首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
猪繁殖与呼吸综合征病毒(Porcine reporoductive and respiratory syndrome virus,PRRSV)基因组5′非翻译区(untranslated region,UTR)对病毒复制转录等过程至关重要,但其发挥作用的机制尚不清楚。本实验室将欧洲型PRRSV 5′UTR替换入北美型PRRSV弱毒株感染性克隆pAPRRS的骨架中,构建pAPLV5。经过DNA转染入MARC-145细胞系中,两次传代后,拯救出嵌合病毒vAPLV5。通过对嵌合病毒的全长测序发现,嵌合病毒基因组较亲本病毒发生了碱基突变,突变主要集中于Nsp2和Nsp9位置。将Nsp9位置(病毒的RNA依赖的RNA聚合酶,RNA-dependent KNA povymerase,RdRp)的4处突变位点引入嵌合病毒的感染性克隆pAPLV5,所构建的4个突变嵌合克隆转染MARC-145细胞后无需传代即产生细胞病变(cytopathic effect,CPE),且P0代病毒滴度较原嵌合病毒vAPLV5高。通过半定量负链和亚基因组检测发现,突变嵌合病毒的RNA合成水平也较亲本嵌合病毒高。由此推测PRRSV 5′UTR功能可能与RdRp相关,异源的5′UTR通过突变RdRp来发挥其调控作用,完成病毒拯救过程。  相似文献   

2.
To develop a new type vaccine for porcine reproductive and respiratory syndrome (PRRS) prevention by using canine adenovirus 2(CAV-2) as vector, the Glycoprotein 5(GP5) gene from PRRSV strain JL was amplified by RT-PCR, and the expression cassette of GP5 was constructed using the human cytomegalovirus (HCMV) promoter and the simian virus 40 (SV40) early mRNA polyadenylation signal. The expression cassette of Glycoprotein 5 was cloned into the CAV-2 genome in which E3 region had been partly deleted, and the recombinant virus (CAV-2-GP5) was obtained by transfecting the recombinant CAV-2-GP5 genome into MDCK cells together with Lipofectamine™ 2000. Immunization trial in pigs with the recombinant virus CAV-2-GP5 showed that CAV-2-GP5 could stimulate a specific immune response to PRRSV. Immune response to the GP5 and PRRSV was confirmed by ELISA, neutralization test and lymphocyte proliferative responses, and western blotting confirmed expression of GP5 by the vector in cells. These results indicated that CAV-2 may serve as a vector for development of PRRSV vaccine in pigs, and the CAV-2-GP5 might be a candidate vaccine to be tested for preventing PRRSV infection.  相似文献   

3.
针对猪繁殖与呼吸综合征病毒(PRRSV)JL/07/SW株GP5基因设计了3个RNA干扰靶位,构建shRNA表达质粒;将转染干扰质粒6 h后的MARC-145细胞接种病毒,并通过Real-time RT-PCR、TCID50、CPE、间接免疫荧光检测(IFA)对所设计的shRNA表达质粒的干扰效果进行评价;结果表明,构建的干扰质粒可以高效抑制PRRSV在MARC-145细胞中的复制,说明GP5基因的这3个干扰靶位可能是PRRSV复制所必需的。本试验为PRRSV复制及基因组功能研究、抗病毒药物开发和转基因动物研究奠定了基础。  相似文献   

4.
针对猪繁殖与呼吸综合征病毒(PRRSV)JL/07/SW株GP5基因设计了4个脱氧核酶,经体外切割试验筛选得到具有体外切割活性的脱氧核酶,并通过RT-PCR、TCID50、CPE、间接免疫荧光(IFA)检测具有切割活性的脱氧核酶抑制PRRSV复制效果进行评价。结果针对GP5基因的Dz-GP5-10抑制效率最高可达到82.4%,Dz-GP5-12也表现良好的抑制效果,表明GP5基因的这2个位点可能是PRRSV复制所必需的。本研究为PRRSV复制及基因组功能研究、抗病毒药物开发和转基因动物研究奠定了基础。  相似文献   

