首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both upland soils and lake sediments appear to retain atmospherically deposited trace metals (e.g. Pb) even under acid conditions. The abundant, local, mineralogically derived metals (e.g. Al and Mn) are exported from upland soils under acidic conditions, but are usually retained by lake sediments. Acidification, however, reduces the extent of retention in lake sediments and soils, potentially inducing elevated metal levels in lake water. Only under conditions of extreme acidification and with the more mobile metals do lakes become net exporters of metals. Surface depletion of metals in sediment cores may not be the result of recent acidification.  相似文献   

2.
Sediment cores were collected from lakes in the Devils Lake Basin in North Dakota to determine if mercury (Hg) accumulation chronologies from sediment-core data are good indicators of variations in Hg accumulation rates in saline lakes. Sediment cores from Creel Bay and Main Bay, Devils Lake were selected for detailed analysis and interpretation. The maximum Hg concentration in the Creel Bay core was 0.15 micrograms per gram at 8 to 9 centimeters. The maximum Hg concentration in the Main Bay core was 0.07 micrograms per gram at 5 to 7 centimeters. The general decreases in Hg concentrations with depth are attributed to historic variations in atmospheric Hg deposition rate. Hg stratigraphies combined with210Pb and137Cs dating analyses yield Hg chronologies that indicate a general increase in Hg accumulation rates in Devils Lake since the middle of the 19th century. Mean modern Hg accumulation rates in Creel Bay were 4.9 nanograms per square centimeter per year, and rates in Main Bay were 1.8 nanograms per square centimeter per year. Mean preindustrial Hg accumulation rates in Creel Bay were 1.2 nanograms per square centimeter per year, and rates in Main Bay were 1.6 nanograms per square centimeter per year. Relatively low Hg concentrations in recent sediments in the Devils Lake Basin, along with similarities in Hg accumulation rates between lakes in the Devils Lake Basin and other lakes in the northern interior of North America, indicate that local sources of Hg are not important sources of Hg. Results of the study indicate that accurate Hg chronologies are discernible in sediment cores collected from saline lakes. However, spatial and temporal variations in lake level and water chemistry common to saline lakes make interpretation of radioisotopic and geochemical chronologies difficult. Hg geochemistry in Devils Lake, and presumably in other saline lakes, is dynamic. The results of this study indicate that the absolute amount of sediment transported to Devils Lake, along with the associated Hg and total organic carbon, and the distribution of sedimentation patterns in Devils Lake may be affected by changing lake levels.  相似文献   

3.
The concentrations of Co, Ni, Cu, Zn, Cd, Pb, As, Fe, Mn, and Al were determined in sediments and biota of Songkhla Lake, a shallow coastal lagoon located in southern Thailand. In June 2006, surface sediments were sampled in 44 stations in the three sections of the lake (inner-, middle-, and outer sections). Sediment cores were also sampled in 13 stations in three cross-sections of the lake. In surface sediments, trace and major elements, organic matter, sediment grain size analysis, and sulfides were determined, and in the sediment cores, redox profiles were made. Soil samples were also collected at garbage dumping sites in the vicinity of the lake. In addition, the metal accumulation in two catfish species (Arius maculatus and Osteogeneiosus militaris) and the crustacean (Apseudes sapensis) was also investigated. Trace element concentrations in sediments of Songkhla Lake show that, especially the Outer section of the lake, in particular the sediments at the mouths of the Phawong, U-Taphao, and Samrong Canals are significantly enriched with trace elements due to municipal, agricultural, and industrial discharges entering the lake through the canals. Aluminum-normalized enrichment factors throughout the lake vary from 0.4 to 1.7 for Ni, 0.3 to 3.3 for Cu, 0.2 to 7 for Zn, 0.1 to 14 for As, 1 to 24 for Cd, 0.7 to 6.8 for Pb, and 0.1 to 7.8 for Mn. Correlations between the elements and sediment characteristics show that Cu, Zn, Cd, and Pb are essentially associated with the sulfide fraction; that Ni and Co are predominantly bound to the clay minerals and iron oxy-hydroxides, and that As is principally bound to iron oxy-hydroxides. The accumulation of trace elements between muscle tissue and liver and eggs of A. maculatus and O. militaris is element-specific, but concentrations of trace elements in fish muscle tissue are well within the limits for human consumption.  相似文献   

