共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
3.
及时并准确地估计作物产量,对保障粮食安全、维护世界粮食供应稳定具有重要意义。此前,已有许多研究者使用机器学习方法对作物产量预估进行研究。然而,结合作物的空间分布、使用局部模型进行分析的研究较少;且诸多研究均以年份为时间尺度进行建模,未能精细到作物生长的各个阶段,无法实现作物产量的早期预测。针对以上问题,该研究结合多源遥感数据,利用随机森林(random forest,RF)以及地理加权随机森林(geographically weighted random forest regression,GWRFR)模型对美国县级玉米产量进行建模,探讨全局与局部模型在玉米产量预测方面的性能;并通过将GWRFR模型应用于玉米的各个物候期,获取了玉米产量的最佳提前预测时间。结果表明,GWRFR局部模型的精度(
4.
基于多源遥感数据融合和LSTM算法的作物分类研究 总被引:1,自引:6,他引:1
准确、及时地获取农作物的空间分布信息,对于指导农业生产、制定农业政策具有重要意义。为了检验长短时记忆网络(long short-term memory,LSTM)算法在基于时序遥感数据进行作物分类中的优势,该文以临汾盆地为研究区域,利用Savitzky-Golay滤波对MODIS NDVI进行平滑处理,并采用ESTARFM(enhanced spatial and temporal adaptive reflectance fusion model)算法对滤波后的MODIS NDVI和Landsat NDVI进行融合,生成空间分辨率为30 m、时间分辨率为8天的时序NDVI。基于Landsat NDVI利用LSTM算法进行作物分类,同时,基于融合NDVI分别利用LSTM算法和神经网络(neuralnetwork,NN)算法进行作物分类,并对比3种方法的分类精度。结果表明,Savitzky-Golay滤波后的时序MODISNDVI能够反映不同作物的物候特征;基于融合NDVI的分类精度明显高于基于LandsatNDVI的分类精度,表明融合后的时序NDVI由于具有更高的时间分辨率,能够更加突出不同作物的物候特征,显著提高作物分类精度;基于融合NDVI和LSTM算法的分类精度高于基于融合NDVI和NN算法的分类精度,前者的冬小麦面积估测精度高于后者的估测精度,表明LSTM算法的分类精度高于NN算法。该文可为基于遥感影像进行不同作物种植区域提取的研究提供重要的方法参考。 相似文献
5.
田块尺度上的农田土壤Cd污染分布不均匀性 总被引:3,自引:0,他引:3
长江三角洲地区存在田块尺度上农田土壤Cd污染分布不均匀的现象。相关土壤环境地球化学调查结果显示,当土壤Cd1.0 mg.kg~(–1)时,其田块中土壤Cd分布存在显著空间差异性。在一块面积不足0.13 hm~2的田块内土壤Cd含量最大可相差几十倍,且同时存在轻度、中度、重度污染。长条状田块土壤中Cd污染分布有近似的指数衰减趋势,距离源头最近地段土壤Cd污染最严重。旱地较水田土壤中Cd污染分布更不均匀。Cd污染分布不均匀主要表现在田块的水平方向上,在田块土壤垂直方向上Cd污染主要聚集在表层20cm以上土层。与Cd相反,Cu、Pb、Zn、As、Cr等重金属在田块土壤中则以相对均匀分布为主。微地貌的差异、人工干扰不均衡等是导致田块土壤Cd污染分布不均匀的主要原因。 相似文献
6.
7.
8.
以长年连作的南疆棉田土壤含水量为研究对象,利用带有内置光源的SR-3500型便携式地物光谱仪研究了不同S-G平滑参数、数据组合对土壤水分预测精度的影响。结果表明:SR-3500型便携式地物光谱仪的土壤反射率光谱对含水量有着很好的响应;通过采用21窗格、2次S-G平滑能够使土壤含水量预测精度有所提高;引入实验室配置含水量土样数据与原位数据结合,使模型既有较好的泛化能力又能保证模型精度(R2=0.84,RMSE=22.34 g kg-1,MAPE=15.38%);对定量模型精度的评价指标决定系数(R2)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)进行比较,认为MAPE能够更全面地评价模型综合性能。 相似文献
9.
