首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 705 毫秒
1.
Microbial biomass C and N, and activities related to C and N cycles, were compared in needle and leaf litter, and in the uppermost 10 cm of soil under the litter layer in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) stands, planted on originally similar field afforestation sites 23–24 years ago. The ground vegetation was differentiated under different tree species, consisting of grasses and herbs under birch and pine, and mosses or no vegetation with a thick layer of needles under spruce. The C:N ratio of the soils was 13–21 and the soil pHCaCl 2 3.8–5.2. Both showed little variation under different tree species. Microbial biomass C and N, C mineralization, net ammonification, reduction) did not differ significantly in soil under different tree species either. Birch leaf litter had a higher pHCaCl 2 (5.9) than spruce and pine needle litter (pH 5.0 and 4.8, respectively). The C:N ratio of spruce needles was 30, and was considerably higher in pine needles (69) and birch leaves (54). Birch leaves tended to have the highest microbial biomass C and C mineralization. Spruce needles appeared to have the highest microbial biomass N and net formation of mineral N, whereas formation of mineral N in pine needles and birch leaves was negligible. Microbial biomass C and N were of the same order of magnitude in the soil and litter samples but C mineralization was tenfold higher in the litter samples.  相似文献   

2.
Samples of strongly acid forest litter and humus from beneath Sitka spruce, heather, Scots pine and larch from two sites in north-east Scotland were incubated aerobically at 20°C in the laboratory. At the Glen Tanar site, spruce litter and larch humus showed significant nitrification and ammonification whereas spruce humus and Scots pine humus produced only NH4+-N. Heather humus showed no net mineralization. At the Fetteresso site, application of fertilizer N, P and K to Sitka spruce up to 3 yr previously, significantly stimulated the production of NO3-N in both litter and humus.Amendment of the samples with organic N as peptone caused significant increases in NO3-N production in those samples that already showed nitrification. The increases in NO3-N generally represented a low proportion of the added peptone-N. Amendment with NH4+-N as (NH4)2SO4 either had no effect or significantly reduced NO3-N production (in larch humus). The results suggest the occurrence of heterotrophic nitrification in some of these forest samples.Net immobilization of NH4+-N was typically greater in NH4+-N amended than in peptone amended samples, except for heather humus which showed complete immobilization of both N sources.Total mineral N produced at the end of the aerobic incubation was correlated (P < 0.01) with NH4+-N produced during a 30-day anaerobic incubation at 30°C. Net NO3-N production was greater in litter than in the corresponding humus samples and was correlated (P < 0.001) with initial organic N soluble in 1 m KCl.  相似文献   

3.
Tannins are polyphenolic compounds that may influence litter decomposition, humus formation, nutrient (especially N) cycling and ultimately, plant nutrition and growth. The aim of this study was to determine the response of C and N transformations in soil to tannins of different molecular weight from Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) needles, tannic acid and cellulose. Arginine was added to test whether the soil microbial community was limited by the amount of N, and arginine+tannin treatments were used to test whether the effects of tannins could be counteracted by adding N. Soil and needle samples were taken from adjacent 70-year-old Scots pine and Norway spruce stands located in Kivalo, northern Finland. Tannins were extracted from needles and fractioned based on molecular weight; the fractions were then characterized by LC-MS and GC-MS. Light fractions contained tannin monomers and dimers as well as many other compounds, whereas heavy fractions consisted predominantly of polymerized condensed tannins. Spruce needles contained more procyanidin than prodelphinidin units, while in pine needles prodelphinidin units seemed to be dominant. The fractions were added to soil samples, pine fractions to pine soil and spruce fractions to spruce soil, and incubated at 14 °C for 6 weeks. CO2 evolution was followed throughout the experiment, and the rates of net mineralization of N and net nitrification, concentration of dissolved organic N (DON) and amounts of microbial biomass C and N were measured at the end of the experiment. The main effects of the fractions were similar in both soils. Light fractions strongly enhanced respiration and decreased net N mineralization, indicating higher immobilization of N in the microbial biomass. On the contrary, heavy fractions reduced respiration and slightly increased net N mineralization, suggesting toxic or protein-precipitating effects. The effects of tannic acid and cellulose resembled those of light fractions. DON concentrations generally decreased during incubation and were lower with heavy fractions than with light fractions. No clear differences were detected between the effects of light and heavy fractions on microbial biomass C and N. Treatments that included addition of arginine generally showed trends similar to treatments without it, although some differences between light and heavy fractions became more obvious with arginine than without it. Overall, light fractions seemed to act as a labile source of C for microbes, while heavy fractions were inhibitors.  相似文献   

