and 13 populations of the wild progenitor (H. v. subsp. spontaneum) together with two outgroup species were analysed with seven RAPD primers, resulting in 101 polymorphic amplified fragments. Phenetic and cladistic analyses of the RAPD data resulted in trees indicating a monophyletic origin of cultivated barley, thus making a secondary domestication in Morocco unlikely. In Morocco spontaneous back mutation to wild type and crossing between wild barley (introduced from the E Mediterranean) and cultivated lines occurred, which gave rise to the local weedy forms of barley.  相似文献   

16.
Saccharum (= Erianthus) native to North America is an untapped germplasm for genetic improvement of sugarcane (Saccharum spp. hybrids). There are five species and two varieties native to North America: S. alopecuroideum, S. baldwinii, S. brevibarbe vars. brevibarbe and contortum, S. coarctatum, and S. giganteum. There are three cytotypes of S. giganteum (2n = 30, 60, 90), and they overlap in gross morphology. Our objectives were to compare genetic diversity of North American and Old World members of Saccharum. Bulked DNA for five North American species, three Old World Erianthus spp. sect. Ripidium clones, and five sugarcane cultivars was tested by PCR with 13 RAPD primers. A total of 283 repeatable RAPD bands was scored for the nine taxa. Genetic distance coefficients ranged from 0.365 to 0.767 indicating substantial diversity among taxa. Taxa were assigned to one of three cluster groups: 1) S. baldwinii, S. brevibarbe var. contortum, S. coarctatum, and S. giganteum 2n = 90; 2) S. gig anteum 2n = 30 and 2n = 60, S. alopecuroideum, and sugarcane cultivars; and 3) Old World Erianthus spp. The RAPD analysis indicated that sugarcane was genetically more similar to North American Saccharum than it was to Old World Erianthus. This was unexpected given that North American Saccharum is geographically, cytologically, morphologically, and possibly reproductively isolated from Old World Erianthus and sugarcane. The data support the taxonomic separation of cytotypes of S. giganteum.  相似文献   

17.
The genus Paspalum L. consists of more than 400 species. Around twenty-five informal groups of species are recognized in Paspalum and the Dilatata group is of special interest because its members are excellent potential forage grasses. Seventy-five germplasm accessions, representing 15 taxa, were analyzed using randomly amplified polymorphic DNA (RAPD). Polymorphisms were observed with twenty-two primers in the Dilatata group and 16 of those were analyzed. Four hundred and four different RAPD fragments were generated, resulting in an average of 25.2 bands per primer. Among the 404 markers analyzed, 48 (11.88%) were exclusive for the P. dilatatum Poir. biotypes, 31 (7.67%) were exclusive to taxa belonging to other groups included in this study, 28 markers (6.93%) were diagnosed for other species of the Dilatata group and 16 (3.96%), for natural hybrids. Extensive RAPD variation was found among the species studied. Inter- and intra-taxonomic polymorphisms were detected. A dendrogram based on the RAPD data shows some clusters corresponding to the same taxa. However, the biotypes of P. dilatatum do not form a cluster. The present work confirms that the RAPD technique can be used to determine genetic relationships between the taxa belonging to the Dilatata group.  相似文献   

18.
The genus Arachis is divided into nine taxonomic sections. Section Arachis is composed of annual and perennial species, while section Heteranthae has only annual species. The objective of this study was to investigate the genetic relationships among 15 Brazilian annual accessions from Arachis and Heteranthae using RAPD markers. Twenty-seven primers were tested, of which nine produced unique fingerprintings for all the accessions studied. A total of 88 polymorphic fragments were scored and the number of fragments per primer varied from 6 to 17 with a mean of 9.8. Two specific markers were identified for species with 2n = 18 chromosomes. The phenogram derived from the RAPD data corroborated the morphological classification. The bootstrap analysis divided the genotypes into two significant clusters. The first cluster contained all the section Arachis species, and the accessions within it were grouped based upon the presence or absence of the ‘A’ pair and the number of chromosomes. The second cluster grouped all accessions belonging to section Heteranthae.  相似文献   

19.
Vanilla is naturally distributed in Mexico and parts of Central America and the history of origin of cultivated vanilla suggests that the entire stock outside Mexico may be from a single genetic source. In the present study, RAPD polymorphism was used to estimate the level of genetic diversity and interrelationships among different collections of Vanilla planifolia Andr., and few related species, including both leafy and leafless types such as V. tahitensis J.W.Moore, V. andamanica, Rolfe, V. pilifera Holtt., and V. aphylla Blume. Studies revealed that there are very limited variation within collections of V. planifolia, indicative of its narrow genetic base, and of the related species we tested, V. tahitensis is nearest to V. planifolia. The species studied are diverse and have a similarity ranging from 1.2 to 57.3 %. Of the sampled taxa, V. andamanica is the most divergent and there is also reasonable variability within its collections, indicating the possibility of natural seed set. A total of 82 polymorphic bands expressed in the RAPD profiles were used to generate a genetic distance matrix, which was then used in cluster analysis. Specific groupings were revealed by the cluster analysis whereby the leafless forms (V. aphylla, V. pilifera and the new species) and V. andamanica formed separate clusters. This is the first report of species interrelationship studies, including both cultivated and wild vanilla species.  相似文献   

20.
Reliable characterization of the variation among wild and cultivated yams in Nigeria is essential for improved management and efficient utilization of yam genetic resources. RAPD and double stringency PCR (DS-PCR) analyses were used to investigate genetic relationships and the extent of redundancy among 30 accessions of two cultivated, and 35 accessions of four wild yam species collected from Nigeria. Twenty-five selected random decamer and two microsatellite primers were used individually and in combination to generate DNA profiles for each accession of the six Dioscorea species. The number of amplified fragments varied from 7 to 18 fragments per primer/primer combination. Different levels of intraspecific genetic diversity were found, with Dioscorea rotundata Poir. being the most variable. Based on identical profiles for the RAPD and DS-PCR primers, 12 duplication groups consisting of a total number of 37 accessions were observed in the present study. An UPGMA analysis grouped the majority of plants according to the species. Cultivated yams belonging to the D. cayenensis–rotundata species complex, which were classified into seven morphotypes/varietal groups, could be clearly separated into two major groups corresponding to D. rotundata Poir. and D. cayenensis Lam. D. cayenensis cultivars exhibited a low level of intraspecific variation and were genetically close to the wild species Dioscorea burkilliana J. Miège. D. rotundata cultivars classified into six varietal groups showed a high degree of DNA polymorphism and were separated into two major groups that appeared most closely related to Dioscorea praehensilis Benth. and Dioscorea liebrechtsiana de Wild. We propose, based on these results, that cultivars classified into D. cayenensis should be considered as a taxon separate from D. rotundata. The implications of intraspecific variability for the ex situ conservation of wild and cultivated yam germplasm in Nigeria are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号