首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present investigation an attempt was made to characterize lignin decomposition in three forest humus profiles by the examination of their contents of simple lignin-derived phenolic compounds obtained from alkaline CuO oxidation. The total amounts of p-hydroxybenzoic, syringic, vanillic, p-coumaric and ferulic acids, p-hydroxybenzaldehyde, syringaldehyde and vanillin were determined. The acid to aldehyde weight ratios of the syringyl and vanillyl units, the weight ratio p-coumaric/ferulic acids and the weight ratios of syringyl and cinnamyl phenols, respectively, to vanillyl phenols were used for the characterization of the gymnosperm and angiosperm lignin in different stages of the decomposition process. The patterns of these parameters with depht point to a considerable decomposition and chemical alteration of the lignin molecule during biodegradation.  相似文献   

2.
A rapid method is described to prepare samples, separate and quantify phenolic lignin degradation products obtained from the alkaline cupric oxide oxidation of forest humus layers. The whole sample is treated with CuO-NaOH at 170°C to produce simple lignin-derived phenols, which are extracted with a commercially-available disposable column system. The extracted phenolic compounds are separated by reverse-phase high-performance liquid chromatography, based on the differential polarity of benzoic acids, aldehydes and cinnamic acids. Results from the oxidation of gymnosperm and angiosperm litter are presented.  相似文献   

3.
Mull, moder, and mor humus profiles were investigated for their total lipid contents and the behaviour of lipid-phosphorus and of five neutral lipid classes identified by HPTLC. The quantitative distribution of total and neutral lipids among the humus types is, besides by natural differences between the various parent litter materials, mainly controlled by soil physicochemical properties. In particular strongly acidic conditions, i.e. conditions corresponding to a reduced biological activity, inhibit significantly the decomposition of lipid compounds in (moder and) mor humus. A feature of the lipid depth functions is the input of microbial and root litter-derived lipid material in the fermentation layers and a considerable lipid accumulation in the A horizons, probably at least partly due to mechanical transport processes. Phospholipids show no distinct variation dependent on the humus type, as far as the organic layers are concerned. But obviously, lipid-P in the mineral, soil is closely correlated with, and therefore is a valuable measure for, the overall biological activity increasing from mor to moder and mull humus.  相似文献   

4.
J. Låg  E. Steinnes 《Geoderma》1978,20(1):3-14
Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils has been studied by means of neutron activation analysis. The selenium concentration shows a distinct decrease with increasing distance from the ocean, indicating that much of this element is supplied to the soils through precipitation. In the case of arsenic, the concentration seems to be more dependent on local geology. In southern districts of Eastern Norway, relatively high concentrations of both elements in the soils may reflect a contribution from air pollution.  相似文献   

5.
Laboratory incubations of sieved (<2mm) forest humus were used to study the response of C and N mineralization to perturbation. Considerable variation in the ratio of mineralized C to mineralized N was observed. This ratio widened with increasing temperature. At constant temperature, addition of P stimulated CO2-C evolution and reduced NH4+-N production, also widening the C:N ratio of substrate mineralized. Addition of weak base stimulated mineralization of N more than C, reducing the C:N ratio of substrate mineralized. Addition of weak acid, mineral-N, or excessive amounts of water inhibited CO2-C evolution while stimulating production of NH4+-N, resulting in a “negative correlation” between the two, and reducing the C:N ratio of substrate mineralized still further.Results were interpreted in terms of effects on microbial biomass. A relatively benign treatment (P addition) may promote microbial growth and respiration, reducing net N availability. A moderate perturbation (addition of weak base) favors new organisms growing partly at the expense of microbial necromass. These organisms will mineralize some necromass-N, increase net N mineralization, and reduce the C:N ratio of substrate mineralized. Under severe conditions (addition of acid) the C:N ratio of substrate mineralized approaches that of the microbial biomass itself, suggesting that the biomass is the primary substrate mineralized. Microbial mortality is likely to be a significant factor affecting the supply of N in field situations, and should be included in any general model of soil N mineralization processes.  相似文献   

6.
The composition and decomposition pattern of cutin and suberin in forest soils have been determined by chemical degradation (transesterification) and subsequent gaschromatographic analysis. Cutin and suberin are mainly confined to the forest floor horizons. With increasing soil depth an increasing contribution of suberin due to root litter is observed.  相似文献   

