首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the extent of osmotic adjustment and the changes in relative water content (RWC) and transpiration rate (i.e., relative stomatal function) that occur in water-deficit-conditioned 6-year-old Thuja occidentalis L. (eastern white cedar) trees in response to a severe drought. Trees conditioned by successive cycles of mild or moderate nonlethal water stress (conditioning) and nonconditioned trees were exposed to drought (i.e., -2.0 MPa predawn water potential) to determine if water deficit conditioning enhanced tolerance to further drought stress. Following drought, all trees were well watered for 11 days to evaluate how quickly osmotic potential, RWC and transpiration rate returned to preconditioning values. Both nonconditioned trees and mildly conditioned trees exhibited similar responses to drought, whereas moderately conditioned trees maintained higher water potentials and transpiration rates were 38% lower. Both conditioned and nonconditioned trees exhibited a similar degree of osmotic adjustment (-0.39 MPa) in response to drought relative to the well-watered control trees. The well-watered control trees, nonconditioned trees and mildly conditioned trees had similar leaf RWCs that were about 3% lower than those of the moderately conditioned trees. Following the 11-day stress relief, there were no significant differences in osmotic potential between the well-watered control trees and any of the drought-treated trees. Daily transpiration rates and water potential integrals (WPI) of all drought-treated trees approached those of the well-watered control trees during the stress relief period. However, the relationship between cumulative transpiration and WPI showed that previous exposure to drought stress reduced transpiration rates. Leaf RWC of the moderately conditioned trees remained slightly higher than that of the nonconditioned and mildly conditioned trees.  相似文献   

2.
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.  相似文献   

3.
Field measurements were made of leaf photosynthesis (A), stomatal conductance (g) and leaf water relations for sugar maple (Acer saccharum Marsh.) seedlings growing in a forest understory, small gap or large clearing habitat in southwestern Wisconsin, USA. Predawn water status, leaf gas exchange and plasticity in field and laboratory water relations characteristics were compared among contrasting light environments in a wet year (1987) and a dry year (1988) to evaluate possible interactions between light and water availability in these habitats. Leaf water potentials (Psi(leaf)) at predawn and midday were lower for clearing than gap or understory seedlings. Acclimation of tissue osmotic potentials to light environment was observed among habitats but did not occur within any of the habitats in response to prolonged drought. During a summer drought in 1988, decreases in daily maximum g (g(max)) and maximum A (A(max)) in clearing seedlings were correlated with predawn Psi(leaf), which reached a seasonal minimum of -2.0 MPa. Under well-watered conditions, diurnal fluctuations in Psi(leaf) of up to 2.0 MPa in clearing seedlings occurred along with large midday depressions of A and g. In a wet year, strong stomatal responses to leaf-to-air vapor pressure difference (VPD) in sunny habitats were observed over nine diurnal courses of gas exchange measurements on seedlings in a gap and a clearing. Increasing stomatal limitations to photosynthesis appeared to be responsible for the reduction in A at high VPD for clearing seedlings. In understory seedlings, however, low water-use efficiency and development of leaf water deficits in sunflecks was related to reduced stomatal limitations to photosynthesis relative to seedlings in sunny habitats. Predawn Psi(leaf) and VPD appear to be important factors limiting carbon assimilation in sugar maple seedlings in light-saturating irradiances, primarily through stomatal closure. The overall results are consistent with the idea that sugar maple seedlings exhibit "conservative" water use patterns and have low drought tolerance. Leaf water relations and patterns of water use should be considered in studies of acclimation and species photosynthetic performance in contrasting light environments.  相似文献   

