首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. In dairy farming systems the risk of nitrate leaching is increased by mixed rotations (pasture/arable) and the use of organic manure. We investigated the effect of four organic farming systems with different livestock densities and different types of organic manure on crop yields, nitrate leaching and N balance in an organic dairy/crop rotation (barley–grass-clover–grass-clover–barley/pea–winter wheat–fodder beet) from 1994 to 1998. Nitrate concentrations in soil water extracted by ceramic suction cups ranged from below 1 mg NO3-N l?1 in 1st year grass-clover to 20–50 mg NO3-N l?1 in the winter following barley/pea and winter wheat. Peaks of high nitrate concentrations were observed in 2nd year grass-clover, probably due to urination by grazing cattle. Nitrate leaching was affected by climatic conditions (drainage volume), livestock density and time since ploughing in of grass-clover. No difference in nitrate leaching was observed between the use of slurry alone and farmyard manure from deep litter housing in combination with slurry. Increasing the total-N input to the rotation by 40 kg N ha?1 year?1 (from 0.9 to 1.4 livestock units ha?1) only increased leaching by 6 kg NO3-N ha?1. Nitrate leaching was highest in the second winter (after winter wheat) following ploughing in of the grass-clover (61 kg NO3-N ha?1). Leaching losses were lowest in 1st year grass-clover (20 kg NO3-N ha?1). Averaged over the four years, nitrate concentration in drainage water was 57 mg l?1. Minimizing leaching losses requires improved utilization of organic N accumulated in grazed grass-clover pastures. The N balance for the crop rotation as a whole indicated that accumulation of N in soil organic matter in the fields of these systems was small.  相似文献   

2.
Nitrogen losses from outdoor pig farming systems   总被引:2,自引:0,他引:2  
Abstract. Nitrogen losses via nitrate leaching, ammonia volatilization and nitrous oxide emissions were measured from contrasting outdoor pig farming systems in a two year field study. Four 1‐ha paddocks representing three outdoor pig management systems and an arable control were established on a sandy loam soil in Berkshire, UK. The pig management systems represented: (i) current commercial practice (CCP) ‐ 25 dry sows ha?1 on arable stubble; (ii) ‘improved’ management practice (IMP) ‐ 18 dry sows ha?1 on stubble undersown with grass, and (iii) ‘best’ management practice (BMP) 12 dry sows ha?1 on established grass. Nitrogen (N) inputs in the feed were measured and N offtakes in the pig meat estimated to calculate a nitrogen balance for each system. In the first winter, mean nitrate‐N concentrations in drainage water from the CCP, IMP, BMP and arable paddocks were 28, 25, 8 and 10 mg NO3 l?1, respectively. On the BMP system, leaching losses were limited by the grass cover, but this was destroyed by the pigs before the start of the second drainage season. In the second winter, mean concentrations increased to 111, 106 and 105 mg NO3‐N l?1 from the CCP, IMP and BMP systems, respectively, compared to only 32 mg NO3‐N l?1 on the arable paddock. Ammonia (NH3) volatilization measurements indicated that losses from outdoor dry sows were in the region of 11 g NH3‐N sow?1 day?1. Urine patches were identified as the major source of nitrous oxide (N2O) emissions, with N2O‐N losses estimated at less than 1% of the total N excreted. The nitrogen balance calculations indicated that N inputs to all the outdoor pig systems greatly exceeded N offtakes plus N losses, with estimated N surpluses on the CCP, IMP and BMP systems after 2 years of stocking at 576, 398 and 264 kg N ha?1, respectively, compared with 27 kg N ha?1 on the arable control. These large N surpluses are likely to exacerbate nitrate leaching losses in following seasons and make a contribution to the N requirement of future crops.  相似文献   

