首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Two anti-adipocyte monoclonal antibodies (MAbs: AD-1 and AD-2) have been used to study the development of dorsal s.c. adipose tissue in fetuses from 50 to 110 d of gestation. Immunofluorescent staining of cryostat sections with each antibody revealed antigen-positive cells in fetal s.c. mesenchyme prior to lipid deposition. Lipid droplets as well as AD-1 and AD-2 positive cells were detected within the underlying muscle at 50 d. From 70 to 110 d of development, the AD-1 and AD-2 MAbs each detected all adipocytes examined, as well as capillaries associated with fat cell clusters in s.c. tissues. Reactivity toward both antibodies, as well as lipid deposition, also was detectable in the muscle underlying the s.c. mesenchyme from 70 d onward. Each MAb possessed a distinct pattern of reactivity. The AD-2 MAb stained arrector pili muscles and vessels in the s.c. mesenchyme and vessels in the underlying muscles, whereas the AD-1 did not. No reactivity using either MAb was detectable toward any other cell types within s.c. tissues. These results established the presence of cells expressing surface determinants found on mature adipocytes and associated capillaries prior to adipogenesis. A lineage relationship between adipocytes and capillary endothelial cells is suggested.  相似文献   

2.
The histology of developing porcine adipose tissue   总被引:4,自引:0,他引:4  
At each of the following days after conception (45, 60, 75, 90 and 105), pig fetuses were removed from sows representing lean and fat stains. From two additional litters, postnatal pigs were sacrificed at 1, 3, 6, 9, 12, 15, 18 and 21 d. Pelikan dye was injected into fetuses and pigs. The whole of the dorsal subcutaneous tissue, including some underlying muscle, was removed. Tissue was fixed into paraffin blocks or was frozen. Paraffin and frozen sections were stained and examined for stromal-vascular and cellular changes during growth. Organized stromal-vascular changes occurred during a period of adipocyte formation from 45 d gestation until 9 d postnatally. At 45 d gestation, the subcutaneous tissue contained many short unorganized connective tissue fibers. Gradually, these fibers became more organized in a ventral to dorsal and caudal to cranial gradient, so that by 1 d postnatally, they formed complete lobules around all existing fat cell clusters. The presumptive adipose space of the complete lobules contained delicate strands of connective tissue and reacted metachromatically for mucin. Connective tissue around lobules became progressively thinner throughout the remaining postnatal ages. Vascularity of the subcutaneous tissue increased as the stromal became organized. Lipid was not present in the subcutaneous tissue at 45 d gestation, but some deposition was apparent in the inner layer at 60 d. Between 60 d gestation and 9 d postnatally, fat cells filled both subcutaneous layers in a ventral to dorsal formation. Presumptive adipose lobules were the source of adipocytes and capillaries of developing fat cell clusters. Adipocytes from fetuses through 1-d postnatal pigs were multilocular, while unilocular fat cells were first observed at 3 d. At 9 d, multilocular adipocytes were found singly or in groups within unilocular fat cell lobules.  相似文献   

3.
To compare genetic differences in glycerolipid biosynthesis, rates were determined in s.c. adipose tissue of lean and obese pigs at 28, 60 and 110 d of age. To compare depot-specific differences, glycerolipid biosynthetic rates were determined in outer s.c., middle s.c., perirenal and omental adipose tissues obtained from 105-kg contemporary pigs. Rates were determined with a 700 x g infranatant fraction of an adipose tissue homogenate by measuring glycerophosphate incorporation into total lipids (mostly phosphatidic acid) during 4 min. This assay represents entrance of substrates into the glycerolipid synthesis pathway or glycerophosphate acyltransferase (GPAT) activity. Rates measured for 60 min represent maximal synthesis of glycerolipid (more triacylglycerol than phosphatidic acid) or lipid synthesis capacity (LSC). Adipocyte diameter and volume were greater for adipose tissue of obese than of lean pigs both at 60 and 110 d. When expressed per cell, activity of GPAT and LSC were similar for lean and obese pigs at 28 d. At 60 d and 110 d, LSC was greater for obese than for lean pigs; GPAT activity was greater at 60 but not at 110 d in obese than in lean pigs. Expressed on a cell basis, GPAT activity was highest in omental and outer s.c., intermediate in perirenal and lowest in middle s.c. adipose tissue depots. Lipid synthesis capacity was highest in perirenal and lowest in outer and middle s.c. depots. Our results indicate that the LSC assay was more closely related to the accretion of fat in vivo than to GPAT activity.  相似文献   