4.
Leaf growth, rate of leaf photosynthesis and tissue water relations of shoots of Eucalyptus marginata Donn ex Sm. (jarrah) seedlings were studied during a soil drying and rewatering cycle in a greenhouse experiment. Rates of leaf growth and photosynthesis were sensitive to water deficits. The rate of leaf growth decreased linearly with predawn leaf water potential to reach zero at -1.5 MPa. Rate of leaf growth did not recover completely within the first three days after rewatering. Midday photosynthetic rates declined to 40% of those of well-watered seedlings at a predawn leaf water potential of -1.0 MPa and reached zero at -2.2 MPa. Photosynthetic rate recovered rapidly following rewatering and almost fully recovered by the second day after rewatering. All tissue water relations parameters, except the bulk modulus of elasticity, changed significantly as the soil dried and recovered completely by the third day after rewatering. Changes in osmotic pressure at full turgor of 0.4 MPa indicated considerable capacity for osmotic adjustment. However, because there was little osmotic adjustment until predawn leaf water potential fell below -1.5 MPa, this capacity would not have enhanced seedling growth, although it may have increased seedling survival. The sensitivity of photosynthesis and relative water content to water deficits suggests that greenhouse-grown E. marginata seedlings behave like mesophytic plants, even though E. marginata seedlings naturally grow in a drought-prone environment.  相似文献   

5.
Components of dehydration tolerance, including osmotic potential at full turgor (Psi(pio)) and osmotic adjustment (lowering of Psi(pio)), of several deciduous species were investigated in a mature, upland oak forest in eastern Tennessee. Beginning July 1993, the trees were subjected to one of three throughfall precipitation treatments: ambient, ambient minus 33% (dry treatment), and ambient plus 33% (wet treatment). During the dry 1995 growing season, leaf water potentials of all species declined to between -2.5 and -3.1 MPa in the dry treatment. There was considerable variation in Psi(pio) among species (-1.0 to -2.0 MPa). Based on Psi(pio) values, American beech (Fagus grandifolia Ehrh.), dogwood (Cornus florida L.), and sugar maple (Acer saccharum Marsh.) were least dehydration tolerant, red maple (A. rubrum L.) was intermediate in tolerance, and white oak (Quercus alba L.) and chestnut oak (Quercus prinus L.) were most tolerant. During severe drought, overstory chestnut oak and understory dogwood, red maple and chestnut oak displayed osmotic adjustment (-0.12 to -0.20 MPa) in the dry treatment relative to the wet treatment. (No osmotic adjustment was evident in understory red maple and chestnut oak during the previous wet year.) Osmotic potential at full turgor was generally correlated with leaf water potential, with both declining over the growing season, especially in species that displayed osmotic adjustment. However, osmotic adjustment was not restricted to species considered dehydration tolerant; for example, dogwood typically maintained high Psi(pio) and displayed osmotic adjustment to drought, but had the highest mortality rates of the species studied. Understory saplings tended to have higher Psi(pio) than overstory trees when water availability was high, but Psi(pio) of understory trees declined to values observed for overstory trees during severe drought. We conclude that Psi(pio) varies among deciduous hardwood species and is dependent on canopy position and soil water potential in the rooting zone.  相似文献   

6.
Ladjal M  Huc R  Ducrey M 《Tree physiology》2005,25(9):1109-1117
We studied hydraulic traits of young plants of the Mediterranean cedar species Cedrus atlantica (Endl.) G. Manetti ex Carrière (Luberon, France), C. brevifolia (Hook. f.) Henry (Cyprus), C. libani A. Rich (Hadeth El Jebbe, Lebanon) and C. libani (Armut Alani, Turkey). With an optimum water supply, no major differences were observed among species or provenances in either stem hydraulic conductivity (Ks) or leaf specific conductivity (Kl) measured on the main shoot. A moderate soil drought applied for 10 weeks induced marked acclimation through a reduction in Ks, particularly in the Lebanese provenance of C. libani, and a decrease in tracheid lumen size in all species. Cedrus atlantica, which had the smallest tracheids, was the species most vulnerable to embolism: a 50% loss in hydraulic conductivity (PsiPLC50) occurred at a water potential of -4.4 MPa in the well-watered treatment, and at -6.0 MPa in the moderate drought treatment. In the other species, PsiPLC50 was unaffected by moderate soil drought, and only declined sharply at water potentials between -6.4 and -7.5 MPa in both irrigation treatments. During severe drought, Ks of twigs and stomatal conductance (g(s)) were measured simultaneously as leaf water potential declined. For all species, lower vulnerability to embolism based on loss of Ks was recorded on current-year twigs. The threshold for stomatal closure (10% of maximum g(s)) was reached at a predawn water potential (Psi(pd)) of -2.5 MPa in C. atlantica (Luberon) and at -3.1 MPa in C. libani (Lebanon), whereas the other provenance and species had intermediate Psi(pd) values. Cedrus brevifolia, with a Psi(pd) (-3.0 MPa) close to that of C. libani (Lebanon), had the highest stomatal conductance of the study species. The importance of a margin of safety between water potential causing stomatal closure and that causing xylem embolism induction is discussed.  相似文献   