5.
The abilities of the modified-live Prime Pac (PP) strain of porcine reproductive and respiratory syndrome virus (PRRSV), propagated in either traditional simian cells (MARC-145) or in a novel porcine alveolar macrophage cell line (ZMAC), to confer pigs protection against subsequent PRRSV challenge were compared. Eight week-old pigs were injected with PP virus grown in one of the two cell types and then exposed 4 weeks later to the "atypical" PRRSV isolate NADC-20. Control animals were similarly challenged or remained PRRSV-na?ve. While the average adjusted body weight (aabw) of the strict control group increased 22% by 10 days post challenge (pc), this value for the non-vaccinated, challenged group dropped 4%. In contrast, prior immunization with PP virus, regardless of its host cell source, ameliorated this effect by affording a >9% rise in aabw. Likewise, nearly equivalent protection was extended to both groups of vaccinates in regards to the temporal elimination of their pc clinical distress and viremia. However, the PP virus propagated in ZMAC cells appeared to be more efficacious since four of the six pigs receiving this biologic cleared the challenge virus from the their lungs by 10 days pc as compared to only one member of the other vaccinated group. Notably, the predominant quasispecies in the ZMAC cell-prepared PP virus stock contained a highly conserved N-glycosylation site at position 184 in its glycoprotein 2 while this entity was underrepresented in the MARC-145 cell grown biologic. Since glycoprotein 2 is involved in infectivity, such additional glycosylation may enhance virus replication in porcine alveolar macrophages.  相似文献   

6.
The porcine reproductive and respiratory syndrome virus (PRRSV) GP4 and GP5 proteins are two membrane-associated viral glycoproteins that have been shown to induce neutralizing antibodies. In the present study, the host cell gene expression profiles altered by the GP4 and GP5 proteins were investigated by the use of DNA microarrays. Sublines of Marc-145 and HeLa cells were established by stable transfection with open reading frame (ORF)4 and ORF5 of PRRSV, respectively, and differential gene expressions were studied using microarray chips embedded with 1718 human-expressed sequence tags. The genes for protein degradation, protein synthesis and transport, and various other biochemical pathways were identified. No genes involved in the apoptosis pathway appeared to be regulated in GP5-expressing cells. The microarray data may provide insights into the specific cellular responses to the GP4 and GP5 proteins during PRRSV infection.  相似文献   

7.
8.
In the present study, five eukaryotic double-gene expression plasmids containing porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 and ORF7 genes combined with cDNAs encoding porcine IFNgamma and IL-2 were constructed for evaluation as PRRSV vaccine candidates. After immunization and viral challenge, two of three pigs immunized with pIRESorf5/IFNgamma, one of three pigs immunized with pIRESorf5/IL-2 and one of three pigs immunized with pIRESorf7/IL-2 were protected from lung lesions that were present in other vaccinated and control animals. Virus replication was reduced but not completely prevented in organs of the DNA-vaccinated animals as compared to controls. Therefore, the porcine cytokines IFNgamma and IL-2, delivered in combination with ORF5 or ORF7, may improve the immune efficacy of DNA vaccines against PRRSV.  相似文献   

9.
为研究高致病性猪繁殖和呼吸综合征病毒(HP-PRRSV)强弱毒之间毒力差异的分子基础,本实验分别以HP-PRRSV强毒HuN-F5株及其传代致弱的疫苗病毒株HuN4-F112为亲本病毒,利用反向遗传操作技术分别将ORF1a、ORF1b或ORF2-7编码序列在强弱毒之间互换。将6种含有不同嵌合基因的全长病毒基因组的重组质粒体外转录后转染BHK-21细胞,然后在Marc-145细胞中传代,拯救的重组病毒经RT-PCR、测序和免疫荧光鉴定,并分别命名为rHuN4-F5-ORF1a、rHuN4-F5-ORF1b、rHuN4-F5-ORF2-7(以强毒为骨架)和rHuN4-F112-ORF1a、rHuN4-F112-ORF1b、rHuN4-F112-ORF2-7(以弱毒为骨架)。进一步测定这些病毒在Marc-145上的生长曲线,结果显示:以强毒为骨架的嵌合病毒rHuN4-F5-ORF1a生长滴度显著高于亲本强毒rHuN4-F5,而以弱毒为骨架的嵌合病毒rHuN4-F112-ORF1a在细胞上的生长滴度低于其亲本弱毒rHuN4-F112,其他片段替换对病毒在细胞上的生长没有明显影响。本实验结果提示ORF1a对于PRRSV在体外细胞培养上的生长调节起重要作用。  相似文献   

