首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To evaluate mRNA expression of several proinflammatory and anti-inflammatory cytokines and chemokines in equine unstimulated and interleukin-1beta (IL-1beta)-stimulated chondrocytes. STUDY DESIGN: In vitro experiment using equine chondrocyte cultures. SAMPLE POPULATION: Whole articular cartilage from metacarpophalangeal joints (n=5 horses; 10 fetlocks). METHODS: Chondrocyte monolayer cultures were established from digested adult equine articular cartilage and stimulated with 5 ng/mL of recombinant human IL-1beta. RNA was extracted from the cells 24 hours after stimulation. IL-1beta, IL-4, IL-6, IL-8, tumor necrosis factor-alpha (TNF-alpha), and ubiquitin (house keeping gene) mRNA expression were investigated by real-time RT-PCR. RESULTS: IL-1beta, IL-6, and IL-8 mRNA were expressed in unstimulated chondrocytes from macroscopically normal joints and were significantly up-regulated after stimulation (5/5 horses). IL-4 mRNA was not detected in any samples (0/5 horses). TNF-alpha mRNA, by comparison, was expressed in 2/5 unstimulated samples and in all stimulated samples but a considerable sample variation in response to IL-1beta stimulation was observed. CONCLUSIONS: Equine chondrocytes express mRNA for several proinflammatory cytokines and chemokines and IL-1beta modulates their expression. CLINICAL RELEVANCE: Chondrocytes express proinflammatory cytokines and chemokines capable of modulating a local inflammatory cascade in articular cartilage, which could potentially lead to focal degradation and osteoarthritis.  相似文献   

2.
OBJECTIVE: To investigate the effects of insulin-like growth factor-II (IGF-II) on DNA and glycosaminoglycan (GAG) synthesis and the expression of matrix-related genes in equine articular cartilage explants and chondrocytes, respectively, with and without interleukin 1-beta (IL1-beta). SAMPLE POPULATION: Articular cartilage from 12 adult horses. PROCEDURE: Articular cartilage was incubated in standard media with and without equine IL1-beta (10 ng/mL) containing various concentrations of IGF-II for 72 hours. Synthesis of DNA and GAG was determined by incorporation of thymidine labeled with radioactive hydrogen (3H) and sulfate labeled with radioactive sulfur (35S), respectively. Total GAG content of the explants and spent media was determined by use of the 1,9-dimethylmethylene blue assay. Northern blots of RNA from cultured equine articular cartilage chondrocytes were hybridized with cDNA of major matrix molecules. RESULTS: Insulin-like growth factor-II stimulated DNA and GAG synthesis at concentrations of 25 and 50 ng/mL, respectively. In cartilage explants conditioned with IL1-beta, IGF-II stimulated DNA and GAG synthesis at concentrations of 500 and 50 ng/mL, respectively. Insulin-like growth factor-II had no effect on total GAG content as determined by the 1,9-dimethylmethylene blue assay. No specific effects on steady-state levels of messenger RNAs were observed. CONCLUSIONS AND CLINICAL RELEVANCE: Insulin-like growth factor-II stimulated DNA and GAG synthesis in equine adult cartilage and may have potential application in vivo.  相似文献   

3.
1. Glucose transporter (GLUT) proteins, one of which is the major insulin-responsive transporter GLUT4, play a crucial role in cellular glucose uptake and glucose homeostasis in mammals. The aim of this study was to identify the extent of mRNA expression of GLUT1, GLUT2, GLUT3 and GLUT8 in chickens intrinsically lacking GLUT4. 2. GLUT1 mRNA was detected in most tissues of 3-week-old broiler chickens, with the highest expression measured in brain and adipose tissue. GLUT2 was expressed only in the liver and kidney. GLUT3 was highly expressed in the brain. GLUT8 was expressed ubiquitously, with expression in kidney and adipose tissue relatively higher than that of other tissues. 3. Expression levels of GLUT isoforms 1, 3 and 8 in skeletal muscle tissue were very low compared to the other tissues tested. 4. [3H]Cytochalasin B binding assays on tissue from 3-week-old chickens showed that the number of cytochalasin B binding sites in skeletal muscle plasma membranes was higher than in liver plasma membranes. These results suggest that GLUT proteins and/or GLUT-like proteins that bind cytochalasin B are expressed in chicken skeletal muscles. 5. It is proposed that GLUT expression and glucose transport in chicken tissues are regulated in a manner different from that in mammals.  相似文献   