北京市参考作物蒸散量的时空分布特征 总被引:22,自引:9,他引:22
利用北京市各气象站点的长期观测资料,使用FAO推荐的Penman-Monteith法,计算了各站点逐月参考作物蒸散量ET0。在此基础上使用插值生成ET0的灰度分布图与等值线图,分析了ET0的时空分布特征。研究结果发现,北京市ET0分布具有2个常年稳定的低蒸发中心及多个随季节变化的高蒸发中心。区域内海拔高度与地形变化造成地表温度和热量平衡变化是导致ET0时空变化特征的主导因素;风速、日照时数和相对湿度等气象因素及其综合作用对ET0也有较大的影响。 相似文献
10.
作物分类和时空变化监测信息可以为农业管理提供依据,多年作物种植结构图反映了作物种植方式的变化,对经济和社会分析起着重要作用。然而,用于绘制作物分布图的卫星影像不能同时具有高时间高空间分辨率,在提取作物种类复杂多样地区的种植结构图时,往往难以提供足够的作物生长周期内影像。该研究提出了一种既经济又高效的解决方案,即利用重复周期短的环境一号CCD(HuanJing-1 Charge-Coupled Device,HJ-1 CCD)图像和免费Landsat-8图像来提取中国监利县的作物种植区时空变化图。根据NDVI时间序列曲线定义了不同作物生育期物候指标例如归一化植被指数(Normalized Difference Vegetation Index,NDVI)的最大值、日期和天数等,用于作物分类。为了获取物候指标的阈值,首先从15m Landsat-8影像中提取典型种植区,然后利用典型种植区作物生长阶段NDVI时间序列曲线,得到物候指标中的NDVI阈值和时间阈值,再根据这些阈值制定了分类规则,并获得了2009-2016年作物分布图。根据多年主要作物分布图,分析不同作物的土地利用变化。最后利用高空间分辨率卫星图像和监利县统计年鉴中的作物面积数据对作物分类结果进行精度评估。与高空间分辨率图像相比,平均分类精度为84%,与统计作物面积数据相比,分类精度达到81.60%。结果表明,该研究为在像监利县这样复杂地区进行常规的作物分布制图提供了一种可行的分类方法。通过对夏收作物的时空动态变化分析可以发现,油菜农业机械化水平低、劳动力成本高,导致愿意种植油菜的农民较少。对于秋收作物,政府设定了中稻最低收购价标准,大大降低了农民种植中稻的风险,对农民种植秋收作物具有指导作用。 相似文献
11.
棉花叶面积指数(leaf are index, LAI)的快速、准确获取对棉花长势监测、发育期诊断、面积提取以及产量估算等遥感监测具有重要意义。该研究利用2017年和2018年的Sentinel-2多光谱卫星数据及大面积田间试验观测获取的棉花不同发育期LAI实测数据,构建了基于单波段反射率及各类植被指数的棉花不同发育期及全发育期LAI估算模型,并采用留一验证(LOOCV, leave-one-out cross validation)和交叉验证对模型精度进行了检验。结果表明:1)对于单波段反射率,基于中心波长为842 nm波宽为145 nm的B8近红外波段对不同发育期LAI估算精度最优均方根误差(RMSE, root mean square error, RMSE=0.378);2)对于各类植被指数,花蕾期(20170616)和花铃期(20170802)时增强植被指数(EVI, enhanced vegetation index,)表现最佳(RMSE分别为0.352和0.367),开花期(20180623)时校正土壤调节植被指数(MSAVI2, modified soil adjusted vegetation index 2,)估算精度最高(RMSE=0.323);3)单波段反射率和各类植被指数对全发育期LAI的估算均要优于对单个发育期LAI的估算,其中基于IRECI指数的(inverted red-edge chlorophyll index)全发育期LAI估算模型精度最佳,LOOCV检验RMSE=0.425,交叉检验RMSE=0.368;将基于IRECI的全发育期LAI估算模型应用到单个发育期LAI估算并与各单个发育期LAI估算模型精度对比,发现交叉验证RMSE平均值仅比LOOCV验证RMSE平均值高0.07,反映了全发育期LAI估算模型良好的普适性。该研究为农作物LAI估算提供了新的数据选择,完善了Sentinel-2卫星数据在LAI估算中的应用领域。 相似文献
12.