7.
Daily dynamics of the shoot water potential (ψ) in Norway spruce [Picea abies (L.) Karst.] depending on soil water availability and atmospheric evaporative demand was studied on originally freely-grown trees and suppressed trees exposed to full sunlight after clear-cutting. The base water potential (ψb) was significantly correlated (R2 = 0.73) with the available soil water storage (Wtr) at a depth of 20–40 cm. ψb was relatively constant at high soil water status and decreased sharply if Wtr dropped below 14 mm. Among the atmospheric factors observed, the vapour pressure deficit (VPD) proved to be the most relevant variable in predicting diurnal changes in ψ. The leaf water status was more sensitive to VPD at sufficient soil water storage. With soil drying, the daily amplitude of ψ diminished, testifying to the more efficient stomatal control under soil drought. For predicting the daily course of ψ from VPD and ψb (taken as a measure of the soil water availability) an empirical model was derived, which described 78–80% of the total variatin in the shoot water potential. In contrast to values of ψb, the daily values of ψ differed significantly (P < 0.05) between the trees with different life histories. The newly exposed trees demonstrated substantially lower values of ψ with increasing atmospheric evaporative demand at the same soil water availability. Dynamic water stress is considered one of the main causes of the continuing growth retardation in suppressed spruce trees after their release from overstorey.  相似文献   

8.
Photosynthesis (A), water relations and stomatal reactivity during drought, and leaf morphology were evaluated on 2-year-old, sun- and shade-grown Prunus serotina Ehrh. seedlings of a mesic Pennsylvania seed source and a more xeric Wisconsin source. Wisconsin plants maintained higher A and leaf conductance (g(wv)) than Pennsylvania plants during the entire drought under sun conditions, and during the mid stages of drought under shade conditions. Compared to shade plants, sun plants of both sources exhibited a more rapid decrease in A or % A(max) with decreasing leaf water potential (Psi). Tissue water relations parameters were generally not significantly different between seed sources. However, osmotic potentials were lower in sun than shade plants under well-watered conditions. Following drought, shade plants, but not sun plants, exhibited significant osmotic adjustment. Sun leaves had greater thickness, specific mass, area and stomatal density and lower guard cell length than shade leaves in one or both sources. Wisconsin sun leaves were seemingly more xerophytic with greater thickness, specific mass, and guard cell length than Pennsylvania sun leaves. No source differences in leaf structure were exhibited in shade plants. Stomatal reactivity to sun-shade cycles was similar between ecotypes. However, well-watered and droughted plants differed in stomatal reactivity within and between multiple sun-shade cycles. The observed ecotypic and phenotypic variations in ecophysiology and morphology are consistent with the ability of Prunus serotina to survive in greatly contrasting environments.  相似文献   