4.
5.
REASONS FOR PERFORMING STUDY: Equine laminitis is a multifactorial connective tissue disorder with major implications for the welfare of horses. There are few published studies on phenotypic markers for identification of equine laminar keratinocytes using immunohistochemical techniques. OBJECTIVES: To establish whether the epithelial sodium channel (ENaC) and the GLUT1 and GLUT4 facilitative glucose transporters may be used as phenotypic markers for identification of equine laminar keratinocytes using immunohistochemical techniques to monitor changes in the keratinocyte population in laminitis. METHODS: Histology and immunohistochemistry using polyclonal antibodies to the alpha subunit of ENaC (alphaENaC), GLUT1 and GLUT4 were used to compare the distribution of these proteins in normal and laminitic equine laminae. RESULTS: Immunohistochemistry with antibodies to alphaENaC, GLUT1 and GLUT4 confirmed the abundant expression of all 3 membrane proteins in healthy laminar keratinocytes. However, in laminitis, the Haematoxylin Van Gieson (HVG) technique revealed disordered laminar arrays and replacement with fibrous scar tissue. Immunostaining of laminitic samples confirmed the loss of alphaENaC, GLUT1 and GLUT4 positive keratinocytes. Other connective tissue cells did not stain positive for these proteins. CONCLUSIONS: This is the first report of alphaENaC and GLUT1/GLUT4 protein expression in equine laminar keratinocytes, which also confirms that the loss of laminar structure and function in chronic laminitis is accompanied by the loss of laminar keratinocytes. POTENTIAL RELEVANCE: alphaENaC, GLUT1 and GLUT4 may be used as phenotypic markers of metabolically active, differentiated equine laminar keratinocytes. Further in vitro studies are necessary to determine the effects of hypoxia, bacterial endotoxins, vasoactive amines, lactic acid and prostaglandins on the expression and activity of these plasma membrane keratinocyte markers.  相似文献   

6.
Chondrocytes exist in an unusual and highly variable ionic and osmotic environment in the extracellular matrix of articular cartilage. Alterations to the ionic and osmotic environment of chondrocytes influence the volume and ionic content of the cells, which, in turn, modifies the rate at which extracellular matrix macromolecules are synthesized and degraded. Thus, regulation of the water and solute content of chondrocytes will profoundly affect their anabolic and catabolic functions. The water content of cells is effectively influenced by the abundance of aquaporin (AQP) water channels. Recent studies have shown that several AQP water channel isoforms are expressed in chondrocytes from Meckel's cartilage, developing teeth and other orofacial tissues. The aim of the present investigation was to determine if chondrocytes from equine articular cartilage express AQP water channels. Polyclonal antibodies to AQP1, AQP2 and AQP3 were used in conjunction with immunohistochemistry, immunoblotting and quantitative flow cytometry to determine if AQP1, AQP2 and AQP3 are expressed in equine articular chondrocytes. Our studies show that AQP1 and AQP3 are expressed by chondrocytes in articular cartilage in situ and in isolated chondrocytes. We found no evidence for expression of AQP2, the vasopressin-regulated water channel in chondrocytes. AQP1 and AQP3 may be involved in the transport of water and small solutes and osmotically active metabolites across the chondrocyte plasma membrane during volume regulatory behaviour. AQP1 may be involved in transporting metabolic water. AQP3 may participate in the transport of glycerol and structurally related molecules.  相似文献   