7.
Summary The earthworms Lumbricus rubellus (Hoffmeister) and Dendrobaena octaedra (Savigny) were studied in the laboratory to determine their effects on decomposition and nutrient cycling in coniferous forest soil. CO2 evolution was monitored, and pH, PO 4 3– –P, NH 4 + –N, NO 3 –N, total N, and total C in the leaching waters were measured. After three destructive samplings, numbers of animals, mass loss, pH, and KCl-extractable nutrients were analysed.The earthworms clearly enhanced the mass loss of the substrate, especially that of litter. L. rubellus stimulated microbial respiration by 15–18%, whereas D. octaedra stimulated it only slightly. The worms significantly raised the pH of the leaching waters and the humus; L. rubellus raised the value by 0.2–0.6 pH units and D. octaedra by 0.1–0.4 units. Both worms increased N mineralization. Although the biomass of both worms decreased during the experiment, the N released from decomposing tissues did not explain the increase in N leached in the presence of earthworms. The worms influenced the level of PO 4 3– –P only slightly.  相似文献   

8.
Samples described in the previous paper were analyzed for humus composition by the method of Kumada el al,, elementary composition of humic acids, nitrogen distribution among humic acid, fulvic acid, and humin, and organic matter composition by the modified Waksman method. The samples obtained by physical fractionation from each horizon of Higashiyama soil were as follows: f1 and f2 from the L layer, f1, f2 and f3 from the F layer, f1 f2, sand, silt, and clay fractions from the H-A and A horizons.

With the progress of decomposition, the following tendencies were rather clearly observed.

The extraction ratio of soluble humus, amounts of humic acid and fulvic acid, and PQ, value tended to increase with some exceptions. The degree of humification of humic acid proceeded. Most humic acids belonged to the Rp type, but those of the clay fractions belonged to the B type.

As for the elementary composition of humic acid, transitional changes from the Lf1 to the clay fraction of the A horizon were observed. But differences in elementary composition among humic acids were far less, compared with those among whole fractions.

Nitrogen contents in humic, fulvic, and humin fractions increased with the progress of decomposition and humiliation, and the largest relative increase was found in fulvic acid nitrogen.

According to the modified Waksman's method, the amounts of residues and protein increased, while the total amounts of each extract, except for the HCl extract, and the amounts of sugars and starch, phenolic substances, hemicelluloses and pectin, and cellulose decreased. Sugars and starch comprised only a small portion of the hot water extract, and polyphenols substances comparable to sugars and starch were also found in the extract. Hemicelluloses and pectin accounted for only about one-half of the HCl extract. Several characteristic differences in the elementary composition of extracts and residues were found.

Pheopigments existed in benzene-ethanol extracts and their amounts seemed to decrease from Lf1 to Ff2.  相似文献   

9.
The results of elementary analysis of each fraction separated physically from each horizon of five forest soils were described.

The biggest fraction was Lf2 (fresh litter) in L layers, Ff2 (>2 mm) or Ff2 (2-1 mm) is F layers and Hf4 in H layers.

Of all the changes in various parameters which accompanied decomposition and humification, the change in C/N ratio was the most obvious; the C/N ratio for plant remains easily decreased to 25 or 30 during decomposition, but any further decrease in this value occurred with difficulty. It was specifically pointed out that Hf7 and Hf2 were fairly different materials from the other fractions.

As for A horizons, both carbon and nitrogen contents increased, and CIN ratios decreased in the order of sand, silt and clay fractions.  相似文献   

10.
The results of humus composition analysis of each fraction separated physically from each horizon of the five forest soils used in the last paper (3) were presented.

Regular changes in humus composition were observed with the gradation of horizons and With the decrease in particle size. Most of the humic acids from plant residual fractions belonged to the Rp type; hurnic acids from the L layers showed a tannin-like character which disappeared with the progress of decomposition, and humic acids from the smaller particle fractions of the layers contained a Pg fraction.

As for humic acids from the A horizon, they all belonged to the P or B type and contained a Pg fraction. In addition, it was concluded that the humification process in the mineral layer Was clearly different from that in the organic layer.  相似文献   