4.
The present study examined the influence of dexamethasone (DEX) treatment on preadipocyte recruitment and expression of CCAAT/enhancing binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor-gamma (PPARgamma) proteins in stromal-vascular (SV) cell cultures derived from neonatal subcutaneous adipose tissue and semitendinosus muscles. One adipose tissue SV cell culture and one semitendinosus muscle SV cell culture were established from each of six young pigs (5 to 7 d of age). Conventional SV cell-culture procedures were used to digest adipose and muscle tissue and to harvest and culture adipose and muscle SV cells. Muscles were digested after the removal of all visible connective tissue from the excised muscle. One hour after seeding, muscle SV cell cultures were rinsed and refed new media to remove debris and insoluble muscle protein. The SV cell cultures were double-stained for lipid and the AD-3 antibody, a preadipocyte marker, at 1, 3, and 6 d and were double-stained for lipid and C/EBPalpha or PPARgamma at d 6. Preadipocytes were randomly distributed and not clustered after 1 d in muscle and adipose SV cultures. Regardless of treatment, relative and absolute fat cell numbers were lower (P < 0.05) in muscle than in adipose-SV cell cultures. The DEX treatments produced similar magnitudes of increase in relative and absolute preadipocytes and adipocytes in muscle- and adipose-SV cultures. Several extracellular matrix substrata had no influence on adipogenesis in muscle-SV cell cultures. These studies indicate that muscle-SV cultures are characterized by a low number of adipocytes under basal conditions and a low number of glucocorticoid-responsive preadipocytes.  相似文献   

5.
We tested the hypothesis that fatty acid biosynthesis and adipocyte diameter and volume would be greater in s.c. and i.m. adipose tissues of calf-fed steers than in yearling-fed steers at a constant BW, due to the greater time on feed for the calf-fed steers. Conversely, we predicted that the capacity for s.c. and i.m. preadipocytes to divide, as estimated by 3H-thymidine incorporation into DNA, would be greater in the less mature adipose tissues of calf-fed steers and in yearling-fed steers at 16 mo of age than in yearling-fed steers fed to 18 mo of age. Brangus steers were fed a corn-based finishing diet as calves (calf-fed; n = 9) or yearlings (n = 4) to 16 mo of age (CA yearling-fed); another group of yearlings (n = 5) was fed to a constant-BW end point of 530 kg (CW yearling-fed). Both groups of yearling-fed steers had free access to native pasture until 12 mo of age. At slaughter, the fifth to eighth thoracic rib section of the LM was removed, and fresh s.c. and i.m. adipose tissues were removed for in vitro incubations. There were no differences in the number of s.c. adipocytes/g or mean peak volumes of adipocytes across production groups (P > or = 0.14). However, s.c. adipose tissue of CA yearling-fed steers contained greater proportions of smaller adipocytes (<1,500 pL) than calffed or CW yearling-fed steers, and similar results were observed for i.m. adipose tissue. Acetate incorporation into total lipids was greater (P = 0.02) in s.c. adipose tissue of CA yearling-fed steers than in calf-fed or CW yearling-fed steers, and tended to be different (P = 0.10) across production groups in i.m. adipose tissue. The production system x cell fraction interaction was significant (P = 0.03) for s.c. adipose tissue DNA synthesis, which was greatest in adipocytes from CA yearling-fed steers, whereas there were no differences across production system in stromal vascular (SV) DNA synthesis. For i.m. adipose tissue, DNA synthesis was greatest in adipocytes and SV cells from CA yearling-fed calves, and was greater in SV cells than in adipocytes (both P = 0.01). Therefore, stage of adipose tissue development more strongly influenced fatty acid synthesis, adipocyte volume, and DNA synthesis than age at sampling, final BW, or time on the finishing diet.  相似文献   