9.
The influence of low light on tolerance to prolonged drought was tested on unshaded and shaded seedlings of ponderosa pine (Pinus ponderosa var. scopulorum Dougl. ex Laws.). Unshaded seedlings of P. ponderosa var. ponderosa were also drought stressed to compare varietal responses to drought. The maximum irradiance received by shaded seedlings was 10% of full light. Seedlings were progressively drought stressed until predawn water potentials (Psi(x)) were -5.0 MPa. Relative water content (RWC) and the reciprocal of Psi(x) were analyzed by means of an unusual application of the pressure-volume relationship for determination of RWC of the apoplast (RWC(a)), osmotic potential at full turgor (Psi(oft)), and ratio of fully turgid weight to dry weight. Major varietal differences in drought response were in RWC(a) and needle cellulose content. The shaded seedlings showed tissue damage at relative water contents < 60%, and were killed by water deficits from which unshaded seedlings recovered. Correspondingly, shaded plants had significantly higher cell volume/cell mass ratio, Psi(oft), less cellulose in needle tissue, and lower RWC(a) than unshaded plants. These differences suggest that low irradiance restricts drought adaptation in ponderosa pine.  相似文献   

10.
Foster JR 《Tree physiology》1992,11(2):133-149
During summer, gas exchange and water relations were measured in mature boxelder (Acer negundo L.) trees growing on a floodplain in central Indiana, USA. A shallow (< 1.25-m deep) water table and repeated flooding kept the soil water potential above -0.5 MPa at all times. Net photosynthesis and stomatal conductance were influenced primarily by light and, to a lesser extent, by leaf temperature, but showed no relationships with leaf-to-air water vapor gradient or leaf water potential. Throughout the summer, there was no midday stomatal closure on any measurement day, and leaf water potential at dawn and minimum daily leaf water potential remained above -0.4 and -1.4 MPa, respectively. Nevertheless, there was a seasonal decline in leaf osmotic potentials at saturation and turgor-loss point. Seasonal changes in maximum daily net photosynthesis and stomatal conductance, minimum daily leaf water potential and soil-to-leaf hydraulic conductance were not related to seasonal changes in soil water potential, air or soil temperature, or water table depth. Seasonal responses of net photosynthesis to intercellular CO(2) indicated that net photosynthesis was controlled primarily by nonstomatal factors. High soil water and a shallow water table may have kept soil-to-leaf hydraulic conductance large (5-9 mmol m(-1) s(-1) MPa(-1)) throughout the summer, permitting the trees to keep their stomata open, yet maintain leaf turgor and high net photosynthesis during the hot, low-humidity afternoons. This could also account for the dominance of nonstomatal influences on net photosynthesis.  相似文献   

11.
The branch bag method was used to monitor photosynthesis and transpiration of trembling aspen (Populus tremuloides Michx.) and hazelnut (Corylus cornuta Marsh.) over a 42-day midsummer period in 1996, as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). During the same period, daytime measurements of stomatal conductance (g(s)) and leaf water potential (Psi(leaf)) were made on these species, and sap flow was monitored in aspen stems by the heat pulse method. Weather conditions during the study period were similar to the long-term average. Despite moist soils, both species showed an inverse relationship between daytime g(s) and vapor pressure deficit (D) when D was > 0.5 kPa. Daytime Psi(leaf) was below -2 MPa in aspen and near -1.5 MPa in hazelnut, except on rainy days. These results are consistent with the hypothesis that stomatal responses are constrained by hydraulic resistance from root to leaf, and by the need to maintain Psi(leaf) above a minimum threshold value. Reductions in g(s) on sunny afternoons with elevated ambient D (maximum 2.3 kPa) were associated with a significant decrease in photosynthetic rates. However, day-to-day variation in mean carbon assimilation rate was small in both species, and appeared to be governed more by solar radiation than D. These results may be generally applicable to healthy aspen stands under normal midsummer conditions in the southern boreal forest. However, strong reductions in carbon uptake may be expected at the more extreme values of D (> 4 kPa) that occur during periods of regional drought, even if soil water is not locally limiting.  相似文献   