4.
The effects of different types of green manure (Trifolium pratense L., Dactylis glomerata L., and Secale cereale L.) and the time of its input into the soil (autumn and spring) on the contents of humus and labile humus substances in a soddy-podzolic soil and the relationship between the formation of humus and the chemical composition of the applied biomass were studied. Green manure had a positive effect on the accumulation of humus in the soil. When the plants were plowed into the soil in the fall, the amount of humus formed in the soil in the first year was 0.1% higher in comparison with the spring application of green manure. The most active synthesis of new humus substances took place upon the following properties of the plant biomass: C: N = 15–25, the cellulose content of 20–28%, and the lignin content of 14–17%. The highest amount of labile humus substances was formed during the decomposition of the biomass with the C: N ratio above 20, the cellulose content of 19–20%, and the lignin content of 14–16%.  相似文献   

5.
The aim of this study was to explore the response of C and N transformations in the humus layer under silver birch (Betula pendula Roth) to compounds, especially condensed tannins, of different molecular weight extracted and fractioned from Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) needles. Lighter fractions containing tannin monomers and dimers as well as many other compounds, and heavier fractions consisting predominantly of polymerized condensed tannins, were added to samples taken from the humus layer of birch stand. The effects of the spruce and pine fractions were mostly similar, but some differences in magnitude were observed; our results indicated that lighter fractions of pine were easier for microbes to degrade and use than lighter fractions of spruce. Lighter fractions of both tree species increased soil respiration and decreased net N mineralization, while heavier fractions inhibited respiration and increased net N mineralization. Microbial biomass C was not clearly affected by any of the treatments, but with some of the pine fractions the amount of N in the microbial biomass was increased. Comparison of the effects of fractions in birch and in spruce and pine soils, which were studied earlier, showed no major differences between the effects of the fractions in birch and in their own soils, but gave some indication of adaptation.  相似文献   

6.
We performed an assay of nutrient limitations to soil microbial biomass in forest floor material and intact cores of mineral soil collected from three North Carolina loblolly pine (Pinus taeda) forests. We added solutions containing C, N or P alone and in all possible combinations, and we measured the effects of these treatments on microbial biomass and on microbial respiration, which served as a proxy for microbial activity, during a 7-day laboratory incubation at 22 °C. The C solution used was intended to simulate the initial products of fine root decay. Additions of C dramatically increased respiration in both mineral soil and forest floor material, and C addition increased microbial biomass C in the mineral soil. Additions of N increased respiration in forest floor material and increased microbial biomass N in the mineral soil. Addition of P caused a small increase in forest floor respiration, but had no effect on microbial biomass.  相似文献   

7.
We studied nutrient limitation and availability for soil microbial respiration after additions of glucose (C), in combination with nitrogen (N) and phosphorus (P) in soil samples taken from parklands of Vitellaria paradoxa and Faidherbia albida. We hypothesized that in these P-fixing soils: (i) after C addition, respiration will be limited by P, but P-limitation will be lower under tree canopies; and (ii) the maximum respiration rates after adding C will be higher with than without applications of inorganic fertilizer (NPK) in the field. The study site was located in the south-Sudanese zone of Burkina Faso. Microbial respiration was measured as CO2 evolution from soil samples incubated under laboratory conditions. Two microbial growth peaks were observed after addition of C plus P to the soil samples. When P was added together with C, the initial increase in the microbial respiration rate was higher than when N and C were added, and the maximum respiration rate was also reached earlier. We conclude that P limited the initial rate of respiration. Under the tree canopy the P and N availability, was higher under both F. albida and V. paradoxa trees, than in areas beyond their canopies. NPK fertilization in the field resulted in higher soil reserves of N and P, but these nutrients had low availability in the short term. Results indicated that more P is available in forms that are immediately accessible to microorganisms under tree canopies, than outside the cover of their canopies.  相似文献   