6.
Angus (n = 8; 210 kg of BW) and 7/8 Wagyu (n = 8; 174 kg of BW) steers were used to evaluate the effects of dietary energy source on muscle and adipose tissue metabolism and insulin sensitivity. Steers were assigned to either a grain-based (corn) or hay-based (hay) diet and fed to similar final BW. At slaughter, LM and s.c. and i.m. adipose tissue samples were collected. Portions of the LM and adipose tissues were placed immediately in liquid N for later measurement of glycolytic intermediates. Fresh LM and s.c. and i.m. adipose tissues were incubated with [U-(14)C]glucose to assess glucose metabolism in vitro. All in vitro measures were in the presence of 0 or 500 ng/mL of insulin. Also, s.c. and i.m. adipose tissues were incubated with [1-(14)C]acetate to quantify lipid synthesis in vitro. Glucose-6-phosphate and fructose-6-phosphate concentrations were 12.6- and 2.4-fold greater in muscle than in s.c. and i.m. adipose tissues, respectively. Diet did not affect acetate incorporation into fatty acids (P = 0.86). Insulin did not increase conversion of glucose to CO(2), lactate, or total lipid in steers fed hay but caused an increase (per cell) of 97 to 110% in glucose conversion to CO(2), 46 to 54% in glucose conversion to lactate, and 65 to 160% in glucose conversion to total lipid content in adipose tissue from steers fed corn. On a per-cell basis, s.c. adipose tissue had 37% greater glucose oxidation than i.m. adipose (P = 0.04) and 290% greater acetate incorporation into fatty acids than i.m. adipose (P = 0.04). Insulin addition to s.c. adipose tissue from corn-fed steers failed to stimulate glucose incorporation into fatty acids, but exposing i.m. adipose tissue from corn-fed steers to insulin resulted in a 165% increase in glucose incorporation into fatty acids. These results suggest that feeding hay limited both glucose supply and tissue capacity to increase glucose utilization in response to insulin without altering acetate conversion to fatty acids. Because s.c. adipose tissue consistently utilized more acetate and oxidized more glucose than did i.m. adipose, these results suggest that hay-based diets may alter i.m. adipose tissue metabolism with less effect on s.c. adipose tissue.  相似文献   

7.
Vitamin A (retinoic acid) is known to be an adipogenic factor influencing both in vitro and in vivo cell development. This study aimed to determine its effect on lamb adipose tissue development during the early phase of postnatal development until 100 d of age. Male lambs (n = 24) of the Rasa Aragonesa breed were used. At birth, lambs were assigned to 1 of 2 experimental groups: 1) the control (C) group, which received feed without vitamin A supplementation, and 2) the vitamin A (V) group, which received a supplement of 500,000 IU/animal twice per week from birth to slaughter. The effect of vitamin A supplementation was studied at 16.8 +/- 0.35 kg of BW (58 +/- 0.7 d of age) and at 27.8 +/- 0.78 kg of BW (101 +/- 6.5 d of age). The variables of lamb growth, carcass, LM area, and lipid content were analyzed. To study adipose tissue development, the amount of adipose tissue accumulated, the size and number of adipocytes, and lipogenic enzyme activities (glycerol 3-phosphate dehydrogenase, fatty acid synthase, and glucose 6-phosphate dehydrogenase) of the omental, perirenal, and s.c. depots were quantified. Results showed that vitamin A supplementation had no influence on growth, carcass variables, LM area, and lipid content during lamb growth but that the number of adipocytes in the perirenal depot was 30% greater in lambs of the V group (P < 0.05) and that these lambs had smaller adipocytes in the omental and perirenal depots (P = 0.06) at 28 kg of BW (101 d of age). These results suggest that the intake of this level of vitamin A during the whole period of growth of the lambs influenced the processes of hyperplasia and hypertrophy in the different adipose depots, depending on their degree of maturity.  相似文献   

8.
Two experiments were conducted to determine the effects of anabolic implants on performance, changes in ultrasound measurements, carcass quality, cellularity of i.m. and s.c. adipose depots, and mRNA expression of acetyl CoA carboxylase (ACC), stearoyl CoA desaturase (SCD), and lipoprotein lipase (LPL) in i.m. adipose tissue of finished beef cattle. Angus heifers (experiment 1: n = 10; 411 kg of BW) and steers (experiment 2: n = 18; 279 kg of BW) were randomly allotted as control (C) or implanted with Synovex-Plus (SP) at d 0 and midway through the finishing period. The cattle were fed a high-concentrate diet and were weighed at approximately 28-d intervals. Heifers and steers were finished for 108 and 133 d, respectively. At slaughter, a section of the LM (sixth to ninth rib) was removed, and i.m. adipose tissue was dissected for mRNA analysis. Subcutaneous and i.m. adipose tissues also were collected for determination of cellularity. At 48 h postmortem, carcass data were collected, and a steak (12th rib) was removed for analysis of lipid and fatty acid composition. Body weight did not differ (P > 0.10) between treatments until after reimplanting of the heifers (d 55) or steers (d 73). Average daily gain was 36 and 16% faster (P < or = 0.01) for implanted heifers and steers, respectively, compared with their control counterparts. Implanting resulted in larger (P < or = 0.10) HCW and LM area for heifers and steers. However, implanting did not affect (P > 0.10) dressing percent, fat thickness, percentage of KPH, yield grade, or marbling score. Intramuscular lipid content and concentrations of major fatty acids did not differ (P > 0.10) between treatments. Percentage of SC adipocytes was greater at larger diameters ( > 150 microm), whereas the majority of i.m. adipocytes were at small to middle diameters (50 to 150 microm). The number of i.m. adipocytes per gram of tissue was greater (P < 0.05) for SP than C and also were greater (P < 0.05) than the number of s.c. adipocytes in SP heifers. In experiment 2, adipocytes per gram of tissue tended to be greater (P = 0.07) for SP than C and were greater (P < 0.01) for i.m. than s.c. In experiment 1, average cell diameter and volume did not differ (P > 0.10) between treatments and tissues, but in experiment 2 both cellularity traits were greater (P < 0.01) for s.c. than for i.m.. Implanting did not alter mRNA expression of ACC, SCD, or LPL in i.m. adipose tissue. This study shows that anabolic implants do not appear to have direct effects on i.m. lipid deposition.  相似文献   