12.
Sap flux density in branches, leaf transpiration, stomatal conductance and leaf water potentials were measured in 16-year-old Quercus suber L. trees growing in a plantation in southern Portugal to understand how evergreen Mediterranean trees regulate water loss during summer drought. Leaf specific hydraulic conductance and leaf gas exchange were monitored during the progressive summer drought to establish how changes along the hydraulic pathway influence shoot responses. As soil water became limiting, leaf water potential, stomatal conductance and leaf transpiration declined significantly. Predawn leaf water potential reflected soil water potential measured at 1-m depth in the rhizospheres of most trees. The lowest predawn leaf water potential recorded during this period was -1.8 MPa. Mean maximum stomatal conductance declined from 300 to 50 mmol m(-2) s(-1), reducing transpiration from 6 to 2 mmol m(-2) s(-1). Changes in leaf gas exchange were attributed to reduced soil water availability, increased resistances along the hydraulic pathway and, hence, reduced leaf water supply. There was a strong coupling between changes in soil water content and stomatal conductance as well as between stomatal conductance and leaf specific hydraulic conductance. Despite significant seasonal differences among trees in predawn leaf water potential, stomatal conductance, leaf transpiration and leaf specific hydraulic conductance, there were no differences in midday leaf water potentials. The strong regulation of changes in leaf water potential in Q. suber both diurnally and seasonally is achieved through stomatal closure, which is sensitive to changes in both liquid and vapor phase conductance. This sensitivity allows for optimization of carbon and water resource use without compromising the root-shoot hydraulic link.  相似文献   

13.
We studied stomatal responses to decreasing predawn water potential (Psipd) and increasing leaf-to-air water vapor pressure difference (VPD) of co-occurring woody Mediterranean species with contrasting leaf habits and growth form. The species included two evergreen oaks (Quercus ilex subsp. ballota (Desf.) Samp. and Q. suber L.), two deciduous oaks (Q. faginea Lam. and Q. pyrenaica Willd.) and two deciduous shrubs (Pyrus bourgaeana Decne. and Crataegus monogyna Jacq.). Our main objective was to determine if stomatal sensitivity is related to differences in leaf life span and leaf habit. The deciduous shrubs had the least conservative water-use characteristics, with relatively high stomatal conductance and low stomatal sensitivity to soil and atmospheric drought. As a result, Psipd decreased greatly in both species during the growing season, resulting in early leaf abscission in the summer. The deciduous oaks showed intermediate water-use characteristics, having maximum stomatal conductances and CO2 assimilation rates similar to or even higher than those of the deciduous shrubs. However, they had greater stomatal sensitivity to soil drying and showed less negative Psipd values than the deciduous shrubs. The evergreen oaks, and especially the species with the greatest leaf longevity, Q. ilex, exhibited the most conservative water-use behavior, having lower maximum stomatal conductances and greater sensitivity to VPD than the deciduous species. As a result, Psipd decreased less during the growing season in the evergreens than in the deciduous species, which may contribute to greater leaf longevity by avoiding irreversible damage during the summer drought. However, the combination of low maximum CO2 assimilation rates and high stomatal sensitivity to drought must have a negative impact on the final carbon budget of leaves with a long life span.  相似文献   

14.
运用灰色关联分析法,对红柳、侧柏和合头草等3个树种的抗旱性与9项抗旱指标的相关性进行了分析。关联度分析结果表明:叶绿素含量、叶水势、叶片相对含水量以及电导率与3个树种的关联度分别为0.767 4、0.700 5、0.679 3和0.628 7,它们可作为3个树种重要的抗旱评价指标。  相似文献   

15.
We compared responses to drought and re-watering of greenhouse-grown cuttings of Populus x euramericana (Dode) Guinier clones, Luisa Avanzo and Dorskamp. Total leaf area, leaf number, leaf area increment and stomatal conductance were evaluated periodically during a 29-day drought period and for 16 days after re-watering. Soil water content and predawn leaf water potential (Psi(wp)) were measured on Days 29 and 45. On the same days, relative water content (RWC), specific leaf area (SLA), nitrogen, chlorophyll, soluble sugars, total phenols, flavanols and antioxidant activity were determined for leaves taken from the bottom to the top of each cutting. Leaves of Luisa Avanzo cuttings grew more rapidly than leaves of Dorskamp and exhibited higher SLA, but lower concentrations of nitrogen, chlorophyll and soluble sugars and lower antioxidant activity per unit area. On Day 29, after withholding water, both clones had closed their stomata, reduced rates of leaf growth, and lower Psi(wp) and RWC; however, the clones differed in their responses to soil water depletion. Compared to Dorskamp, Luisa Avanzo closed its stomata earlier and maintained higher Psi(wp), but lower RWC and leaf sugar concentrations. Antioxidant activity of leaf methanolic extracts decreased in response to water stress only in Luisa Avanzo. Leaf physiology and its modulation by water stress were age dependent in Luisa Avanzo.  相似文献   