10.
为构建表达猪瘟病毒(CSFV)E2蛋白重组猪繁殖与呼吸道综合征病毒(PRRSV),本研究首先利用高致病性PRRSV弱毒疫苗HuN4-F112株的感染性分子克隆作为平台,构建了一个在nsp2区有缺失的感染性分子克隆,命名为pHuN4-F112-△480-620。以pHuN4-F112-△480-620作为载体,采用突变PCR的方法将CSFV的主要保护性抗原E2基因1 bp~9 99 bp,1 bp~600 bp,1 bp~330 bp及256 bp~330 bp基因片段分别插到nsp2中aa 480~aa 620位氨基酸缺失编码区域。结果显示,插入完整E2基因或较大E2基因片段的重组PRRSV cDNA质粒均未能拯救出病毒,只有插入较小的E2基因片段(256 bp~330 bp)的重组病毒cDNA质粒成功地拯救出了重组病毒rPRRSV-F112-E2(256-330),拯救的病毒能够在MARC-145细胞上引起明显的细胞病变,而且生长速度明显高于其亲本病毒,间接荧光检测表明该重组病毒能够表达外源基因。  相似文献   

11.
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important contagious agents of swine in the world. The current vaccines cannot provide highly effective protection. In this study, the ability of specific short hairpin RNA directed against different genomic regions of PRRSV to inhibit virus replication in MARC-145 cells was examined. Seven plasmids expressing shRNA targeted to GP5 and nucleocapsid (N) protein coding region of PRRSV S1 strain RNA were constructed and delivered into MARC-145 cells. After infection, these cells, transfected with plasmids pSUPER-N3 or pSUPER-G1, showed a significant decrease in virus yield when compared to control cells, by detection using virus titers (TCID50), indirect immunofluorescence assay and real-time RT-PCR. The antiviral effect was sequence-specific and dose-dependent and could sustain for 96 h. Furthermore, by combination of treatment with plasmid pSUPER-N3 and pSUPER-G1, the viral inhibition cloud be significantly increased. In addition, the viral suppression efficiency by shRNA in previously infected cells was not significant different from that induced by shRNA before viral infection. It indicated that administration of the two different shRNA could have a synergistic effect. RNA interference targeting to the various regions of PRRSV might be a potential alternative virus control strategy.  相似文献   

12.
13.
为了解广东省猪繁殖与呼吸综合征病毒(PRRSV)流行毒株ORF5基因遗传变异情况,采用RT-PCR对2018年采自广东部分地区疑似患有PRRS的猪肺组织样品进行PRRSV ORF5基因扩增以及克隆测序,并进行生物信息学分析。结果表明,成功扩增出18株PRRSV流行毒株的ORF5基因片段。ORF5基因序列分析表明,18株PRRSV流行毒株ORF5基因核苷酸同源性为83.7%~99.8%,PRRSV流行毒株与参考毒株的同源性为62.1%~99.8%。基于ORF5基因的遗传进化树分析表明,18株PRRSV流行株均为美洲型毒株。其中,10株与以JXA1为代表的高致病性毒株亲缘较近,2株与新型高致病性毒株FZ16A相似;1株与以NT1为代表的疫苗返强毒株亲缘较近,1株与以R98为代表的疫苗毒株亲缘性较近,4株与广东新报道的GM2和QYYZ毒株亲缘性较近。DNA推导氨基酸序列分析表明,18株流行株的氨基酸序列与国内已报道的代表株相比发生不同程度的变异,GP5抗原表位上存在着差异。研究结果揭示了广东地区PRRSV有新型强毒株、重组毒株以及疫苗返强毒株的流行,提示养殖者谨慎、合理使用疫苗,防止疫苗毒株返强和毒株重组,为该地区防控PRRS提供参考。  相似文献   

14.
有效siRNA的筛选是RNAi研究的关键点之一。本研究选取猪繁殖与呼吸综合征病毒(PRRSV)的核衣壳蛋白(N)作为靶基因,使用http://www.ambion.com的靶位点筛选和设计工具,选取4个siRNA序列(siRNA95、siRNA179、siRNA218和siRNA294),利用一步PCR法产生包含U6启动子的短发夹RNA表达盒技术快速筛选高效siRNA,PCR法制备的shRNA表达盒(PCR-shRNA95、PCR-shRNA179、PCR-shRNA218和PCR-shRNA294)分别与表达N-EGFP融合蛋白的重组质粒pEN-ORF7共转染至293T细胞,48 h后荧光显微镜下检测细胞表达EGFP阳性率,筛选有效siRNA片段,将筛选的PCR-shRNA179的PCR产物转染N-EGFP融合蛋白稳定表达293T细胞系和PRRSV感染的Marc-145细胞,结果表明PCR-shRNA179可明显减少N蛋白的表达、有效减轻PRRSV引起的细胞病变及减少感染PRRSV的Marc-145细胞中的N蛋白阳性细胞。本研究证明一步PCR扩增shRNA表达盒法可用于筛选特异性基因表达抑制的siRNA。  相似文献   