7.
OBJECTIVE: To determine the effects of interleukin (IL)-1 and tumor necrosis factor (TNF)-alpha on canine chondrocytes cultured in an agarose-based 3-dimensional (3-D) system. SAMPLE POPULATION: Humeral head articular cartilage chondrocytes obtained from 6 adult dogs. PROCEDURE: Chondrocytes were cultured in a 3-D system for < or = 12 days in serum-free medium with IL 1alpha, IL-1beta, or TNF-alpha at concentrations of 20, 50, or 100 ng/mL. After 1, 3, 6, and 12 days, glycosaminoglycan (GAG) concentrations in 3-D constructs; nitric oxide and prostaglandin E2 (PGE2) concentrations in media samples; and relative expressions of selected genes, including metalloproteinase (MMP)-13 and tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, were evaluated. Control specimens were comprised of chondrocytes cultured without proinflammatory cytokines. RESULTS: In control 3-D constructs, GAG content was significantly higher than for all other constructs. Compared with control values, relative expressions of MMP-13, TIMP-1, and TIMP-2 genes in the IL-1beta (50 ng/mL) group were significantly higher at day 1; at all evaluations, media concentrations of nitric oxide were significantly higher in all TNF-alpha-treated cultures; and concentrations of PGE2 in media samples were significantly higher in the IL-1beta (50 ng/mL) and IL-1beta (100 ng/mL) groups at days 1 and 3, in the IL-1beta (100 ng/mL) group at day 6, and in all TNF-alpha groups at days 1, 3, and 6. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that TNF-alpha more readily induces production of nitric oxide and PGE2 by canine chondrocytes, compared with IL-1beta. In vitro, IL-1alpha appeared to have a minimal effect on canine chondrocytes.  相似文献   

8.
OBJECTIVE: To characterize potential mechanisms of action of glucosamine inhibition of matrix metalloproteinase (MMP) expression and activity in lipopolysaccharide (LPS)-stimulated equine chondrocytes. SAMPLE POPULATION: Chondrocytes cultured from samples of metacarpophalangeal articular cartilage collected from cadaveric limbs of horses. PROCEDURE: The effect of glucosamine on MMP activity in conditioned medium from LPS-stimulated cartilage explants was determined by a colorimetric assay with azocoll substrate. Treatments consisted of negative and positive controls, glucose (50 mM), and glucosamine (50, 25, 6.25, 3, and 1.5 mM). The influence of glucosamine on MMP synthesis was determined in chondrocytes in pellet culture incubated with LPS (20 microg/mL). Concentration of MMP-13 was quantified in spent medium via ELISA; nonspecific MMP activity was determined via azocoll digestion in organomercurial-activated medium. Effects of glucosamine on MMP mRNA concentration in similarly treated chondrocytes were determined by northern blot hybridization with MMP-1, -3, and -13 probes. Statistical analyses were performed with 2-way ANOVA. RESULTS: Glucosamine had no effect on activated MMP activity but inhibited MMP protein expression, as determined by azocoll digestion (glucosamine, 3 to 50 mM) and MMP-13 ELISA (glucosamine, 1.5 to 50 mM). Resting mRNA concentrations for MMP-1, -3, and -13 mRNA were significantly lower in cultures exposed to glucosamine at concentrations of 50 and 25 mM than those of positive controls. CONCLUSIONS AND CLINICAL RELEVANCE: Glucosamine appears capable of pretranslational, and possibly also translational, regulation of MMP expression; data suggest a potential mechanism of action for chondroprotective effects of this aminomonosaccharide.  相似文献   