16.
We evaluated the osmotic adjustment capacity of leaves and roots of young olive (Olea europaea L.) trees during a period of water deficit and subsequent rewatering. The trials were carried out in Basilicata (40 degrees 24' N, 16 degrees 48' E) on 2-year-old self-rooted olive plants (cv. 'Coratina'). Plants were subjected to one of four drought treatments. After 13 days of drought, plants reached mean predawn leaf water potentials of -0.45 +/- 0.015 MPa (control), -1.65 +/- 0.021 (low stress), -3.25 +/- 0.035 (medium stress) and -5.35 +/- 0.027 MPa (high stress). Total osmotic adjustment increased with increasing severity of drought stress. Trees in the high stress treatment showed total osmotic adjustments ranging between 2.4 MPa at 0500 h and 3.8 MPa at 1800 h on the last day of the drought period. Osmotic adjustment allowed the leaves to reach leaf water potentials of about -7.0 MPa. Active osmotic adjustment at predawn decreased during the rewatering period in both leaves and roots. Stomatal conductance and net photosynthetic rate declined with increasing drought stress. Osmotic adjustment in olive trees was associated with active and passive osmotic regulation of drought tolerance, providing an important mechanism for avoiding water loss.  相似文献   

17.
To assess genotypic variation in drought response of silver birch (Betula pendula Roth), we studied the plasticity of 16 physiological traits in response to a 12-14-week summer drought imposed on four clones in two consecutive years. In a common garden experiment, 1-year-old clonal trees from regions with low (550 mm year(-1)) to high rainfall (1270 mm year(-1)) were grown in 45-l pots, and leaf gas exchange parameters, leaf water potentials, leaf osmotic potentials and leaf carbon isotope signatures were repeatedly measured. There were no clonal differences in leaf water potential, but stomatal conductance (gs), net photosynthesis at ambient carbon dioxide concentration, photosynthetic water-use efficiency, leaf carbon isotope composition (delta13C) and leaf osmotic potentials at saturation (Pi0) and at incipient plasmolysis (Pip) were markedly influenced by genotype, especially gs and osmotic adjustment. Genotypes of low-rainfall origin displayed larger osmotic adjustment than genotypes of high-rainfall origin, although their Pi0 and Pip values were similar or higher with ample water supply. Genotypes of low-rainfall origin had higher gs than genotypes of high-rainfall origin under both ample and limited water supply, indicating a higher water consumption that might increase competitiveness in drought-prone habitats. Although most parameters tested were significantly influenced by genotype and treatment, the genotype x treatment interactions were not significant. The genotypes differed in plasticity of the tested parameters and in their apparent adaptation to drought; however, among genotypes, physiological plasticity and drought adaptation were not related to each other. Reduction of gs was the first and most plastic response to drought in all genotypes, and allowed the maintenance of high predawn leaf water potentials during the drought. None of the clones exhibited non-stomatal limitation of photosynthesis. Leaf gs, photosynthetic capacity, magnitude of osmotic adjustment and delta13C were all markedly lower in 2000 than in 1999, indicating root limitation in the containers in the second year.  相似文献   