8.
An incubation experiment was conducted to determine the response of soil microbial biomass and activity to salinity when supplied with two different carbon forms. One nonsaline and three saline soils of similar texture (sandy clay loam) with electrical conductivities of the saturation extract (ECe) of 1, 11, 24 and 43 dS m?1 were used. Carbon was added at 2.5 and 5 g C kg?1 (2.5C, 5C) as glucose or cellulose; soluble N and P were added to achieve a C/N ratio of 20 and C/P ratio of 200. Soil microbial activity was assessed by measuring CO2 evolution continuously for 3 weeks; microbial biomass C and available N and P were determined on days 2, 7, 14 and 21. In all soils, cumulative respiration was higher with 5C than with 2.5C and higher with glucose than with cellulose. Cumulative respiration was highest in the nonsaline soil and decreased with increasing EC, whereas the decrease was gradual with glucose, there was a sharp drop in cumulative respiration with cellulose from the nonsaline soil to soil with EC11 with little further decrease at higher ECs. Microbial biomass C and available N and P concentrations were highest in the nonsaline soil but did not differ among the saline soils. Microbial biomass C was higher and available N was lower with 5C than with 2.5C. The C form affected the temporal changes of microbial biomass and available nutrients differentially. With glucose, microbial biomass was highest on day 2 and then decreased, whereas available N showed the opposite pattern, being lowest on day 2 and then increasing. With cellulose, microbial biomass C increased gradually over time, and available N decreased gradually. It is concluded that salinity reduced the ability of microbes to decompose cellulose more than that of glucose.  相似文献   

9.
《Geoderma》2004,122(1):73-82
A greenhouse experiment was conducted in order to determine the influence of organic amendment, as compared with inorganic fertilization, and vegetation cover (Lolium perennne L.) on microbial biomass and aggregate stability in burnt soils. The study was performed with soil samples from the ash layer of three pine forests differing in their physicochemical and chemical properties and affected by high-intensity wildfires about 3 and 36 months before the sampling. Two different doses of both poultry manure and NPK fertilizer were used. Similar results were observed independent of the soil; however, the fertilization effect was most pronounced in the soil collected 36 months after the wildfire. Significant increases in microbial biomass C were detected following poultry manure addition, particularly at high dose, while no changes or slight increases were found as a consequence of inorganic fertilization. A significant but varied response of microorganisms to plant growing was also observed. Revegetation and fertilization also modified the aggregate stability values, but different effects were detected depending on the fertilizer used (organic or inorganic) and the dose of application. A high positive and significant relationship between soil microbial biomass and aggregate stability was observed. The results clearly indicate that organic amendment combined with the implantation of a vegetation cover can improve the reestablishment of both microbial biomass and soil structure in burnt pine forests.  相似文献   

10.
Plant effects on ecosystem processes are mediated through plant-microbial interactions belowground and soil enzyme assays are commonly used to directly relate microbial activity to ecosystem processes. Live plants influence microbial biomass and activity via differences in rhizosphere processes and detrital inputs. I utilized six grass species of varying litter chemistry in a factorial greenhouse experiment to evaluate the relative effect of live plants and detrital inputs on substrate-induced respiration (SIR, a measure of active microbial biomass), basal respiration, dissolved organic carbon (DOC), and the activities of β-glucosidase, β-glucosaminidase, and acid phosphatase. To minimize confounding variables, I used organic-free potting media, held soil moisture constant, and fertilized weekly. SIR and enzyme activities were 2-15 times greater in litter-addition than plant-addition treatments. Combining live plants with litter did not stimulate microbial biomass or activity above that in litter-only treatments, and β-glucosidase activity was significantly lower. Species-specific differences in litter N (%) and plant biomass were related to differences in β-glucosaminidase and acid phosphatase activity, respectively, but had no apparent effect on β-glucosidase, SIR, or basal respiration. DOC was negatively related to litter C:N, and positively related to plant biomass. Species identity and living plants were not as important as litter additions in stimulating microbial activity, suggesting that plant effects on soil enzymatic activity were driven primarily by detrital inputs, although the strength of litter effects may be moderated by the effect of growing plants.  相似文献   