9.
OBJECTIVE: To determine effects of carprofen and dexamethasone on chondrocytes in a culture model of osteoarthritis (OA). SAMPLE POPULATION: Chondrocytes isolated from articular cartilage of the humeral head of 5 adult dogs. PROCEDURE: Chondrocytes were harvested, cultured and subcultured in monolayer, and then cultured in a 3-dimensional (3-D) medium. Cells from each dog were distributed into 6 groups with differing content of liquid medium for each 3-D construct (agarose [AG], AG plus interleukin [IL]-1beta, AG plus carprofen [4 microg/mL], AG plus dexamethasone [1 mg/mL], AG plus IL-1beta [20 ng/mL] plus carprofen [4 microg/mL], and AG plus IL-1beta (20 ng/mL) plus dexamethasone (1 mg/mL). On days 3, 6, 12, and 20 of culture, samples from all groups were collected. Liquid media were assayed for glycosaminoglycan, prostaglandin (PG)E2, matrix metalloprotease (MMP)-3, and MMP-13 concentrations. All 3-D constructs were evaluated for viability, cell morphology, proteoglycan staining, and collagen type-II concentration. Total glycosaminoglycan content in each 3-D construct was quantitated by spectrophotometric assay. RESULTS: Addition of IL-1beta caused a significant loss of cell viability and matrix production. Addition of carprofen or dexamethasone caused significant decreases in PGE2 in the liquid media, and each was minimally effective in protecting chondrocytes against negative effects of IL-1beta. CONCLUSIONS AND CLINICAL RELEVANCE: Human recombinant IL-1beta resulted in loss of cell viability, alterations in extracellular matrix components, and production of PG and MMP Carprofen and dexamethasone had little effect on cell and matrix variables but did decrease PGE2 concentrations and primarily affected the inflammatory pathway of osteoarthritis.  相似文献   

10.
OBJECTIVE: To determine the morphologic and phenotypic effects of transforming growth factor beta1 (TGFbeta1) on cultured equine mesenchymal stem cells (MSC) and articular chondrocytes. SAMPLE POPULATION: Bone marrow aspirates and articular cartilage samples from a 2-year-old and two 8-month-old horses. PROCEDURE: After initial isolation and culture, MSC and chondrocytes were cultured in Ham's F-12 medium supplemented with TGF-beta1 at a concentration of 0, 1, 5, or 10 ng/ml. Medium was exchanged on day 2, and cells were harvested on day 4. Medium was assayed for proteoglycan (PG) content. Total RNA was isolated from cell cultures, and expression of aggrecan, decrin, collagen type-I, and collagen type-II mRNA was assessed by means of Northern blot analyses. Cell cultures were stained with H&E or toluidine blue and examined histologically. Additional cultures were examined after immunohistochemical staining for type-I and -II collagen. RESULTS: MSC cultures exposed to TGF-beta1 had an increased cellular density with cell layering and nodule formation that was most pronounced in cultures treated with 5 ng of TGF-beta1/ml. Expression of collagen type-II mRNA in MSC cultures exposed to 5 ng of TGF-beta1/ml was 1.7 times expression in control cultures, and expression of collagen type-I mRNA was 2.8 times expression in control cultures. Treatment of MSC with TGF-beta1 led to dose-related increases in area and intensity of type-II collagen immunoreaction. CONCLUSION: Results suggest that TGF-beta1 enhances chondrogenic differentiation of bone marrow-derived MSC in a dose-dependent manner.  相似文献   