18.
We examined sources of water and daily and seasonal water use patterns in two riparian tree species occupying contrasting niches within riparian zones throughout the wet-dry tropics of northern Australia: Corymbia bella Hill and Johnson is found along the top of the levee banks and Melaleuca argentea W. Fitzg. is restricted to riversides. Patterns of tree water use (sap flow) and leaf water potential were examined in four trees of each species at three locations along the Daly River in the Northern Territory. Predawn leaf water potential was higher than -0.5 MPa throughout the dry season in both species, but was lower at the end of the dry season than at the beginning of the dry season. Contrary to expectations, predawn leaf water potential was lower in M. argentea trees along the river than in C. bella trees along the levees. In contrast, midday leaf water potential was lower in the C. bella trees than in M. argentea trees. There were no seasonal differences in tree water use in either species. Daily water use was lower in M. argentea trees than in C. bella trees. Whole-tree hydraulic conductance, estimated from the slope of the relationship between leaf water potential and sap flow, did not differ between species. Xylem deuterium concentrations indicated that M. argentea trees along the riverbank were principally reliant on river water or shallow groundwater, whereas C. bella trees along the levee were reliant solely on soil water reserves. This study demonstrated strong gradients of tree water use within tropical riparian communities, with implications for estimating riparian water use requirements and for the management of groundwater resources.  相似文献   

19.
Chronic decline and Sudden death are two syndromes of cork oak (Quercus suber) dieback. Mortality is associated with water stress, but underlying physiological mechanisms are poorly understood. Here, we investigated the physiological performance of declining trees during the summer drought. Leaf water potential, gas-exchange, fluorescence of photosystem II and leaf and root starch concentration were compared in healthy (asymptomatic) and declining trees. Low annual cork increment in declining trees indicated tree decline for several years. All trees showed similar water status in spring. In summer, declining trees showed lower predawn leaf water potential (?2.0 vs. ?0.8 MPa), but unexpectedly higher midday leaf water potential than healthy trees (?2.8 vs. ?3.3 MPa). The higher midday water potential was linked to by means of strongly reduced stomatal conductance and, consequently, transpiration. This study is pioneer showing that declining trees had high midday water potential. A tendency for lower sap flow driving force (the difference between predawn and midday water potential) in declining trees was also associated with reduced photosynthesis, suggesting that chronic dieback may be associated with low carbon uptake. However, starch in roots and leaves was very low and not correlated to the health status of trees. Declining trees showed lower water-use efficiency and non-photochemical quenching in summer, indicating less resistance to drought. Contrarily to chronic decline, one tree that underwent sudden death presented predawn leaf water potential below the cavitation threshold.  相似文献   

20.
Nocturnal and daytime whole-canopy transpiration rate (E) and conductance (g = E/VPD, where VPD is leaf to air vapor pressure difference) were assessed gravimetrically in drought-treated and well-watered 3-year-old saplings of live oak species (Quercus series Virentes Nixon) from the southeastern USA (Quercus virginiana Mill.) and Central America (Q. oleoides Cham. and Schlecter). Our objectives were to: (1) quantify nocturnal and daytime E and g in a controlled environment; (2) determine the impact of severe drought on nocturnal E and g; and (3) examine whether unavoidable water loss through the epidermis could account for nocturnal water loss. We calculated daytime E during peak daylight hours (between 0930 and 1330 h) and nocturnal E during complete darkness (between 2200 and 0500 h). In addition to reducing E and g during the daytime, drought-treated plants reduced nocturnal E and g on a whole-canopy basis by 62-64% and 59-61%, respectively, and on a leaf-level basis by 27-28% and 19-26%, respectively. In well-watered plants, nocturnal g declined with increasing VPD, providing evidence for stomatal regulation of nocturnal transpiration. In drought-treated plants, g was low and there was no relationship between nocturnal g and VPD, indicating that water loss could not be reduced further through stomatal regulation. Both daytime and nocturnal g declined curvilinearly with predawn water potential for all plants, but nocturnal g was unrelated to predawn water potentials below -1 MPa. The reductions in daytime and nocturnal E and g during drought were associated with decreases in whole-plant and leaf hydraulic conductances. Observed nocturnal g was within the same range as epidermal conductance for oak species determined in previous studies under a range of conditions. Nocturnal E rose from 6-8% of daytime E for well watered plants to 19-20% of daytime E for drought-treated plants. These results indicate that, during drought, saplings of live oak species reduce g to a minimum through stomatal closure, and experience unavoidable water loss through the epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号