3.
Mineral N accumulates in autumn under pastures in southeastern Australia and is at risk of leaching as nitrate during winter. Nitrate leaching loss and soil mineral N concentrations were measured under pastures grazed by sheep on a duplex (texture contrast) soil in southern New South Wales from 1994 to 1996. Legume (Trifolium subterraneum)‐based pastures contained either annual grass (Lolium rigidum) or perennial grasses (Phalaris aquatica and Dactylis glomerata), and had a control (soil pH 4.1 in 0.01 m CaCl2) or lime treatment (pH 5.5). One of the four replicates was monitored for surface runoff and subsurface flow (the top of the B horizon), and solution NO3 concentrations. The soil contained more mineral N in autumn (64–133 kg N ha?1 to 120 cm) than in spring (51–96 kg N ha?1), with NO3 comprising 70–77%. No NO3 leached in 1994 (475 mm rainfall). In 1995 (697 mm rainfall) and 1996 (666 mm rainfall), the solution at 20 cm depth and subsurface flow contained 20–50 mg N l?1 as NO3 initially but < 1 mg N l?1 by spring. Nitrate‐N concentrations at 120 cm ranged between 2 and 22 mg N l?1 during winter. Losses of NO3 were small in surface runoff (0–2 kg N ha?1 year?1). In 1995, 9–19 kg N ha?1 was lost in subsurface flow. Deep drainage losses were 3–12 kg N ha?1 in 1995 and 4–10 kg N ha?1 in 1996, with the most loss occurring under limed annual pasture. Averaged over 3 years, N losses were 9 and 15 kg N ha?1 year?1 under control and limed annual pastures, respectively, and 6 and 8 kg N ha?1 year?1 under control and limed perennial pastures. Nitrate losses in the wet year of 1995 were 22, 33, 13 and 19 kg N ha?1 under the four respective pastures. The increased loss of N caused by liming was of a similar amount to the decreased N loss by maintaining perennial pasture as distinct from an annual pasture.  相似文献   

4.
Diverting the infiltrating water away from the zone of N application can reduce nitrate–nitrogen (NO3–N) leaching losses to groundwater from agricultural fields. This study was conducted from 2001 through 2005 to determine the effects of N-application methods using a localized compaction and doming (LCD) applicator and spoke injector on NO3–N leaching losses to subsurface drainage water and corn (Zea mays L.)–soybean (Glycine max L.) yields. The field experiments were conducted at the Iowa State University’s northeastern research center near Nashua, Iowa, on corn–soybean rotation plots under chisel plow system having subsurface drainage ‘tile’ system installed in 1979. The soils at the site are glacial till derived soils. The N-application rates of 168 kg-N ha?1 were applied to corn only for both the treatments each replicated three times in a randomized complete block design. For combined 5 years, the LCD N-applicator in comparison with spoke injector showed lower flow weighted NO3–N concentrations in tile water (16.8 vs. 20.1 mg L?1) from corn plots, greater tile flow (66 vs. 49 mm), almost equivalent NO3–N leaching loss with tile water (11.5 vs. 11.3 kg-N ha?1) and similar corn grain yields (11.17 vs. 11.37 Mg ha?1), respectively, although treatments effects were found to be non-significant (p?=?0.05) statistically. The analysis, however, revealed that amount and temporal distribution of the growing season precipitation also affected the tile flow, NO3–N leaching loss to subsurface drain water, and corn–soybean yields. Moreover, the spatial variability effects from plot to plot in some cases, resulted in differences of tile flow and NO3–N leaching losses in the range of three to four times despite being treated with the same management practices. These results indicate that the LCD N-applicator in comparison with spoke injector resulted in lower flow weighted NO3–N concentrations in subsurface drain water of corn plots; however, strategies need to be developed to reduce the offsite transport of nitrate leaching losses during early spring period from March through June.  相似文献   