4.
Sediment cores collected from 12 lakes and eight marine sites along the Norwegian and Svalbard coast as part of a project investigating polycyclic aromatic hydrocarbons (PAH) in sediments were dated radiometrically using 210Pb, 137Cs and 241Am fallout radionuclides. In all lake cores, except on Svalbard, the 137Cs activity versus depth profile appears to have been significantly modified by post-depositional migration within the sediment column. The relatively low 137Cs inventories suggest that these sites were not significantly impacted by fallout from the 1986 Chernobyl accident. All the marine cores have 137Cs inventories that are substantially lower than in lake sediments almost certainly due to leaching of 137Cs from the marine sediments due to higher solubility in the seawater. In the marine surface sediments, the unsupported 210Pb concentrations are up to an order of magnitude lower than in the corresponding lake sediments reflecting the higher (dry mass) sedimentation rate at the marine sites. Five of the cores including marine sites and lakes have unusual high 210Pb flux most likely due to sediment focusing. Most of the irregularities in the 210Pb records seem to be due to slump events but some patterns are also due to possibly increased accumulation rates. Three of the marine cores show systematic increase in their sedimentation rate from c.1960 towards the present while only one lake shows the same systematic increase.  相似文献   

5.
Farmer  J.G.  Mackenzie  A.B.  Sugden  C.L.  Edgar  P.J.  Eades  L.J. 《Water, air, and soil pollution》1997,100(3-4):253-270
The concentrations, inventories, fluxes and isotopic composition of Pb in four 210Pb-dated cores from the raised Flanders Moss peat bog are compared with corresponding data for two sediment cores from Loch Lomond, also in central Scotland. Although the inventories and fluxes of Pb revealed by the peat record for the past few hundred years are generally lower, the isotopic records are in good agreement, confirming a prevailing 206Pb/207Pb ratio of 1.17 for anthropogenic ("industrial") Pb in the atmosphere prior to the introduction of leaded petrol in the 1920s. The 206Pb-depleted nature of the latter has resulted in a decline of about -0.04 to -0.05 in the 206Pb/207Pb ratio of deposited Pb for both peat and lake sediments. Despite the time-resolution limitations of the peat record, car exhaust emissions of Pb appear to have contributed 35-50% over the past 20 years, 15-30% over the past 75 years, but no more than 27% overall to the peat Pb burden. The finding that 67-85% of anthropogenic Pb in the peat was apparently deposited post-1900 compared with 51% for the Loch Lomond sediments could be due to geographical variations in atmospheric deposition of Pb, other additional inputs to the sediments, or perhaps to some post-depositional loss of Pb from peat, although the integrity of the 206Pb/207Pb record does argue against any significant vertical mobility of Pb in peat.  相似文献   

6.
Trace element deposition chronologies are presented for radionuclide dated sediment cores collected from four Utah lakes. A core collected from Mirror Lake, a remote lake located in northern Utah, records a century long period of atmospheric deposition of anthropogenic Pb, Zn, Cu, Cd and Sn. Trace element concentration profiles in a core collected from Panguitch Lake, a remote lake located in southern Utah, give no indication of enhanced atmospheric deposition of trace elements in that part of the state. Sediment cores collected from Echo Reservoir and Deer Creek Reservoir, located near Salt Lake City, record releases of Pb, Zn, Cu, Cd, As, Sb, and Tl rich mine wastes into watershed streams from the now defunct Park City mining complex.  相似文献   

7.
The base neutralizing capacity (BNC), or alkalinity consumption, of acidic lake sediments may influence the amount of neutralizing agent required to neutralize a lake if the sediment BNC is large relative to the BNC of overlying waters. The extent ofin situ sediment BNC in acidic Bowland Lake (pH 5.0) was inferred by (1) measuring the loss of Ca-45 to acidic sediments from labeled lake water neutralized with CaCO3, and (2) measuring exchangeable Ca in sediments collected prior to and following neutralization of Bowland Lake with calcite (CaCO3). The sediment BNC derived from the Ca-45 radiolabeling experiment was 0.01 mg CaCO3 g?1 w wt. The mean losses of Ca-45 from the aqueous phase of neutralized and untreated sediment/water mixtures were not significantly different. The mean pH of both neutralized and untreated mixtures decreased to 4.0 during the incubation, possibly because of oxidation of reduced sediments. Sediment BNC estimates derived from literature data for several lakes may be overestimated because of the inclusion of anoxic sediments containing significant amounts of reduced Fe. There was no significant difference in exchangeable Ca between sediments from untreated Bowland Lake and sediments collected 10 m after whole-lake neutralization indicating that little of the supplied alkalinity had been lost to the sediments. Hence,in situ sediment BNC was probably small in Bowland Lake.  相似文献   