11.
Microbial biomass C and N, and activities related to C and N cycles, were compared in needle and leaf litter, and in the uppermost 10 cm of soil under the litter layer in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) stands, planted on originally similar field afforestation sites 23–24 years ago. The ground vegetation was differentiated under different tree species, consisting of grasses and herbs under birch and pine, and mosses or no vegetation with a thick layer of needles under spruce. The C:N ratio of the soils was 13–21 and the soil pHCaCl 2 3.8–5.2. Both showed little variation under different tree species. Microbial biomass C and N, C mineralization, net ammonification, reduction) did not differ significantly in soil under different tree species either. Birch leaf litter had a higher pHCaCl 2 (5.9) than spruce and pine needle litter (pH 5.0 and 4.8, respectively). The C:N ratio of spruce needles was 30, and was considerably higher in pine needles (69) and birch leaves (54). Birch leaves tended to have the highest microbial biomass C and C mineralization. Spruce needles appeared to have the highest microbial biomass N and net formation of mineral N, whereas formation of mineral N in pine needles and birch leaves was negligible. Microbial biomass C and N were of the same order of magnitude in the soil and litter samples but C mineralization was tenfold higher in the litter samples.  相似文献   

12.
The biomass of two groups of microorganisms was studied in gray forest soils under six tree species (spruce, Scotch pine, Arolla pine, larch, birch, and aspen) and in the soil of a layland (a clearing in the forest) using kinetic methods. The biomass was the highest in the soil of the layland. The lowest (19.4 μg C/g of soil) biomass of heterotrophic microorganisms was found in the soil under the birch trees, and the highest one (41.7 and 32.0 μg C/g), under the pine and spruce ones. The biomass of denitrifying microorganisms was lower by thirty times than that of the heterotrophic ones. In the soils under the pine and spruce trees (8.4 and 9.2 μg C/g, respectively), the biomass of the denitrifying microorganisms was the lowest; under the birch and larch trees, it was the highest (16.7 and 13.7 μg C/g).  相似文献   

13.
Seasonal changes in microbial biomass and nutrient flush in forest soils   总被引:14,自引:0,他引:14  
Microbial biomass and N, P, K, and Mg flushes were estimated in spring, summer, autumn, and winter samples of different forest soils. The microbial biomass showed significant seasonal fluctuations with an average distribution of 880±270 g C g-1 soil in spring, 787±356 g C g-1 soil in winter, 589±295 g C g-1 soil in summer, and 560±318 g C g-1 soil in autumn. The average annual concentrations of C, N, P, K, and Ca in the microbial biomass were 704, 106, 82, 69 and 10 g g-1 soil, respectively. Microbial C represented between 0.5 and 2% of the organic soil C whereas the percentage of microbial N with respect to the total soil N was two-to threefold higher than that of C; the annual fluctuations in these percentages followed a similar trend to that of the microbial biomass. Microbial biomass was positively correlated with soil pH, moisture, organic C, and total N. The mean nutrient flush was 31, 15, 7, and 4 g g-1 soil for N, K, P, and Mg, respectively, and except for K, the seasonal distribution was autumn spring winter summer. The average increase in available nutrient due to the mineralization of dead microbial cells was 240% for N, and 30, 26, and 14% for P, K, and Mg, respectively. There was a positive relationship between microbial biomass and the N, P, K, and Mg flushes. All the variables studied were significantly affected by the season, the type of soil, and the interaction between type of soil and season, but soil type often explained most of the variance.  相似文献   