5.
Abstract. A lysimeter study from April 1993 to June 1997 assessed the effects of winter cover crops and unfertilized grass on both the volume of water draining over winter and the amounts of nitrate leached. There were three to five replicates of each treatment in a fully randomized design. The lysimeters were undisturbed monoliths of loamy medium sand, 1.2 m deep and 0.8 m diameter. There were six treatments: sown cover before spring-sown crops (SC), natural regeneration (‘tumbledown’) before spring-sown crops (T), unfertilized grass (UG), bare soil permanent fallow, (PF), winter barley (WB) and conventional overwinter fallow before spring-sown crops (WF). Sugarbeet replaced cereals in 1996 as a disease break, and in consequence no cover was established in SC and T in autumn 1996. Of the four years of the study, two were above-average rainfall, while two were of less than average rainfall. Results are only quoted if statistically significantly different from WB (P=0.10). Over the first winter, NO3―N losses were similar under UG (26 kg ha?1) and PF (29 kg ha?1), due to the slow establishment and growth of the grass. In the following three winters NO3―N losses under UG were small (c. 6 kg ha?1), giving an overall mean of c. 11 kg ha?1. Sown cover crops and T gave means of c. 16 and 22 kg ha?1 respectively, compared with c. 27–31 kg ha?1 under PF, WB and WF. Mean NO3―N concentrations were smallest under UG (4.4 mg l?1) and SC (10.6 mg l?1), although both T (13.7 mg l?1) and PF (12.4 mg l?1) were less than under WB and WF (15.8–18.7 mg l?1). Overwinter drainage was greatest from UG and PF, at 239 and 247 mm respectively. In the three winters that cover crops were grown, drainage was decreased by, on average, 30 mm year?1 compared with WF. However, there were large differences in effects between years, with significant decreases in only one year. We conclude that the widespread adoption of cover crops before spring-sown crops will reduce overwinter drainage in UK Nitrate Vulnerable Zones by no more than c. 2%, compared with no cover before spring-sown crops.  相似文献   

6.
Outwintering beef cattle on woodchip corrals offers stock management, economic and welfare benefits when compared with overwintering in open fields or indoors. A trial was set up on a loamy sand over sand soil to evaluate the pollution risks from corrals and the effect of design features (size and depth of woodchips, stocking density, and feeding on or off the corral). Plastic‐lined drainage trenches at 9–10 m spacing under the woodchips allowed sampling of the leachate. Sampling of the soil to 3.6 m below the corral allowed evaluation of pollutant mitigation during vadose zone transport. Mean corral leachate pollutant concentrations were 443–1056 mg NH4‐N L?1, 372–1078 mg dissolved organic carbon (DOC) L?1, 3–13 mg NO3‐N L?1, 8 × 104–1.0 × 106Escherichia coli 100 mL?1 and 2.8 × 102–1.4 × 103 faecal enterococci 100 mL?1. Little influence of design features could be observed. DOC, NH4 and (in most cases) E. coli and faecal enterococci concentrations decreased 102–103 fold when compared with corral leachate during transport to 3.6 m but there were some cores where faecal enterococci concentrations remained high throughout the profile. Travel times of pollutants (39–113 days) were estimated assuming vertical percolation, piston displacement at field moisture content and no adsorption. This allowed decay/die‐off kinetics in the soil to be estimated (0.009–0.044 day?1 for DOC, 0.014–0.045 day?1 for E. coli and 0–0.022 day?1 for faecal enterococci). The mean [NO3‐N] in pore water from the soil cores (n = 3 per corral) ranged from 114 ± 52 to 404 ± 54 mg NO3‐N L?1, when compared with 59 ± 15 mg NO3‐N L?1 from a field overwintering area and 47 ± 40 mg NO3‐N L?1 under a permanent feeding area. However, modelling suggested that denitrification losses in the soil profile increased with stocking density so nitrate leaching losses per animal may be smaller under corrals than for other overwintering methods. Nitrous oxide, carbon dioxide and methane fluxes (measured on one occasion from one corral) were 5–110 g N ha?1 day?1, 3–23 kg C ha?1 day?1, and 5–340 g C ha?1 day?1 respectively. Ammonia content of air extracted from above the woodchips was 0.7–3.5 mg NH4‐N m?3.  相似文献   