8.
The historical trend of heavy metal pollution recorded in sediment cores from Lake Shinji, western Japan, was investigated to evaluate the contribution of increasing long-range transport of heavy metals from the Asian continent in recent years. The concentrations of Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn and lead isotope ratios were determined for sediment cores collected at two sites in the lake. Among the metals, Cd, Sb, and Zn showed markedly high concentrations since the 1970s. Moreover, a high Pb concentration and less radiogenic lead isotope ratios have been observed since the 1980s in the core from a site close to the mouth of a major river. Air masses from the Asian continent, including China, Russia, and South Korea, have less radiogenic lead isotope ratios than those from Japan. This suggests that the recent increase in Pb concentration in the sediment core is primarily due to the long-range transport of heavy metals from the Asian continent, followed by their deposition in the catchment area of the river. The concentration ratios of Pb/Cd, Pb/Sb, and Pb/Zn of the sediment around 2000 were calculated on the basis of the metal concentrations in excess of those before 1940. They were then compared with the volume-weighted annual average concentration ratios of Pb/Cd, Pb/Sb, and Pb/Zn of rain samples collected on the shore of the lake for 1999–2001. The result showed that the ratios of the former to the latter are 1.0 for Cd, 0.69 for Sb, and 0.31 for Zn. Thus, it is likely that the long-range transport of Cd and Sb from the Asian continent also contributes significantly to the recent increase in the concentrations of these metals in the sediment core from Lake Shinji. For Zn, however, the contribution from the Asian continent was evaluated to be small, suggesting the importance of local sources such as effluent discharges.  相似文献   

9.
Historical profiles of trace element concentrations were reconstructed from two mangrove sediment cores collected within the Ba Lat Estuary (BLE), Red River, Vietnam. Chronologies of sediment cores were determined by the 210Pb method, which showed that each respective sediment core from the south and north entrances of BLE provided a record of sediment accumulation spanning approximately 100 and 60 years. The profiles of Pb, Zn, Cu, Cr, V, Co, Sb, and Sn concentrations markedly increased from the years of the 1920s–1950s, and leveled out from 1950s–1980s, and then gradually decreased from 1980s to present. The profiles of Cd and Ag concentrations increased from 1920s–1940s, and then decreased from 1940s to present. The profile of Mo concentrations progressively increased from 1920s–1980s, then decreased to present. The Mn concentrations failed to show a clear trend in both sediment cores. Results from contamination factors, Pearson’s correlation, and hierarchical cluster analysis suggest that the trace elements were likely attributed to discharge of untreated effluents from industry, domestic sewage, as well as non-point sources. Pollution Load Index (PLI) revealed levels higher than other mangrove sediment studies, and the long-term variations in PLI matched significant socioeconomic shifts and population growth in Vietnam. Geoaccumulation Index showed that mangrove sediments were moderately polluted by Pb and Ag, and from unpolluted to moderately polluted by Zn, Cu, and Sb. The concentrations of Pb, Zn, Cu, Cr, and Cd exceeded the threshold effect levels and effect range low concentrations of sediment quality guidelines, implying that the sediments may be occasionally associated with adverse biological effects to benthic organisms.  相似文献   

10.
The retention properties of acidic and non-acidic lake sediments were determined in order to assess the effects of lake acidification on the immobilization of P from solution by sediments. The adsorption of P by solids was described by the Langmuir model which was used to determine the sorption parameters, e.g. sorption maxima and equilibrium constant of adsorption. The pH of solution and the chemical and mineralogical characteristics of sediments affect mainly the magnitude of adsorption maxima. The binding strength of the adsorbed complex is similar for all the investigated sediments (Δ=?25.3 to ?28.5 kJ mol?1) and it is affected little by variation in pH or by chemical and mineralogical composition of sediments. The results indicate that the magnitude of P removal is determined more by sediment chemistry and mineralogy (amorphous Al/Fe oxy-hydroxides, carbonate content) than by pH of the water.  相似文献   

11.
The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873–1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150–3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322–331 kg of Hg annually to Clear Lake, which represents ca. 86–99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150–300 years.  相似文献   