11.
The role of keratan sulphate (KS) as a metabolic marker of cartilage was evaluated using an in vitro model of equine articular cartilage. Articular cartilage was harvested from clinically healthy 6-month-old foals (n = 3). Chondrocytes were centrifuged and cultured as pellets. Chondrocyte pellets were stimulated by insulin-like growth factor-I alpha (IGF-I alpha) or interleukin-1 alpha (IL-1 alpha) for 2 weeks. The concentrations of sulphated glycosaminoglycans (GAG) and KS in the culture media were measured by a 1,9-dimethyl-methylene blue (DMMB) colorimetric assay and an inhibition enzyme-linked immunosorbent assay using a 1/20/5D4 antibody, respectively. The concentration of GAG was significantly increased both in the media of pellets stimulated by IGF-I alpha and in those stimulated by IL-1 alpha. KS concentration was significantly increased in those stimulated by IL-1 alpha, while no significant change was found in those stimulated by IGF-I alpha. A high correlation between GAG and KS concentrations was found in the media of pellets stimulated by IL-1 alpha (r = 0.84), but not in those stimulated by IGF-I alpha (r = 0.59). The results suggest that the concentration of KS reacting to 1/20/5D4 mirrors the GAG concentration during the stage of cartilage catabolism, but not during the cartilage anabolic stage. The KS concentration in biological fluids could therefore be a useful marker to understand further the cartilage catabolic process. It may also represent some aspects of the cartilage anabolic process.  相似文献   

12.
OBJECTIVE: To study chondrotoxic effects of enrofloxacin (ENR) and ciprofloxacin hydrochloride (CFX) on canine and equine articular chondrocytes in culture and to compare the effects with that of cultivation in Mg2+-free medium. SAMPLE POPULATION: Chondrocytes from articular cartilage of 4- and 6 -month old dogs and 2- to 4- year-old horses. PROCEDURE: Chondrocytes were cultivated with 10, 40, 80, and 160 microg of CFX/ml, 10, 50, 100, and 150 microg of ENR/ml, or in Mg2+-free medium. A live-to-dead test was performed to test cytotoxic effects. Morphologic changes were evaluated by electron microscopy. An attachment assay was used to test the ability of chondrocytes to adhere to collagen type-II coated-chamber slides in the presence of CFX and with Mg2+-free medium. RESULTS: Chondrocytes cultivated in quinolone-supplemented medium or Mg2+-free medium had a decreased ability to adhere to culture dishes. Cell shape and the actin and vimentin cytoskeleton changed in a concentration-dependent manner. These effects were not species-specific and developed with both quinolones. On day 1 of culture, adhesion of chondrocytes to collagen type II was reduced to 70 and 45% of control values in the CFX treatment and Mg2+-free treatment groups, respectively. On day 5 of culture, adhesion of chondrocytes was reduced to 45 and 40% of control values in the CFX treatment and Mg2+-free treatment groups, respectively. CONCLUSION AND CLINICAL RELEVANCE: In vitro, chondrotoxic effects of quinolones appear to be the result of irregular integrin signaling and subsequent cellular changes. Drug concentrations leading to morphologic changes in vitro may be achieved in articular cartilage in vivo.  相似文献   

13.
OBJECTIVE: To determine the effects of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) on expression and regulation of several matrix-related genes by equine articular chondrocytes. SAMPLE POPULATION: Articular cartilage harvested from grossly normal joints of 8 foals, 6 yearling horses, and 8 adult horses. PROCEDURE: Chondrocytes maintained in suspension cultures were treated with various doses of human recombinant IL-1beta or TNF-alpha. Northern blots of total RNA from untreated and treated chondrocytes were probed with equine complementary DNA (cDNA) probes for cartilage matrix-related genes. Incorporation of 35S-sulfate, fluorography of 14C-proline labeled medium, zymography, and western blotting were used to confirm effects on protein synthesis. RESULTS: IL-1beta and TNF-alpha increased steady-state amounts of mRNA of matrix metalloproteinases 1, 3, and 13 by up to 100-fold. Amount of mRNA of tissue inhibitor of metalloproteinase-1 also increased but to a lesser extent (1.5- to 2-fold). Amounts of mRNA of type-II collagen and link protein were consistently decreased in a dose-dependent manner. Amount of aggrecan mRNA was decreased slightly; amounts of biglycan and decorin mRNA were minimally affected. CONCLUSIONS AND CLINICAL RELEVANCE: Treatment of cultured equine chondrocytes with IL-1beta or TNF-alpha resulted in marked alterations in expression of various matrix and matrix-related genes consistent with the implicated involvement of these genes in arthritis. Expression of matrix metalloproteinases was increased far more than expression of their putative endogenous inhibitor. Results support the suggestion that IL-1beta and TNF-alpha play a role in the degradation of articular cartilage in arthritis.  相似文献   