7.
Nitrate leaching from short-rotation coppice   总被引:1,自引:0,他引:1  
In the UK, short‐rotation coppice (SRC) is expected to become a significant source of ‘bio‐energy’ over the next few years. Thus, it is important to establish how nitrate leaching losses compare with conventional arable cropping, especially if SRC is grown in Nitrate Vulnerable Zones. Nitrate leaching was measured using porous ceramic cups in each of the three phases in the lifespan of SRC, establishment, harvest and removal and was compared with conventional arable cropping. Nitrogen concentrations were increased in drainage water as soon as the crop cover was destroyed to plant the SRC (peak 70 mg L?1 nitrate‐N) and increased further (peak 134 mg L?1 nitrate‐N) on cultivation. Once the coppice crop was established, concentrations returned to a smaller level (average 18 mg L?1 nitrate‐N). Concentrations were not affected by the harvesting operation, and annual applications of nitrogen (40, 60 and 100 kg ha?1 N in the first, second and third years, respectively) had little effect. By contrast, concentrations in the arable rotation showed a regular pattern of increase in the autumn, and the average peak value over the 4 years was 54 mg L?1 nitrate‐N. When the SRC was ‘grubbed up’ and roots removed, the soil disturbance resulted in a flush of mineralization which, combined with a lack of crop cover, led to increased nitrate‐N in leachate (peak 67 mg L?1 nitrate‐N). In a normal life‐span of SRC (15–30 years), the relatively large nitrate losses on establishment and at final grubbing up would be offset by small losses during the productive harvest phase, especially when compared with results under the arable rotation.  相似文献   

8.
Denitrification loss from a loam under a cut ryegrass sward receiving 0, 250 and 500 kg N ha?1 a?1 in four equal amounts was measured during 14 months using the acetylene-inhibition technique. The rate of denitrification responded rapidly to changes in soil water content as affected by rain. Mean rates of denitrification exceeded 0.2 kg N ha?1 day?1 only when the soil water content was >20% (w/w) and nitrate was >5μ N g?1 in the upper 20 cm of the profile and when soil temperature at 2 cm was >5–8°C. When the soil dried to a water content <20%, denitrification decreased to <0.05 kg N ha?1 day?1. Highest rates (up to 2.0 kg N ha?1 day?1) were observed following application of fertilizer to soil at a water content of about 30% (w/w) in early spring. Denitrification in the control plot during this period was generally about a hundredth of that in plots treated with ammonium nitrate. High rates of N2O loss (up to 0.30 kg N ha?1 day-1) were invariably associated with high rates of denitrification (> 0.2 kg N ha?1 day?1). However, within 2–3 weeks following application of fertilizer to the plot receiving 250 kg N ha?1 a?1 the soil acted as a sink for atmospheric N2O when its water content was >20% and its temperature >5–8°C. Annual N losses arising from denitrification were 1.6, 11.1 and 29.1 kg N ha?1 for the plots receiving 0, 250 and 500 kg N ha?1 a?1, respectively. More than 60% of the annual loss occurred during a period of 8 weeks when fertilizer was applied to soil with a water content >20%.  相似文献   

9.
Understanding the temporal distribution of NO3-N leaching losses from subsurface drained ‘tile’ fields as a function of climate and management practices can help develop strategies for its mitigation. A field study was conducted from 1999 through 2003 to investigate effects of the most vulnerable application of pig manure (fall application and chisel plow), safe application of pig manure (spring application and no-tillage) and common application of artificial nitrogen (UAN spring application and chisel plow) on NO3-N leaching losses to subsurface drainage water beneath corn (Zea mays L.)–soybean (Glycine max L.) rotation systems as a randomized complete block design. The N application rates averaged over five years ranged from 166 kg-N ha?1 for spring applied manure to 170 kg-N ha?1 for UAN and 172 kg-N ha?1 for fall applied manure. Tillage and nitrogen source effects on tile flow and NO3-N leaching losses were not significant (P?<?0.05). Fall applied manure with CP resulted in significantly greater corn grain yield (10.8 vs 10.4 Mg ha?1) compared with the spring manure-NT system. Corn plots with the spring applied manure-NT system gave relatively lower flow weighted NO3-N concentration of 13.2 mg l?1 in comparison to corn plots with fall manure-CP (21.6 mg l?1) and UAN-CP systems (15.9 mg l?1). Averaged across five years, about 60% of tile flow and NO3-N leaching losses exited the fields during March through May. Growing season precipitation and cycles of wet and dry years primarily controlled NO3-N leaching losses from tile drained fields. These results suggest that spring applied manure has potential to reduce NO3-N concentrations in subsurface drainage water and also strategies need to be developed to reduce early spring NO3-N leaching losses.  相似文献   