12.
Sandy Run (Vinton County, southeastern Ohio, USA) is a stream receiving acid mine drainage (AMD) from an abandoned coal mine complex. This stream has been dammed to form Lake Hope. The heavy metal composition of waters (benthic and pore), sediments, and macroinvertebrates in the lake reservoir sediments were analyzed. Lake waters contained Mn as the heavy metal present in higher concentrations followed by Fe, Al, and Zn. Depletion of Fe and Al occurred from precipitation of less soluble Fe and Al oxides and hydroxides along Sandy Run before entering the lake, producing a high Mn water input into the reservoir. Concentrations of heavy metals in the sediments increased toward the dam area. Sequential extraction of metals in the sediments showed that the highest fractions of metals corresponded to the detrital fraction or eroded material from the watershed and metals associated with iron and manganese hydroxides. Heavy metals in the organic sediment fraction were low. Heavy metals from the AMD source, as well as sediments rich in heavy metals eroded from the watershed, were transported to the downstream dam area and stored at the bottom, producing the observed chemistry. Heavy metals in benthic waters also were sourced from the diffusion of ions from sediments and lake waters as variation in pH and redox conditions determined the flux at the sediment–water interface. Metal concentrations were measured within two deposit feeders, oligochaetes and chironomids, and compared to trends in physical metal concentration across the lake. For the four heavy metals with higher concentration in both benthic animals, the concentrations followed the trend: Fe?>?Al?>?Mn?>?Zn, which were similar to the bioavailable metals in the sediments rather than the pore or the benthic water where Mn was the most abundant heavy metal. Ingestion of sediment, not exposure to pore or benthic waters, appeared to be the main transfer mechanism for metals into the biota. Trends and patterns in animal metal concentrations across the lake were probably a complex process controlled by metabolic needs and metallic regulation and tolerance. Even when Mn was the highest concentration heavy metal in the pore waters, it was the lowest to bioconcentrate in the organisms. In comparison, Cd, the lowest concentration metal in the sediments, presented one of the highest bioaccumulation factors.  相似文献   

13.
An understanding of the controls on aluminum solubility is essential because Al can reach toxic levels in waters that are affected by acidic precipitation or acid mine drainage. One factor which has received little attention is the role of in-lake sinks for Al. We hypothesized that a chloritization mechanism was capable of removing large amounts of Al from solution when sediments contained 2:1 minerals without well-developed Al-hydroxy interlayers. The objective of this investigation was to evaluate the potential role of lake sediments in regulating Al equilibria in the overlying waters. Water chemistry data, sediment mineralogy and exchange phase composition, and Al sorption isotherms were used. Sediments with well developed Al-hydroxy interlayers sorbed less total Al, accumulated more Al on the readily reversible exchange phase, and had less pH buffering capacity than sediments without Al-hydroxy interlayers. We conclude that the mineralogy of lake sediments needs to be considered when evaluating Al equilibria in lakes.  相似文献   

14.
Mine tailing management is one of the largest environmental issues related to mining operation. This study uses chemometrics to assess the dispersion of iron mine tailing-affected sediments in Bøkfjorden, Northern Norway. Metal concentrations (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) and physico-chemical sediment characteristics (conductivity, organic matter, sulphate, chloride, grain size, CaCO3, pH) were analysed in seven sediment cores collected in a transect out of the fjord along with two reference cores. Results of hierarchical cluster analysis and principal component analysis allowed to distinguish between mine tailing-affected and non-affected sediments. Non-affected sediments were especially characterised by high levels of organic matter whilst mine tailing-affected sediments varied significantly in sediment characteristics depending on location in the fjord. Crucial parameters to reveal mine tailing-affected sediments varied between the target metal Fe along with metals of Cd and Mn, albeit less significant. Variations in mine tailing-affected sediment characteristics could be attributed to other anthropogenic activities in the fjord. Despite potential disturbances, chemometrics made it possible to identify dispersion of mine tailing-affected sediments to cover the inner and middle parts of the fjord. The study demonstrates the advantage of applying chemometrics on complex fjord systems, which in this case was used to distinguish mine tailing-affected sediments from areas with elevated levels of metals not necessarily related to the mine.  相似文献   