15.
Porcine reproductive and respiratory syndrome (PRRS) is now considered to be one of the most important diseases in countries with intensive swine industries. The two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus (PRRSV), GP5 and M (encoded by ORF5 and ORF6 genes, respectively), are associated as disulfide-linked heterodimers (GP5/M) in the virus particle. In this study, we designed 5 of the small hairpin RNAs (shRNAs) targeting the GP5 and M gene of PRRSV respectively, and investigated their inhibition to the production of PRRSV. The highest activity displayed in shRNAs of the ORF6e sequence (nts 261-279), which the inhibition rate reached was 99.09%. The result suggests that RNAi technology might serve as a potential molecular strategy for PRRSV therapy. Furthermore, the transgenic Marc-145 cell line of piggyBac transposon-derived targeting shRNA interference against PRRS virus was established. It presented stable inhibition to the replication and amplification of PRRS. The work implied that shRNAs targeting the GP5 and M gene of PRRSV may be used as potential RNA vaccines in vivo, and supplied the screening methods of transformed pig embryonic fibroblast which are prerequisite for the disease-resistant transgenic pigs to PRRS.  相似文献   

16.
Genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) has been based on ORF5/GP5 and ORF7/N protein variations. Complete viral genome studies are limited and focused on a single or a few set of strains. Moreover, there is a general tendency to extrapolate results obtained from a single isolate to the overall PRRSV population. In the present study, six genotype-I isolates of PRRSV were sequenced from ORF1a to ORF7. Phylogenetic comparisons and the variability degree of known linear B-epitopes were done considering other available full-length genotype-I sequences. Cytokine induction of all strains was also evaluated in different cellular systems. Non structural protein 2 (nsp2) was the most variable part of the virus with 2 out of 6 strains harboring a 74 aa deletion. Deletions were also found in ORF3 and ORF4. Phylogenetic analyses showed that isolates could be grouped differently depending on the ORF examined and the highest similarity with the full genome cluster was found for the nsp9. Interestingly, most of predicted linear B-epitopes in the literature, particularly in nsp2 and GP4 regions, were found deleted or varied in some of our isolates. Moreover, 4 strains, those with deletions in nsp2, induced TNF-α and 3 induced IL-10. These results underline the high genetic diversity of PRRSV mainly in nsp1, nsp2 and ORFs 3 and 4. This variability also affects most of the known linear B-epitopes of the virus. Accordingly, different PRRSV strains might have substantially different immunobiological properties. These data can contribute to the understanding of PRRSV complexity.  相似文献   

17.
从吉林某猪场采集曾接种过猪繁殖与呼吸综合征疫苗的发病猪病料,经RT-PCR初步鉴定为猪繁殖与呼吸综合征病毒后,利用反转录合成cDNA,用针对PRRSV M、N基因片段设计的特异性引物进行扩增及电泳,在紫外凝胶成像系统下可见约为660bp特异性扩增条带。解剖发病仔猪,发现其有HP-PRRSV发病的特征,两耳及鼻端淤血,呈蓝紫色,肺部等内脏器官淤血呈暗红色。病理组织切片显示,病猪有典型的间质性肺炎的特征性病理变化。将其接种于Marc-145细胞后,在培养至第4代时出现典型的细胞病变(CPE),表现为细胞聚集成丛、随后固缩、变圆、脱落;经Reed-Muench法计算得出两PRRSV分离株的病毒滴度分别为10-5.30 TCID50/0.1mL和10-5.53TCID50/0.1mL。用间接免疫荧光试验观察到在接种病料的Marc-145细胞胞浆内出现特异性荧光,而未接种PRRSV的细胞对照则未见到荧光反应。  相似文献   