10.
Abstract. Nitrate leaching was measured over the eight drainage seasons spanning the nine years from 1990–1998 on the 157‐year old Broadbalk Experiment at Rothamsted, UK. The weather pattern of two dry, three wet and three dry years was the dominant factor controlling nitrogen (N) loss. Both the concentration of nitrate in the drainage waters and the amount of N leached increased with the amount of N applied, mostly because of long‐term, differential increases in soil organic matter and mineralization. On average, losses of N by leaching were 30 kg ha?1yr?1 when no more than the optimum N application was applied and were typical of amounts leached from arable land in the UK. Losses increased significantly in both amounts and as the percentage of N applied for supra‐optimal applications of N and from autumn‐applied farmyard manure (FYM). Extra spring‐applied fertilizer was very effective at increasing yields on plots given FYM in the autumn but at the expense of leaching losses three times those from optimum fertilizer N applications. Losses increased after potatoes because they left significant amounts of mineral N in the soil, and decreased after forage maize because it used applied N more effectively. Losses measured 120 years ago from identical treatments were 74% greater than current losses because of today's larger yields and more efficient varieties and management practices. Average concentrations of nitrate in drainage waters did not exceed the EU limit of 11.3 mg NO3‐N l?1 until supra‐optimal amounts of N fertilizer (>150–200 kg ha?1yr?1) were applied in spring or FYM was applied in autumn. However some drainage waters from all plots, even those that have not received fertilizer for >150 years, exceeded the limit when rain followed a dry summer and autumn. Nitrate leaching into waters will remain a problem for profitable arable farming in the drier parts of Eastern England and Europe despite increased N use efficiency.  相似文献   

11.
The objective of this work was to determine the fate of fertilizer nitrogen (labelled with nitrogen-15) applied to an undisturbed shallow soil overlying Chalk contained in 10 lysimeters (80 cm diameter, 135 cm deep). Measurements are reported of the nitrogen uptake by four spring barley crops and the rate and extent of leaching of nitrate beyond the roots. The crops were fertilized with 0, 80 or 120 kg N ha?1 in each of four years, but only the first application in 1977 was labelled with nitrogen ?15. Rainfall and irrigation approximated to the long-term average, but in two treatments dry or wet spring conditions were imposed for the 10 weeks after sowing the first crop in 1977. The dry matter and grain yields of the spring barley crops varied from year to year in the ranges 8.7–14.0 t ha?1 and 3.5–6.1 t ha?1 respectively. The total nitrogen harvested in the crop approximated to the amount of nitrogen applied in each year with an apparent recovery of fertilizer in the range 38–76%. The recovery of nitrogen derived from fertilizer (labelled with nitrogen-15) was 46–54% in the first crop and after 2 years rapidly declined to below 1%. The total amount of nitrogen-15 labelled fertilizer recovered in four barley crops was 49–57% of that applied. Mean annual nitrate concentrations in water draining from the base of the lysimeters were in the range 11.8–26.7 mg N 1?1 and did not differ significantly between nitrogen fertilizer treatments (0, 80 and 120 kg N ha?1 a?1). In all treatments nitrate concentrations varied considerably within each growing season, with a cycle of peaks and troughs. Annual losses of nitrate were in the range 39–128 kg N ha?1, and the mean annual losses over the 4 years varied between lysimeters from 65 to 83 kg N ha?1. Nitrogen-15 labelled nitrate was detected in the first drainage water collected in autumn following its spring application, 5 months earlier. Recovery of fertilizer-derived nitrogen in drainage water was greatest during the winter following the second barley crop, and was 3.4–3.7% of the nitrogen-15 applied. Over the 4 years of the experiment 6.3–6.6% of labelled fertilizer was accounted for in drainage water, representing 2–3% of the total nitrogen lost by leaching.  相似文献   