15.
Fifteen Finnish Lapland lakes have been investigated to study pollution levels and possible acidification effects on nickel (Ni), copper (Cu), cobalt (Co), zinc (Zn), cadmium (Cd), lead (Pb), manganese (Mn), iron (Fe), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg) and aluminium (Al) concentrations in sediments. Four lakes have average water pH lower than 6.0 and alkalinity lower than 0.050 meq/1. Contamination factor (Cf, ratio of metal concentrations in the uppermost to the deepest layers for a given lake sediment core) of Pb is high, particularly for acidic and acidifying lakes (Cf=5.2–10.4). Ni, Cu, Co, Zn and Cd concentrations increase insignificantly towards sediment surface of some lakes (with a neutral pH) with the rare exception. The influence of passible lake acidification consists of decreasing Cu, Cd, Al, Zn concentrations and organic material contents (loss on ignition) towards the sediment surface. The buffer capacity index (BCI), determined as the ratio of the sum of alkaline and alkaline-earth metals (K, Na, Ca, Mg) to Al, is lower for acidic lakes (from 0.12 to 0.36), whereas for the other lakes the BCI values are higher (from 0.42 to 1.34). Thus, BCI-values, decreased contents of Al, Cd, Zn and Cu, as well as organic matter contents (OMC in the upper lake sediment suggest acidification of freshwater environments.  相似文献   

16.
Empirical field evidence for changing chemical processes in soils caused by atmospheric deposition of pollutants consists of: (1) Long-term water quality data including total dissolved solids, concentrations of specific metals (e.g. Ca), and conductivity; (2) Cation exchange capacity and base saturation values for soils located on precipitation pH gradients; (3) Lysimeter studies; and (4) Chemical analysis of organic soils on precipitation pH and metal gradients. For well-drained organic soils, as precipitation pH decreases, metals are differentially leached at an accelerated rate (Mn>Ca>Mg≥Zn>Cd and Na>Al). Experimental field and laboratory lysimeter studies on soil columns yield similar results, with increases in leaching rates for soil solutions with pH=3 up to 100 × values for soil solutions with pH=5. Nearly 100% of the Pb from precipitation is accumulating in the organic soil layer or sediments. Zn is accumulating in soils and sediments where the pH's of precipitation, soil solutions, and surface waters are generally above 5 to 5.5. At lower pH values Zn and other chemically similar elements are desorbed/leached (net) at an accelerated rate. Chemical analyses of dated sediment cores from high and low altitude lakes, with drainage basins relatively undisturbed for the last 200+ yr, reveal that increased deposition of metals on a regional scale started in the northeastern United States as early as 1880, consistent with increased fossil fuel consumption. This suggests acidified precipitation as early as 1880. Cores from historically acidified lakes (pH<≈5.3 to 5.5) indicate that, as acidification of surface waters occurs (caused by acidic deposition), concentrations of Zn, Mn, and Ca decrease in the sediment. Apparently the metals are leached from the detritus prior to sedimentation. This conclusion results from data from experimental acidification of sediment cores and the general observation that precipitation pH is generally ≥0.5 pH units lower than lake water pH. Accelerated leaching of soil in New England dates to earlier than 1900.  相似文献   

17.
Wu  Min  Tang  Xianqiang  Li  Qingyun  Yang  Wenjun  Jin  Feng  Tang  Minzhe  Scholz  Miklas 《Water, air, and soil pollution》2013,224(5):1-18
Anthropogenic contamination by heavy metals in fluvial systems is mostly bound to fine-grained clay minerals and organic substances, which accumulate by vertical accretion in sediment traps along river courses (oxbow lakes, dams and floodplains). These environmental settings are considered as good archives of historical changes in contamination. Much less attention, however, is paid to deposits of river channels, which act as sourcing transport paths for these archives and/or build archives of their own. In order to provide a better insight into the spatio-temporal distribution of pollutants in channel deposits, we investigated contamination levels of Cu, Pb and Zn in a series of sediment cores along the River Morava, a left-hand tributary of the Danube River, Czech Republic. In particular, the relationships between metal concentrations, sediment lithology (facies), grain size, magnetic susceptibility and mineralogy and chemistry of fly-ash particles were investigated. Element chemistry and lithology of channel deposits were compared with those of the nearby floodplain deposits in the same catchment. Four river-channel facies were defined, ranging from sandy gravels to clayey silts, and confronted with the floodplain sediments. Al/Si ratios were found to be useful proxies of grain size, and Al was utilized as an excellent normalizing element for heavy metals, which filters out much of the grain size effects on contamination. The floodplain deposits are significantly less contaminated than their river-channel counterparts. Heavy-metal contamination of river bed sediments (expressed as enrichment factors, EFs) is not simply bound to fine-grained particles, and much of the contamination was found in coarse-grained, sandy facies. Elevated EFs of Zn, Cu and Pb in several sediment layers, which show high magnetic susceptibility (MS), high values of MS normalized to Fe and a high proportion of magnetic fly-ash spherules and their chemistry suggest that significant part of the heavy-metal contamination can be carried by magnetic fly-ash spherules. A part of this contamination is bound to coarse-grained fluvial facies, indicating that the magnetic spherules can be transported as bed load sediments. Magnetic pollution and heavy-metal pollution can therefore coincide in river bed deposits. It is suggested that most of this contamination can be related to local point sources of pollutants (fly-ash deposit spills).  相似文献   