开展粮食作物监测对于国家粮食安全具有重要意义。在传统像元尺度下,利用单一遥感数据进行粮食作物监测,识别精度往往较低,提取的作物地块破碎,难以满足应用需求。为此,该研究以山东省青岛市黄岛区为研究区,提出了一套地块尺度下综合多源卫星遥感数据(包括高分辨率数据、多时相数据、高光谱数据)与土地利用调查矢量数据的粮食作物信息识别方法。首先,对高分辨率数据进行分割获取耕地地块矢量数据;其次,基于多源卫星遥感数据提取地块级时空谱特征;再次,利用样本数据计算特征类间可分性,并进行特征优选;最后,构建基于二次多项式支持向量机的主要粮食作物(春玉米)识别方法。结果表明:1)该研究所提的方法可以有效进行粮食作物信息识别,基于地块数统计的识别精度为89.7%;2)利用光谱特征、植被指数、纹理特征组合得到的识别结果精度最优,基于像元数统计的精度为97.1%,与传统方法相比提高了24.2个百分点,且提取的地块信息更完整。该研究成果可支持粮食作物种植用地的调查与监测,也可为耕地非粮化时空演变与分析提供新的思路。 相似文献
13.
基于GF-1卫星数据的农作物种植面积遥感抽样调查方法 总被引:8,自引:7,他引:8
GF-1号卫星是中国2013年4月26日发射的一颗高分辨率遥感卫星,为解决该新型卫星数据在农作物对地抽样遥感调查中的应用技术方法问题,该文针对GF-1号卫星数据的特点,研究了基于GF-1号卫星16m WFV传感器和2m/8m PMS传感器卫星数据的农作物种植面积遥感抽样调查方法。根据研究区物候历,选择农作物识别关键期的16m WFV传感器数据进行多时相农作物种植面积的中分辨率遥感提取;在中分辨率农作物面积遥感分类图基础上,计算研究区域的MORAN I指数,确定格网抽样单元的大小,进行多目标农作物的MPPS(multivariate probability proportional to size)抽样;对抽样单元采用2m/8 m PMS传感器卫星数据进行高分辨率农作物面积制图;最后根据MPPS抽样方法进行总体农作物种植面积的推断,并计算CV值,评价抽样精度。以江苏省东台市为研究区对GF-1号卫星数据进行了应用研究。研究结果表明,GF-1号卫星数据完全可以应用于县级农作物种植面积的提取,农作物种植面积提取精度优于90%。 相似文献
14.
为实现高时空分辨率的作物渍害空间分布信息的提取,该研究以夏收作物受渍害最严重的湖北省监利市的夏收作物为研究对象,通过水云模型,结合Sentinel-1A SAR数据,提取了12 d间隔的监利市土壤表层相对体积含水量空间分布,再以每天的前期降水指数视作具有一定误差的观察数据,运用卡尔曼滤波插值方法,实现了以天为单位监利市2018年至2020年每年1-4月夏收作物区土壤表层相对体积含水量空间分布信息的提取,经220hm2试验区的土壤湿度数据验证,其Nash-Stucliffe效率系数为0.909;结合夏收作物渍害的判别标准,获取了监利市夏收作物同期的渍害时空分布信息,与试验区观测的结果相似;同时通过对计算结果数据的分析,发现前期降水指数与该指数下所有的夏收作物受渍农田比例(受渍农田面积与监利夏收作物总面积比率)的最大值有明显的二次多项式关系。由于Sentinel-1A SAR数据不受云层干扰,可以全天候获取,前期降水指数可用气象台站数据计算,这种作物渍害高时空分辨率监测的方法可实现渍害监测。 相似文献
15.
基于作物生长模型和遥感数据同化的区域玉米产量估算 总被引:4,自引:7,他引:4
为了将遥感观测到的玉米生长期间作物冠层方向反射波谱的时间序列变化信息用于区域玉米产量估算,该文将时间序列中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)数据和高空间分辨率LandsatTM遥感观测数据相结合,以叶面积指数(LAI)作为耦合作物生长模型(crop environment resource synthesis-Maize,CERES-Maize)和植被冠层反射率模型(scattering by arbitrarily inclined leaves,SAIL)的关键参数,提出了将耦合模型与时间序列遥感观测数据同化进行区域玉米产量估算的方案。该文选择吉林省榆树市为研究区,采用MODIS和LandsatTM2种尺度数据集,利用SCE-UA(shuffled complex evolution method developed at the University of Arizona)算法分别进行玉米产量同化估产研究,得到玉米单产空间分布的估计结果,结合遥感估算的种植面积求算榆树市玉米总产量。结果表明,与玉米统计总产量相比,2007、2008和2009年遥感数据同化估算的总产量误差分别为9.15%、14.99%和8.97%;与仅利用CERES-Maize模型模拟得到的产量误差相比,3a间遥感估算总产量的误差分别减小了7.49%、1.21%和5.23%,且采用MODIS和TM遥感数据估算的玉米产量表现了其空间差异性。利用榆树市3a间玉米产量的明显差异,分析了时序遥感数据对作物长势和产量变化信息的表达能力,同年份内时序归一化差值植被指数越大,对应的玉米产量越高;年际间遥感观测反射率的差异通过数据同化方法能够反映年际间玉米产量差的变化。该文提出的玉米估产方案为将来进一步结合多源遥感数据、植被冠层反射率模型与作物生长模型进行区域玉米估产研究提供了参考。 相似文献
16.