12.
Water balance and leaching of plant nutrients, with special reference to N, were described for a 46-ha catchment consisting mainly of coniferous forest (one third of it clear-cut) during the period January 1982-August 1988. The atmospheric N load in this region is high compared with most other parts of Scandinavia. On average, annual N leaching amounted to 9.5 kg ha?1 in the form of NO3-N (83%), org-N (15%) and NH4-N (2%). The highest monthly rate of N transport observed was 3.9 kg ha?1. The NO3-N levels in groundwater in the 60-yr-old coniferous stand ranged from 0.5 to 3.1 mg L?1. The effect of clear-cutting on groundwater-NO3-N levels lasted 4 yr. The highest annual NO3-N transport from the clear-cut area observed was 18 kg ha?1. The groundwater in the spruce forest was very acidic (pH=4.3) in contrast to the stream water (pH=6.3). The relatively higher pH-value of the stream water was probably a result of chemical and biological processes occurring in the highly humified, periodically waterlogged peat soil (alder swamp) in the vicinity of the small stream.  相似文献   

13.
Nitrate-N (NO3 ?-N) is a ubiquitous pollutant in both surface and groundwater in many agro-ecosystems. This has elicited a concerted effort to identify management strategies that mitigate NO3 ?–N pollution, without compromising crop yield. This study was conducted on a field site located at the Bio-Environmental Engineering Centre (BEEC) in Truro, NS, Canada during 1999 and 2000. The site has been used since 1997 to investigate the relative effect of inorganic versus organic fertilizer (liquid hog manure; LHM) applied at rates (70 kg N ha?1) on NO3 ?-N leaching from a carrot rotation system. NO3 ?-N concentrations were monitored in both the soil profile and in tile drainage effluents from eight treatment plots. The LHM treatment elicited significantly (P < 0.01) higher soil NO3 ?-N concentrations than inorganic fertilizer (IF) in June and October during 1999, but not 2000. The sampling date and soil depth were significant in most cases. Annual flow weighted averages (FWA) of NO3 ?-N in drainage water were generally greater for plots receiving LHM (15.4 and 10.5 mg L?1 for 1999 and 2000, respectively), when compared to IF (8.9 and 6.0 mg L?1 for 1999 and 2000, respectively), but the difference was significant (P < 0.05) only in 1999. Maximum NO3 ?-N concentrations in drainage water were similar for both treatments, while the LHM treatment had a significantly higher percentage of samples that were > 10 mg L?1. The total NO3 ?-N load was greater for the LHM treatment when compared to the IF treatment in 1999. Barley and carrot yields were unaffected by treatment applications.  相似文献   

14.
Fate of fertilizer nitrogen.   总被引:3,自引:0,他引:3  
Results are presented from a three year lysimeter investigation, employing single (15NH4NO3) and double (15NH415NO3) labelled ammonium nitrate to study the uptake of soil and fertilizer nitrogen by cut ryegrass at 250, 500 and 900 kg N ha?1 a?1. Average annual recoveries of nitrogen were equivalent to 99,76 and 50% of the nitrogen added at 250, 500 and 900 kg N ha?1, respectively. At 250 kg N ha?1 the difference between the overall nitrogen recovery and the fertilizer recovery was almost entirely attributable to pool substitution resulting from mineralization/immobilization turnover (MIT). At 900 kg N ha?1 both the low overall recovery of nitrogen and the low fertilizer recovery reflected the large excess of available nitrogen over crop requirements. No evidence of ‘priming’ was obtained. Analysis of the results from single and double labelled lysimeters using simultaneous equations indicated that at 250 kg N ha?1,~70% of the nitrogen in the crop was derived from the ammonium pool. At 500 kg N ha?1 this dropped to 64%, while at 900 kg N ha?1 the figure was 59%. There was a suggestion that at the lower application rates, preferential uptake of ammonium was occurring but that as N supply exceeded crop requirements, nitrate was the major N source. Despite the preferential exploitation of the ammonium pool, at 250 and 500 kg N ha?1 pool substitution resulting from MIT resulted in lower recoveries of fertilizer ammonium compared with fertilizer nitrate.  相似文献   