14.
Insulin-like growth factor-binding proteins (IGFBP) regulate the biological functions of insulin-like growth factors (IGF) and may affect cell growth through IGF-independent actions. Growth factors and hormones have been shown to alter IGFBP production by target cells suggesting that the effects of these factors may be partially mediated by the local production of IGFBP. Growth factors, including IGF-I, transforming growth factor-beta1 (TGF-beta1), and basic fibroblast growth factor (bFGF) have potent effects on satellite cell proliferation and differentiation, and some of these factors have been shown to alter IGFBP production in various cell types. Consequently, some of their actions on muscle satellite cells may be mediated by the local production of IGFBP. In this study, we measured the effects of IGF-I, bFGF, and TGF-beta1 on IGFBP production by primary porcine satellite cell (PSC) cultures after first determining physiologically active concentrations of these growth factors to use according to [3H]thymidine incorporation dose responses. There is little information on the effects of these growth factors on IGFBP production in primary porcine myogenic cells due to the confounding affects of contaminating nonmuscle fibroblasts. Comparative studies show that primary porcine satellite cells produce IGFBP-3 and -5 whereas porcine muscle-derived nonfusing cells (FIB) produce IGFBP-2 and -4 but not IGFBP-3 or -5. Because of this, our investigations have focused on growth factor-induced production of IGFBP-3 and -5 in primary porcine satellite cells cultures. Both IGF-I and bFGF exhibited dose-dependent increases in [3H]thymidine incorporation with increasing concentration from 1 to 50 ng/mL (P < 0.05), whereas TGF-beta1 caused a dose-dependent decrease from 0.01 to 0.5 ng/mL (P < 0.05). When 20 ng/ mL of IGF-I was added to the media, IGFBP-3 was increased approximately 65% (P < 0.05) and IGFBP-5 was increased approximately twofold (P < 0.05). The addition of 0.5 ng/mL TGF-beta1 caused more than a two-fold increase in IGFBP-3 (P < 0.05) and approximately an 80% increase in IGFBP-5 (P < 0.05), whereas 50 ng/ mL of bFGF caused approximately 40% (P < 0.05) and 70% (P < 0.05) increases in IGFBP-3 and -5, respectively. Neither IGFBP-3 nor -5 was detectable in the conditioned media from fibroblasts whether or not IGF-I, TGF- beta1 or bFGF were present. These data suggest that the effects of IGF-I, TGF- beta1 and bFGF on porcine satellite cells may in part be through the autocrine/ paracrine production of IGFBP-3 and -5 by porcine satellite cells.  相似文献   

15.
OBJECTIVE: To investigate accumulation of extracellular adenosine (ADO) by equine articular chondrocytes and to compare effects of adenosine kinase inhibition and adenosine deaminase inhibition on the amount of nitric oxide (NO) produced by lipopolysaccharide (LPS)-stimulated chondrocytes. SAMPLE POPULATION: Articular cartilage from metacarpophalangeal and metatarsophalangeal joints of 14 horses. PROCEDURE: Chondrocytes were cultured as monolayers, and cells were incubated with LPS, the adenosine kinase inhibitor 5'-iodotubercidin (ITU), or the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride (EHNA). Concentrations of ADO in cell supernatants were measured by use of reverse-phase high-performance liquid chromatography. Effect of inhibition of enzymatic metabolism of ADO on induced NO production was evaluated by exposing cells to a combination of LPS and ITU or LPS and EHNA. RESULTS: Articular chondrocytes accumulated extracellular ADO when exposed to LPS or ITU. Chondrocytes exposed to ITU accumulated ADO in a time-dependent manner. Unstimulated chondrocytes did not accumulate ADO. Similarly, EHNA alone did not produce detectable ADO concentrations; however, addition of EHNA and ITU resulted in a synergistic effect on accumulation of ADO. Lipopolysaccharide-induced NO production was more effectively suppressed by exposure to ITU than to EHNA CONCLUSIONS AND CLINICAL RELEVANCE: Equine articular chondrocytes release ADO in response to the proinflammatory stimulus of bacterial LPS. Inhibition of the metabolism of ADO increases accumulation of extracellular ADO. Autocrine release of ADO from chondrocytes may play a role in the cellular response to tissue damage in arthritic conditions, and pharmacologic modulation of these pathways in joints of arthritic horses could be a potential method of therapy.  相似文献   