11.
The possible effects of excreta of the Great Cormorant Phalacrocorax carbo on decomposition processes and dynamics of nutrients (N, P, Ca, K, Mg) and organic chemical components (lignin, total carbohydrates) were investigated in a temperate evergreen coniferous forest near Lake Biwa in central Japan. Two-year decomposition processes of needles and twigs of Chamaecyparis obtusa were examined at two sites, control site never colonized by the cormorants (site C) and colonizing site (site 2). Mass loss was faster in needles than in twigs. Mass loss of these litter types was faster at site C than at site 2, which was ascribed to the decreased mass loss rate of acid-insoluble ‘lignin’ at site 2. Net immobilization of N, P, and Ca occurred in needles and twigs at site 2; whereas at site C, mass of these elements decreased without immobilization during decomposition. Duration of immobilization phase of these nutrients at site 2 was estimated to be 1.6 to 2.5 years in needles and 19.6 to 23.5 years in twigs. Immobilization potential (maximum amount of exogenous nutrient immobilized per gram initial material) was similar between needles and twigs for N and Ca but was about 10 times higher in twigs than in needles for P. δ13C in needles was relatively constant during the first year and then increased during the second year, whereas δ13C in twigs was variable during decomposition. Acid-insoluble fraction was depleted in 13C compared to whole needles (1.6-2.1‰) and twigs (2.0-2.5‰). δ15N of needles and twigs and their acid-insoluble fractions approached to δ15N of excreta during decomposition at site 2. This result demonstrated the immobilization of excreta-derived N into litter due to the formation of acid-insoluble lignin-like substances complexed with excreta-derived N. No immobilization occurred in K and Mg and their mass decreased during decomposition at both sites. Based on these results of nutrient immobilization during decomposition and on the data of litter fall and excreta amount at site 2, we tentatively calculated stand-level immobilization potential of litter fall and its contribution to total amount of N and P deposited as excreta. Thus, the potential maximum amount immobilized into litter fall (needles and twigs) was estimated to account for 5-7% of total excreta-derived N and P.  相似文献   

12.
Total S content of the humus layer was determined from Scots pine forests in the surroundings of Oulu, an industrialized city in northern Finland. The S content nearest the city center and emission sources (zone IV; bar x=3870 μg g?1 on an organic matter basis) was about twice as high as in three background areas (80 to 170 km from the city) and about 40% higher than at the sites which were ca 20 km from the main emission sources (zone I). The estimated accumulation of S in humus layer was, on average, 0.4 to 0.6 g m?2 yr?1 in the most polluted study sites and 0.1 to 0.2, 0.2 to 0.3 and 0.4 to 0.5 g m?2 yr?1 in zones I, II, and III, respectively.  相似文献   

13.
Andosols often accumulate soil organic matter (SOM) in large amounts. To investigate the factors controlling the stability and lability of organic carbon (OC) in humus horizons of Andosols, we selected 19 A horizon samples (surface and subsurface horizons) from the Field Station of Tohoku University including areas where benchmark soil profiles of non-allophanic Andosols are distributed. We determined the soil properties possibly controlling the OC accumulation, such as pH(H2O), 1 M KCl-extractable aluminum (KCl-Al), pyrophosphate-extractable Al and iron (Alp, Fep), acid oxalate-extractable silicon (Sio), total OC, water-extractable OC, and humified OC. To evaluate the OC mineralization, we measured the soil respiration rates in a laboratory for non-treated, neutralized (CaCO3, Ca(OH)2 and NaOH), and nutrient applied (KH2PO4, (NH4)2SO4) soil samples. Statistical analyses, including a path analysis, showed that the Alp and pH(H2O) values are directly related to the OC concentration (P?<?0.01 and P?<?0.05, respectively). There was a significant negative correlation (P?<?0.01) between the soil respiration rates of the non-treated samples and the ratios of the humified OC to total OC, showing that the humification of the SOM was definitely related to the OC stability. Effects of the chemical treatments to the soil respiration rates were greater in the surface horizon samples with an abundant labile OC than those in the subsurface samples. Neutralization affected the soil respiration rates more significantly than the nutrient application. Among the neutralization treatments, the liming materials more effectively increased the respiration rates. This was probably due to an increase in the lability of the humified OC by liming.  相似文献   

14.
15.
16.
Decomposition and humification were studied within three types of forest humus (mull, moder, and mor) by means of CPMAS 13C NMR spectroscopy combined with degradative methods. The NMR data show that O-alkyl carbon decreases in all soils, and alkyl as well as carboxyl carbon increase as depth and decomposition increase; the percentage of aromatic carbon remains constant at about 25%. With increasing depth the amount of carbon that can be identified as belonging to specific compound classes by wet chemical methods decreases from 60% to 40%. Microbial polysaccharides and the proportion of non polysaccharide O-alkyl carbon increase with depth. A selective preservation of recalcitrant, condensed lignin structural units is also observed. In order to relate the spectroscopic and chemical data from investigations of whole soils with studies of humification, samples were fractionated into fulvic acid, humic acid, and humin fractions. The fulvic acid fraction contains large concentrations of carbohydrates irrespective of the soil horizon. The humic acid fraction contains less polysaccharides, but high amounts of alkyl carbon and aromatic structures. The percentage of aromatic carbon existing in the humic acid fraction increases with depth, probably reflecting the amount and degree of oxidative decomposition of lignin. A loss of methoxyl and phenolic groups is evident in the 13C NMR spectra of the humic acid fraction. The humin fraction resembles relatively unchanged plant-derived materials as evident from the lignin parameters and carbohydrate contents. All the observed data seem to indicate that humic acids originate form oxidative degradation of humin or plant litter.  相似文献   