14.
Near-infrared spectroscopy and soil physicochemical determinations (pHH2O, organic matter content, total C content, NH inf4 sup+ , total N content, cation-exchange capacity, and base saturation) were used to characterize fire-or wood ash-treated humus samples. The spectroscopic and the soil physicochemical analysis data from the humus samples were used separately to explain observed variations in soil respiration and microbial biomass C by partial least-square regression. The first regression component obtained from the physicochemical and spectroscopic characterization explained 10–12% and 60–80% of the biological variation, respectively. This suggests that information on organic material collected from near-infrared spectra is very useful for explaining biological variations in forest humus.  相似文献   

15.
The aim of this study was to examine the occurrence and concentrations of volatile organic compounds (VOCs), in particular, volatile monoterpenes, in soil atmosphere under silver birch (Betula pendula L.) and two conifers, Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.), and to determine the effects of the most relevant monoterpenes on transformations of soil N. The study site was a 70-year-old tree species experiment in Kivalo, northern Finland. VOCs were collected using two methods, passive air samplers and a chamber method. In soil atmosphere under spruce and especially under pine, the concentrations of monoterpenes were high, α- and β-pinene, Δ-3-carene and myrcene being the most abundant compounds, whereas concentrations of monoterpenes in soil atmosphere under birch were negligible. Samples of humus layer from the birch stand incubated in vitro and exposed to vapors from monoterpenes typical of coniferous forest soil showed decreased rates of net N mineralization but simultaneously increased rates of C mineralization. The response of soil microbial biomass C and N to different monoterpenes varied, but some monoterpenes considerably decreased soil microbial biomass. Altogether these results suggest that these compounds have negative effects on soil N transformations, but may serve as carbon and energy source for part of soil microbes.  相似文献   

16.
Microbial biomass, microbial respiration, metabolic quotient (qCO2), Cmic/Corg ratio and nutrient status of the microflora was investigated in different layers of an aspen (Populus tremuloides Michx.) and pine forest (Pinus contorta Loud.) in southwest Alberta, Canada. Changes in these parameters with soil depth were assumed to reflect successional changes in aging litter materials. The microbial nutrient status was investigated by analysing the respiratory response of glucose and nutrient (N and P) supplemented microorganisms. A strong decline in qCO2 with soil depth indicated a more efficient C use by microorganisms in later stages of decay in both forests. Cmic/Corg ratio also declined in the aspen forest with soil depth but in the pine forest it was at a maximum in the mineral soil layer. Microbial nutrient status in aspen leaf litter and pine needle litter indicated N limitation or high N demand, but changes in microbial nutrient status with soil depth differed strongly between both forests. In the aspen forest N deficiency appeared to decline in later stages of decay whereas P deficiency increased. In contrast, in the pine forest microbial growth was restricted mainly by N availability in each of the layers. Analysis of the respiratory response of CNP-supplemented microorganisms indicated that growth ability of microorganisms is related to the fungal-bacterial ratio.  相似文献   

17.
Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon (C), nitrogen (N), and phosphorus (P) metabolisms in response to agricultural nutrient management. To determine the roles of fertilization and residue return with respect to ecological stoichiometry, we collected soil samples from a 30-year field experiment on residue return (maize straw) at rates of 0, 2.5, and 5.0 Mg ha-1 in combination with 8 fertilization treatments:no fertilizer (F0), N fertilizer, P fertilizer, potassium (K) fertilizer, N and P (NP) fertilizers, N and K (NK) fertilizers, P and K (PK) fertilizers, and N, P, and K (NPK) fertilizers. We measured soil organic C (SOC), total N and P, microbial biomass C, N, and P, water-soluble organic C and N, KMnO4-oxidizable C (KMnO4-C), and carbon management index (CMI). Compared with the control (F0 treatment without residue return), fertilization and residue return significantly increased the KMnO4-C content and CMI. Furthermore, compared with the control, residue return significantly increased the SOC content. Moreover, the NPK treatment with residue return at 5.0 Mg ha-1 significantly enhanced the C:N, C:P, and N:P ratios in the soil, whereas it significantly decreased the C:N and C:P ratios in soil microbial biomass. Therefore, NPK fertilizer application combined with residue return at 5.0 Mg ha-1 could enhance the SOC content through the stoichiometric plasticity of microorganisms. Residue return and fertilization increased the soil C pools by directly modifying the microbial stoichiometry of the biomass that was C limited.  相似文献   