16.
The concentration-effect relationships of phenylbutazone, indomethacin, betamethasone, pentosan polysulphate (PPS) and polysulphated glycosaminoglycan (PSGAG), on proteoglycan synthesis by equine cultured chondrocytes grown in monolayers, and articular cartilage explants were measured. The effect of PSGAG on interleukin-1beta induced suppression of proteogycan synthesis was also investigated. Proteoglycan synthesis was measured by scintillation assay of radiolabelled sulphate (35SO4) incorporation. Polysulphated glycosaminoglycan and PPS stimulated proteoglycan synthesis in chondrocyte monolayers in a concentration-related manner with maximal effects being achieved at a concentration of 10 microg/mL. Polysulphated glycosaminoglycan reversed the concentration-related suppression of proteoglycan synthesis induced by interleukin-1beta. Neither PSGAG nor PPS exerted significant effects on radiolabel incorporation in cartilage explants. Betamethasone suppressed proteoglycan synthesis by both chondrocytes and explants at high concentrations (0.1-100 microg/mL), but the effect was not concentration-related. At low concentrations (0.001-0.05 microg/mL) betamethasone neither increased nor decreased proteoglycan synthesis. Phenylbutazone and indomethacin increased radiolabel incorporation in chondrocyte cultures but not in cartilage explants at low (0.1, 1 and 10 microg/mL), but not at high (20 and 100 microg/mL) concentrations. These findings may be relevant to the clinical use of these drugs in the treatment of equine disease.  相似文献   

17.
Ischaemia and reperfusion are suspected to alter chondrocyte metabolism. Here, we studied the effects of three oxygen (O2) tensions on the viability of equine articular chondrocytes isolated from the cartilage of the distal interphalangeal joint of horses. Chondrocytes were cultured in alginate beads under 1%, 5% or 21% gas phase O2 concentration for 14 days, cellular growth kinetics were measured (n=6), and the cells were observed by light microscopy after staining for necrotic and apoptotic cell detection. For information about the metabolic status, the intracellular adenosine triphosphate (ATP) content was measured. The number of chondrocytes remained stable for the first eight days, then decreased especially at 1% and 21% O2. At 21% O2, normal cells decreased and necrotic cells increased at the end of the 14 day-period. No significant variations were found at 5% O2 except for a decrease in necrotic cells at day 14. Most apoptotic cells were found at 1% O2 from days 5 to 11, and normal cells decreased during the same period. But an unexpected increase in normal cells and decrease in apoptotic cells were observed at day 14. The intracellular ATP content remained stable. It was concluded that, in a three-dimensional culture model of equine articular chondrocytes, O2 tension affected the viability of the cells after an 11-day period, with the most important effects observed at 21% and 1% O2 conditions.  相似文献   