18.

Purpose

Sediment cores provide a reliable record of mercury (Hg) contamination and can be used to study long-term Hg pollution and relevant environmental change. In the last hundred years, there were several events which may have contributed to the accumulation of Hg in Jade Bay and its catchment. This work was undertaken to assess the record in total Hg (THg) content in sediments of cores from Jade Bay and its catchment.

Materials and methods

A 5-m sediment core from Jade Bay, Lower Saxonian Wadden Sea, southern North Sea and a 12-m core from its catchment area (Wangerland, coastal zone of the Jade Bay) were used to study Hg contents in sediments. Total Hg, grain size distribution, aluminium (Al) and total organic carbon (TOC) were analysed on subsamples of both sediment cores. Total Hg was determined by oxygen combustion-gold amalgamation using DMA-80.

Results and discussion

As THg contents of the Jade Bay core were positively correlated to the sum of TOC and Al contents (r 2?=?0.86, p?<?0.001), the Hg data were interpreted using a regional normalisation function with the sum of Al and TOC as the normalisation parameters. Total Hg contents of the Wangerland core were correlated better to Al contents (r 2?=?0.70, p?<?0.001) than to the sum of TOC and Al contents (r 2?=?0.63, p?<?0.05). Therefore, Hg contents in sediments of the Wangerland core were normalised to Al contents. Comparison between enrichment factors and the background range of the sediment cores suggested that Jade Bay was contaminated about 50 years ago, and that Wangerland, or the catchment area of Jade Bay, was contaminated about 300 years ago, if no diagenetic remobilization occurred.

Conclusions

Total Hg contents of both cores were low and of no concern to the aquatic environment of Jade Bay. The Hg record was in good agreement with the history of industrial development in the region; thus, Hg deposition could have occurred through atmospheric input, ammunition residues of the Second World War and volcanic emanations, as well as through diagenetic remobilization.  相似文献   

19.
The generation of alkalinity by SO4 reduction and net storage of reduced S in lake sediments has been estimated from an analysis of sediment cores from 16 lakes in ME, VT, NY, MI, MN, and WY. The cores have been dated by 210Pb. The rate of pre-1850 (background) storage of S in lake sediments suggests that alkalinity contribution to lake water from this process ranged from 0.2 to 9.3 geq L?1, with an average of 4 geq L?1, Background values are similar for all lakes and remain low in the WY lakes up to the present. Maximum alkalinity contributions recorded in sediment, from upper mid-west and eastern lakes, dated between 1850 and 1985 are between 0.4 and 33 geq L?1, with a lake mean maximum of 9.9 geq L?1, Significant increases in recent S storage only occur in eastern lakes. Average values for net S accumulation in the sediment of most lakes for post-1850 sediment are typically less than half of maximum values.  相似文献   

20.
Yang  Handong  He  Baoyin  Cai  Shuming  Oldfield  Frank  Yu  Lizhong 《Water, air, and soil pollution》1997,98(1-2):187-195
Mineral magnetic measurements have been made on three sediment cores from Lake Donghu, Wuhan, which reveal evidence for changes in magnetic properties of the sediments. It is suggested that the recent lake sediment profiles contain deposited magnetic minerals and atmospherically derived fly ash from industrial processes. In the cores, the record of ‘magnetite’ deposition shows that the environment of the lake has been affected by heavy industrial processes in intensity and range beginning from the 1950's onwards and remaining relatively uniform in the last decades. In Core I the record of ‘hematite’ deposition parallels that for influence of urban waste water input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号