17.
Various parameters of the soil microbial community may be used in soil quality evaluation and environmental risk assessment. The objectives of this study were to assess the effects of different environmental factors on the characteristics of forest humus microbial communities, and to test which environmental factors most affect the gross microbial indices and physiological profiles of these communities. Samples were taken at 71 plots located in a heavily polluted area of the Krakowsko-Cze¸stochowska upland in southern Poland. The samples were analyzed for pH in KCl (pHKCl), organic C (Corg), total N (Nt) and S (St), and for total and soluble Zn, Pb and Cd concentrations. The considered microbial parameters included basal respiration (BAS), microbial biomass (Cmic), Cmic-to-Corg ratio, and community-level physiological profiles (CLPPs) studied using BIOLOG® Ecoplates. Multiple regression analysis was used to estimate the effects of humus properties on the microbial parameters. It indicated that St and Corg-to-Nt ratio were the most important factors positively affecting Cmic (β=0.15 and 0.11, respectively) and BAS (β=0.13 and 0.08, respectively). The Cmic-to-Corg ratio was related positively to St (β=0.12) but negatively to Nt (β=−0.08). The effects of pHKCl and heavy metals on the gross microbial indices were significant but less important. The most important effect on microbial activity on BIOLOG® plates and CLPPs was from pHKCl. The other significant variables included St, Corg-to-Nt and interactions of heavy metals with pHKCl. It was concluded that Cmic, Cmic-to-Corg and BAS might be good indicators of the general status of soil microbial communities, but their use in studying heavy metal effects may entail difficulties in separating the effects of other factors. The sensitivity of the BIOLOG® test to pHKCl suggests that it may be useful for studying the effects of acidification or liming on soil microbial communities. The significant effect of the interactions between heavy metals and other variables on physiological profiles indicated that high heavy metal content affects the metabolic functions of soil microbial populations.  相似文献   

18.
The combined and separate effects of Cd and wood ash on Archaea from coniferous forest humus were studied in a microcosm experiment. Nonmetric multidimensional scaling of the denaturing gradient gel analysis of polymerase chain reaction amplified 0.9 kb 16S ribosomal DNA fragments revealed changes in archaeal communities due to the ash treatments. Cd with or without ash did not further influence the result. Representatives of the ash and control communities were cloned, grouped by restriction fragment length polymorphism analysis and finally sequenced. All sequences belonged to non-thermophilic Crenarchaea.  相似文献   

19.
Thirty sites, encompassing a range of soil and vegetation conditions in the biological reserve of La Tillaie (Fontainebleau Forest, France) were investigated in April 1992. Beech (Fagus sylvatica L.) was the dominant tree species, with several developmental phases forming the forest patchwork. Sessile oak [Quercus petraea (Mattus.) Liebl.] was present but only as old relictual individuals. Gaps in the canopy cover were abundant, mostly caused by wind storms 2 years previously. The next most recent storm was 25 years before, resulting in distinct patches of full-grown trees. Humus profiles were classified and compared with the distribution of earthworm communities, canopy cover, and soil types. Geomorphology was responsible for the main part of the observed variation. Absence of lime in the substrate and direct contact with a sandstone stratum near the ground surface was associated with the absence of earthworms and the appearance of an OH horizon (moder humus). Elsewhere, earthworms were present and humus profiles did not display any OH horizon (mull or mull-like moder humus), but species composition was variable and strongly influenced by the thickness of the superficial sand deposit overlying limestone. On a thick (1 m or more) sandy substrate earthworm communities were dominated by epigeic species together with the anecic Lumbricus terrestris L. The species richness was higher on a shallower sandy substrate (50 cm) where lime was more accessible to tree roots and burrowing animals. The influence of the forest cycle of beech was visible in the latter case (covering most of the area), with an increase in the thickness of the OL and OF horizons and a decrease in endogeic earthworm populations during the phase of intense growth of beech. This fall in burrowing activity was apparent in gaps created by wind storms and fungal diseases within mature stands as early as 2 years after the fall of the trees.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号