18.
OBJECTIVE: To determine whether glucosamine and chondroitin sulfate (CS) at concentrations approximating those achieved in plasma by oral administration would influence gene expression of selected mediators of osteoarthritis in cytokine-stimulated equine articular chondrocytes. SAMPLE POPULATION: Samples of grossly normal articular cartilage obtained from the metacarpophalangeal joint of 13 horses. PROCEDURE: Equine chondrocytes in pellet culture were stimulated with a subsaturating dose of recombinant equine interleukin (reIL)-1beta. Effects of prior incubation with glucosamine (2.5 to 10.0 microg/mL) and CS (5.0 to 50.0 microg/mL) on gene expression of matrix metalloproteinase (MMP)-1, -2, -3, -9, and -13; aggrecanase 1 and 2; inducible nitric oxide synthase (iNOS); cyclooxygenase (COX)-2; nuclear factor kappaB; and c-Jun-N-terminal kinase (JNK) were assessed by use of a quantitative real-time polymerase chain reaction assay. RESULTS: Glucosamine at a concentration of 10 microg/mL significantly reduced reIL-1beta-induced mRNA expression of MMP-13, aggrecanase 1, and JNK. Reductions in cytokine-induced expression were also observed for iNOS and COX-2. Chondroitin sulfate had no effect on gene expression at the concentrations tested. CONCLUSIONS AND CLINICAL RELEVANCE: Concentrations of glucosamine similar to those achieved in plasma after oral administration in horses exerted pretranslational regulation of some mediators of osteoarthritis, an effect that may contribute to the cartilage-sparing properties of this aminomonosaccharide. Analysis of results of this study indicated that the influence of CS on pretranslational regulation of these selected genes is limited or lacking.  相似文献   

19.
The increase in obesity in people and pets has been phenomenal. As in man, obesity in pets is a risk factor for many diseases including diabetes mellitus. Recently, tissue-specific regulation of glucose metabolism in fat and muscle tissue has been identified as an important factor for insulin sensitivity and it has been hypothesized that glucose uptake into tissues is altered in obesity causing insulin resistance. The purpose of this study was to determine the expression of the glucose transporter proteins GLUT4 and GLUT1 in muscle and fat from lean and obese cats. Seventeen domestic felines were tested in the lean state and again after a 6-month period of ad libitum food intake which led to a significant increase in weight (P<0.0001). Obese cats showed a significantly higher area under the curve (AUC) for glucose, AUC for insulin and a significant decrease in glucose percentage disappearance per min (K-value) (P=0.013, 0.018 and 0.017, respectively) during an intravenous glucose tolerance test, but no change in baseline glucose or glycosylated hemoglobin concentrations. GLUT4 expression was decreased in biopsies of both muscle (P=0.002) and fat (P=0.001) in the obese animals. GLUT4 in muscle and fat significantly and negatively correlated with the insulin AUC (r2=0.36, P=0.004 and r2=0.18, P=0.040, respectively). GLUT1 expression showed no significant change in the obese cats in either tissue. It is concluded that the changes in GLUT4 are early derangements in obesity and occur before glucose intolerance is clinically evident.  相似文献   

20.
Glucose is essential for the development of the fetus. We address here the quantitative expression and immunohistochemical localization of glucose transporter (GLUT1 and GLUT3) in the rabbit placenta during successful pregnancy. Blood glucose level showed a significant decrease at the gestation period in comparison with non-pregnancy. Maternal serum glucose was gradually increased according to fetal development. Quantitative RT-PCR results showed that expression of GLUT1 was significantly increased from day 13 to day 18, while GLUT3 mRNA level was significantly decreased during the same periods. Western blot analysis demonstrated that GLUT1 protein did not change significantly in the placenta during pregnancy when compared to non-pregnant uteri. Immunohistochemistry indicated that distribution of GLUT1 was observed mainly to the surface of the outer trophoblasts, whereas GLUT3 mainly localized to the basal site of the inner trophoblasts and fetal blood vessels. These results suggest that glucose is transported through GLUT1 from the maternal blood stream for use as a placental fuel and for further transport through GLUT3 to the fetal circulation, thus signifying the distinct anatomical localization of GLUT1 and GLUT3 in the rabbit placenta during successful pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号