粒子滤波同化方法在CERES-Wheat作物模型估产中的应用 总被引:3,自引:5,他引:3
为验证粒子滤波同化算法在作物模型估产应用中的可行性和精度,应用该算法构建了CERES-Wheat(crop environment resource synthesis for wheat)作物模型同化系统,并应用地面观测数据研究了同化系统的估产能力以及粒子扰动维数和方差对同化结果和效率的影响。研究结果表明,构建的作物模型同化系统能够利用作物关键生育期内观测LAI数据,较好地校正模型状态轨迹,显著提高作物产量模拟预测精度。同化前后冬小麦产量模拟结果与实测产量间的决定系数由0.68增加为0.83,归一化均方根误差由4.93%减小为3.4%,相对误差由4.15%减小为2.93%。粒子扰动维数和方差同化试验结果显示,粒子维数由50增加为250时,同化估产精度无显著改善,但计算代价增加5倍;随粒子扰动方差增加,估产归一化均方根误差和相对误差均呈增加趋势,两者的平均增加幅度分别为0.32%和0.26%。因此,作物模型同化系统业务化应用时需折中考虑估产精度和计算代价设置合适的粒子扰动维数和方差。该文为进一步利用多源卫星遥感数据监测区域作物长势和估算产量等同化研究和应用提供参考。 相似文献
17.
利用多时相Sentinel-1 SAR数据反演农田地表土壤水分 总被引:7,自引:5,他引:7
土壤水分是陆面生态系统水分和能量循环的重要变量,在农田干旱监测、作物长势监测和作物估产等应用研究中具有重要的作用。该文结合基于变化检测的Alpha近似模型,利用Sentinel-1卫星获取的多时相C波段合成孔径雷达(synthetic aperture radar,SAR)数据,实现了农田地表土壤水分的反演。该文首先利用微波辐射传输模型验证了Alpha近似模型在土壤水分反演中的合理性。研究发现,对于土壤散射占主导的区域,Alpha近似模型对辐射传输模型有较好的近似,能够有效地消除地表粗糙度和植被对雷达后向散射系数的影响。在此基础上,结合怀来研究区多时相Sentinel-1 SAR数据,利用Alpha近似模型构建了土壤水分观测方程组,通过求解方程组得到了农田地表土壤水分。地面验证结果表明,土壤水分反演的均方根误差(root mean square error,RMSE)为0.06 cm3/cm3,平均偏差为0.01 cm3/cm3,精度较好。该文研究为利用高重访周期、多时相的Sentinel-1 SAR数据获取农田地表土壤水分提供了参考。 相似文献
18.
基于SPOT-VGT NDVI时间序列的农牧交错带植被物候监测 总被引:7,自引:5,他引:7
为了分析中国农牧交错带植被典型物候期(生长开始日期,生长结束日期和生长季长度)的变化趋势,利用2001-2010年SPOT-VGT NDVI(SPOT-VEGETATION normalized differential vegetation index)数据,基于Savitzky—Golay滤波和动态阈值法,提取了中国北方农牧交错带植被物候期,探讨研究区植被物候期的空间差异和时间变化。研究表明,农牧交错带植被的生长季一般从4月中旬到5月下旬开始,9月下旬至10月下旬结束;从西南部到东北部,植被物候表现出明显的空间差异;农田植被物候期与自然植被略有不同;对研究区10a物候期线性拟合,得出研究区大部分植被覆盖区域生长季开始日期呈现提前趋势,提前日期大约为1~10d左右;除部分地区外,2001-2010年农牧交错带植被生长季结束日期没有明显变化趋势;10a间研究区大部分草地生长季延长,也有一部分地区的生长季出现缩短趋势。研究提取结果与已有的相关研究结果较为一致,可为农牧交错带生态环境评价和保护提供一定的参考。 相似文献