15.
Leaching losses of nitrogen (N), phosphorus (P) and potassium (K) from arable land can be high, with N and P contributing significantly to the eutrophication of lakes and coastal waters. This study examined whether agriculture management and drain repair changed the chemical properties of shallow groundwater and affected nutrient leaching in the field. The hydrology of a subsurface-drained agricultural observation field included in the Swedish water quality monitoring programme was simulated for the period 1976–2006 using the process-based, field-scale model DRAINMOD. On the assumption that the drainage system operated similarly before and after repair, 54% more water was assigned to low-moderate flow events. Measured concentrations of sulphate-sulphur (SO4-S), sodium (Na), chloride (Cl) and potassium (K) were significantly lower in shallow groundwater in the period before drainage system repair (1980–1998) than afterwards (1998–2010). The concentrations were also significantly correlated with the corresponding concentrations in near-simultaneously sampled drain water. A similar connection was not observed for Na and Cl in the period before drain repair. Elevated concentrations of nitrate-nitrogen (NO3-N) were recorded both in shallow groundwater and in drainage water from 1998 to 2010, especially after incorporation of chicken manure into the soil in 1998. Based on simulated discharge (assuming a functioning measuring station throughout), estimated flow-weighted mean NO3-N concentration in drainage water increased from 5.6 mg L?1 (1977–1998) to 15.7 mg L?1 in the period 1998–2000. Simultaneously, mean NO3-N concentration in shallow groundwater increased from 0.2 to 4.0 mg L?1, and then to 4.8 mg L?1 in the period 2000–2012. It was estimated that after drain repair, a greater proportion of infiltrated NO3-N entered the receiving stream directly via the outlet of the tile drainage system close to the field's monitoring station than was the case before repair.  相似文献   

16.
This study shows the effect of organic fertilizers at different stocking rates, on nitrogen (N) leaching, measured using zero-tension lysimeters under undisturbed grassland soil. The experiment included two organic fertilizer types – cow dung with dung water (D) and slurry (S), both at a range of stocking rates: 0.9 LU (livestock unit) ha?1, 1.4 LU ha?1, 2.0 LU ha?1 (corresponding to 54, 84 and 120 kg N ha?1, respectively) and a control (C) treatment. In percolated water, the contents of ammonia nitrogen (NH4+–N) and nitrate nitrogen (NO3?–N) were studied. The average concentration of NH4+–N ranged from 0.91 to 1.44 mg l?1 on fertilized plots compared to 0.55 mg l?1 on the control plot. The average concentration of NO3?–N ranged from 5.2 to 9.5 mg l?1 on fertilized plots compared to 3.2 mg l?1 on the control plot. The results of this study showed that the use of organic fertilizers at chosen stocking rates influenced N leaching, but the concentration of N did not exceed the limits for drinking water permitted by Czech legislation. Stocking rates at 2.0 LU ha?1 and below do not result in elevated N concentrations in percolated water that pose environmental threat.  相似文献   

17.
Nitrogen (N) balance method is a valuable tool for estimating N losses. However, this technique could lead to incorrect estimates of the amount of nitrate (NO3?N) leaching if processes relevant to N losses are not considered properly. The aim of this study was to compare NO3?-N leaching losses estimated using an N balance (nonrecovered N, Nne) with data of NO3?-N leaching losses (Nl). The experiment was made on a Typic Argiudoll soil planted with corn (five growing seasons) under 0, 100, and 200 kg N ha?1. The ceramic soil-water suction samplers were installed (1 m deep). Drainage was estimated by the LEACH-W model. The greatest overestimation with the N balance method occurred for years with annual rainfall below the historical average and at times of high NO3?-N availability. Future research should focus on investigating mechanisms of N losses relevant under limited water availability.  相似文献   