18.
《Applied soil ecology》2011,47(3):341-346
We examined acid phosphatase activity (APA), N mineralization and nitrification rates, available N and P, and microbial biomass C, N and P in rhizosphere and bulk soils of 18-year-old Siberian elm (Ulmus pumila), Simon poplar (Populus simonii) and Mongolian pine (Pinus sylvestris var. mongolica) plantations on a nutrient-poor sandy soil in Northeast China. The main objective was to compare the rhizosphere effects of different tree species on N and P cycling under nutrient-deficient conditions. All tree species had the similar pattern but considerably different magnitude of rhizosphere effects. The APA, potential net N mineralization and nitrification rates increased significantly (by 27–60%, 110–188% and 106–142% respectively across the three species) in rhizosphere soil compared to bulk soil. This led to significantly higher Olsen-P and NH4+-N concentrations in rhizosphere soil, whereas NO3-N concentration was significantly lower in rhizosphere soil owing to increased microbial immobilization and root uptake. Microbial biomass C and N generally increased while microbial biomass P remained constant in rhizosphere soil relative to bulk soil, indicating the N-limited rather than P-limited microbial growth. Rhizosphere effects on P transformation were most pronounced for Siberian elm, while rhizosphere effects on N transformation were most pronounced for Mongolian pine, implying the different capacities of these species to acquire nutrients.  相似文献   

19.
以1989年建立的中国科学院封丘农田生态系统国家试验站的长期定位试验为平台,研究经18a连续不同施肥处理后玉米季土壤微生物生物量碳氮和微生物活度的动态变化及其与土壤有机碳之间的相互关系,并探讨施肥措施对土壤微生物及其活性的影响。施肥处理包括:(1)有机肥(OM);(2)1/2化肥和1/2有机肥(1/2OM+1/2NPK);(3)氮磷钾肥(NPK);(4)氮磷肥(NP);(5)磷钾肥(PK);(6)氮钾肥(NK);(7)不施肥,即对照(CK)7个处理。结果表明,微生物生物量碳氮和微生物活度在玉米生长期内均有明显的时间变异性,其中微生物生物量碳与微生物活度的动态变化比较一致,其间的极显著相关关系表明潮土微生物生物量碳的变化可以在很大程度上代表土壤微生物活度的变化。施肥制度显著影响微生物生物量碳氮和微生物活度的变化,总体趋势为OM1/2OM+1/2NPKNPKNPPKNKCK,表明OM有利于保持土壤的生物化学环境及促进土壤的生物学活性;与OM处理相比,化学肥料的长期施用有降低土壤微生物生物量和微生物活度的趋势,尤其是缺素处理的表现更为明显,其中以缺磷处理的表现最为严重。土壤微生物生物量碳氮、微生物活度与土壤有机碳变化均呈极显著正相关。  相似文献   

20.
In incubation experiments in the laboratory interactions of urea or NH4NO3 with humus from stands of fir (Abies cephalonica, Loudon) growing on soils developed from flysch (shales) and limestone and with humus from stands of black pine (pinus nigra, Arn.) growing on soils developed from peridotites, limestone and schists were investigated.Fir humus from stands on flysch and limestone and black pine humus from limestone showed nitrification but it was absent from black pine humus from stands on peridotites and on schists. Humus from stands on schists showed appreciable ammonification. Increasing concentrations of urea did not initiate nitrification in the latter type of humus. No substantial N immobilization was detected in spite of relatively high P immobilization. Increases in concentration of Ca, Mg and K occurring on incubation of humus samples were related to the ability of a humus type to nitrify rather than to concentrations of added urea-N.Urea was hydrolyzed rapidly to NH+4 during contact with various types of humus, resulting in an increase of pH. Production of NH+4 from urea was only minimally affected by drying the humus samples at 70°C for 20 h before incubation but was reduced to 30% at 1–5°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号