18.
Various vaccine adjuvant candidates were assessed with the modified-live porcine reproductive and respiratory syndrome virus (MLV PRRSV) (Ingelvac PRRS MLV) vaccine. Their influence on humoral-mediated immune (HMI) and cell-mediated immune (CMI) responses as well as protection from virulent PRRSV challenge (MN-184) was evaluated. Ninety seronegative pigs were randomly divided into nine groups of 10 pigs. One group received MLV vaccine alone. Five groups received MLV vaccine with either bacterial endotoxin-derived adjuvant (ET), mixed open reading frame 5 (ORF5) peptides derived from various PRRSV isolates, porcine interferon alpha (IFNalpha), polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose (poly-ICLC), or porcine interleukin-12 (IL-12). One group did not receive MLV vaccine but was immunized with ORF5 peptides conjugated with cholera toxin (ORF5 peptide/CT). Two groups served as challenged and unchallenged non-vaccinated controls. Four-color flow cytometry was utilized to simultaneously identify three major porcine T-cell surface markers (CD4, CD8, and gammadelta TCR) and detect activation marker CD25 (alpha chain of IL-2 receptor) or intracellular IFNgamma. The MLV PRRSV vaccine alone successfully primed CD4(-)CD8(+)gammadelta- T-cells as demonstrated by a significant increase in %IFNgamma+ cells when live PRRSV was used as a recall antigen. Booster immunizations of mixed ORF5 peptides and co-administration of IL-12 with MLV PRRSV vaccine significantly enhanced IFNgamma expression by some T-cell subsets (CD4(-)CD8(+)gammadelta+ and CD4(-)CD8(-)gammadelta+ for mixed ORF5 peptides and CD4(+)CD8(+)gammadelta- and CD4(-)CD8(+)gammadelta+ for IL-12). All groups receiving MLV-vaccine with or without adjuvants had reduced lung lesions after challenge. The group immunized with only ORF5 peptide/CT did not have significant T-cell recall responses and was not protected from challenge. Expression of IFNgamma by several T-cell subsets correlated with reduced lung lesions and viremia, whereas expression of CD25 did not. Expression of surface CD25 did not correlate with IFNgamma production. PRRSV ELISA s/p ratio prior to challenge also correlated with reduced lung lesions and viremia. In conclusion, booster immunizations of the mixed ORF5 peptides and co-administration of IL-12 effectively enhanced the CMI response to MLV vaccine. However, neither adjuvant significantly contributed to reducing clinical effects when compared to MLV alone.  相似文献   

19.
为研究猪繁殖与呼吸系统综合征病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)GP3蛋白糖基化位点的作用,在弱毒疫苗株HuN4-F112感染性克隆的基础上,采用点突变的方法对GP3蛋白N29、N42、N50、N131位进行单点或多点组合突变去糖基化,构建了不同糖基化位点的单点和多点突变的PRRSV全长cDNA克隆,最终成功救获N29Q、N42Q、N50Q、N131Q、N29Q/N50Q、N29Q/N195Q六株含糖基化位点突变的病毒,而其余几种糖基化位点突变组合的全长cDNA未能拯救出病毒。对拯救毒株进行滴度测定及多步生长曲线绘制等特性分析,结果显示N29Q、N42Q、N50Q、N131Q位单个糖基化位点的缺失虽不影响子代病毒的产生但会不同程度地降低PRRSV感染细胞的能力,其中N50Q突变体较亲本下降6个滴度且生长明显延迟。多个糖基化位点同时缺失则会影响病毒的拯救,推测这些糖基化位点可能是产生具有感染性病毒粒子所不可或缺的。  相似文献   

20.
Dong S  Yin Y  Shen S  Guo Y  Gao M  Zhang W  Zhu Y  Yu R  Shi Z  Li Z 《Research in veterinary science》2012,93(2):1060-1065
The inhibitory effects of recombinant porcine interferon alpha (rPoIFN-α) on the propagation of low-virulence PRRSV (lvPRRSV) in MARC-145 cells, and on the progress and severity of high virulence PRRSV (hvPRRSV)-induced infections in pigs, were determined. Pre-treatment of MARC-145 cells with increasing concentrations of rPoIFN-α prior to infection with lvPRRSV decreased the observed cytopathic effects (CPEs) in a concentration-dependent manner. Viral propagation and antibody response were temporarily delayed in swine treated with rPoIFN-α either at the same time as the hvPRRSV challenge was administered or post-challenge. Exposure of challenged animals to rPoIFN-α after the onset of disease symptoms alleviated associated hyperthermia. Variations in lymphocyte subsets indicated that rPoIFN-α treatment might alleviate damage to the immune system or enhance propagation of host cytotoxic T-lymphocytes when the treatment was applied simultaneously with the virus or 1dpc, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号