18.
Information on atmospheric inputs, water chemistry and hydrology were combined to evaluate elemental mass balances and assess temporal changes in elemental transport from 1983 through 1992 for the Arbutus Lake watershed. This watershed is located within a northern hardwood ecosystem at the Huntington Forest within the central Adirondack Mountains of New York (USA). Changes in water chemistry, including increasing NO3 ? concentrations (1.1 μmol c , L?1 yr-1), have been detected during this study period. Starting in 1991 hydrological flow has been measured from Arbutus Lake and these measurements were compared with predicted flow using the BROOK2 hydrological simulation model. The model adequately (r2=0.79) simulated flow from this catchment and was used to estimate drainage for earlier periods when direct hydrological measurements were not available. Modeled drainage water losses coupled with estimates of wet and dry atmospheric deposition were used to calculate solute budgets. Export of SO4 2? (831 mol c ha?1 yr?1) from the greater Arbutus Lake watershed exceeded estimates of atmospheric deposition in an adjacent hardwood stand suggesting an additional source of S. These large drainage losses of SO4 2? also contributed to the drainage fluxes of basic cations (Ca2+, Mg2+, K+ and Na+). Most of the atmospheric inputs of inorganic N were retained (average of 74% of wet precipitation and 85% total deposition) in the watershed. There were differences among years (56 to 228 mol ha?1 yr?1) in drainage water losses of N with greatest losses occurring during a warm, wet period (1989–1991).  相似文献   

19.
Results are presented from a 3 year investigation into nitrate leaching from isolated 0.4 ha grassland plots fertilized with 250, 500 and 900 kg N ha?1 a?1. Cumulative nitrate leaching over the 3 years was equivalent to 1.5%, 5.4% and 16.7% of the fertilizer applied at 250, 500 and 900 kg N ha?1 rates respectively. Over a whole drainage season, mean nitrate leachate concentrations at 250 kg N ha?1 did not exceed 4 mgl?1, although maximum values of 13.3 mgl?1 were observed. In contrast, at 900 kg N ha?1, the mean nitrate leachate concentration in two of the years exceeded 90 mgl?1. Mineral nitrogen balances constructed for the 1979 growing season indicated that leaching at 250 kg N ha?1 was low because net mineralization of soil organic nitrogen was small, and crop nitrogen uptake almost balanced fertilizer application. Although the pattern of nitrate leaching suggested that by-passing occurred in the movement of water down the soil profile, it was not possible to confirm this using simulation models of leaching. Possible reasons for this, including the occurrence of rapid water flow down gravitationally drained macropores, are discussed.  相似文献   

20.
中国太湖地区稻麦轮作农田硝态氮动态与氮素平衡   总被引:1,自引:0,他引:1  
Nitrate-nitrogen (NO 3--N) dynamics and nitrogen (N) budgets in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) rotations in the Taihu Lake region of China were studied to compare the effects of N fertilizer management over a two-year period. The experiment included four N rates for rice and wheat, respectively: N1 (125 and 94 kg N ha-1 ), N2 (225 and 169 kg N ha-1 ), N3 (325 and 244 kg N ha-1 ), and N0 (0 kg N ha-1 ). The results showed that an overlying water layer during the rice growing seasons contributed to moderate concentrations of NO 3--N in sampled waters and the concentrations of NO 3--N only showed a rising trend during the field drying stage. The NO 3--N concentrations in leachates during the wheat seasons were much higher than those during the rice seasons, particularly in the wheat seedling stage. In the wheat seedling stage, the NO 3--N concentrations of leachates were significantly higher in N treatments than in N0 treatment and increased with increasing N rates. As the NO 3--N content (below 2 mg N L-1 ) at a depth of 80 cm during the rice-wheat rotations did not respond to the applied N rates, the high levels of NO 3--N in the groundwater of paddy fields might not be directly related to NO 3--N leaching. Crop growth trends were closely related to variations of NO 3--N in leachates. A reduction in N application rate, especially in the earlier stages of crop growth, and synchronization of the peak of N uptake by the crop with N fertilizer application are key measures to reduce N loss. Above-ground biomass for rice and wheat increased significantly with increasing N rate, but there was no significant difference between N2 and N3. Increasing N rates to the levels greater than N2 not only decreased N use efficiency, but also significantly increased N loss. After two cycles of rice-wheat rotations, the apparent N losses of N1, N2 and N3 amounted to 234, 366 and 579 kg N ha-1 , respectively. With an increase of N rate from N0 to N3, the percentage of N uptake in total N inputs decreased from 63.9% to 46.9%. The apparent N losses during the rice seasons were higher than those during the wheat seasons and were related to precipitation; therefore, the application of fertilizer should take into account climate conditions and avoid application before heavy rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号