9.
Late-term fetal pigs from genetically obese dams have elevated levels of thyroid hormones and glucocorticoids, depressed levels of GH, larger fat cells and elevated lipogenesis than do fetal pigs from lean dams. We investigated the influence of elevated levels of thyroid hormones and glucocorticoids per se on adipose tissue traits by chronically treating hypophysectomized (hypox; d 70) fetal pigs between d 90 and 105 of gestation with either thyroxine (T4), hydrocortisone (HC), or the combination of T4 + HC. Treatment with T4 and T4 + HC increased serum T4 and IGF-I levels and enhanced skin and hair development. Treatment with HC and T4 + HC increased serum HC levels, fat cell size, and inner subcutaneous adipose tissue thickness. Quantitative analysis of stained adipose tissue sections indicated that T4 + HC treatment increased lipid accretion and fat cell cluster development more than did either hormone alone. The T4 + HC markedly increased apparent fat cell number, because there was only a 19% increase in fat cell size. A hypox-induced deficit in cytodifferentiation of capillaries associated with adipocytes was not influenced by T4, but was partially normalized by treatment with HC and T4 + HC. Immunocytochemical and Western blot analyses showed no influence of hormonal treatment on expression of three CCAAT enhancing binding protein (C/EBP) isoforms. However, expression of C/EBPdelta in adipose tissue was markedly reduced in control fetal pigs compared with hypox fetal pigs. These studies indicate that concurrent action of glucocorticoids and thyroid hormones may be the critical aspect of endocrine regulation of fetal adipogenesis.  相似文献   

10.
利用半定量RT-PCR法分析比较了甘油三酯水解酶(Triacylglycerol hydrolase,TGH)和激素敏感脂酶(Hormone-sensitive lipase,HSL)基因在不同猪种、不同发育阶段及不同部位脂肪组织中转录表达的差异,探讨其在猪脂肪组织的表达规律。结果显示,脂肪型个体TGHmRNA表达丰度显著低于瘦肉型和杂交型个体,成年猪较初生仔猪低,皮下、腹膜和内脏脂肪组织中TGH表达量依次递增;其变化规律与HSL相同。此外,对分离培养的原代前体脂肪细胞通过诱导分化和油红O染色区分分化状态,分析TGHmRNA表达的时序变化,发现TGH在前脂肪细胞中不转录表达,诱导分化后开始表达,且在诱导分化第4天表达量最高,分化第10天表达量下降,达到峰值的时间较HSL早。结果表明,TGH的表达与个体肥胖程度、年龄、脂肪组织部位以及脂肪细胞分化程度相关,同时,在脂肪细胞分化过程中,TGH表达峰值早于HSL,提示TGH在脂肪细胞发育过程中可能较早承担基础脂解作用。  相似文献   

11.
A restriction/realimentation feeding strategy was applied to pigs to increase the age at market weight and final ADG, modify protein and lipid deposition rates at carcass and muscle levels, and thereby improve eating quality of the pork. A total of 126 Duroc x (Large White x Landrace) pigs (females and castrated males) were used. At the average BW of 30 kg, within litter and sex, pairs of littermates (blocked by BW) were randomly assigned to ad libitum (AL) feeding during growing (30 to 70 kg of BW) and finishing (70 to 110 kg of BW) periods (AL, n = 56), or restricted feeding at 65% of the ADFI of the AL pigs, on a BW basis, during the growing period and AL feeding during finishing (compensatory growth, CG; n = 56). In each feeding regimen, 15 pigs were slaughtered at 70 kg of BW, and 41 pigs were slaughtered at 110 kg of BW. Additionally, 14 pigs were slaughtered at 30 kg of BW to calculate tissue deposition rates. The CG pigs showed decreased ADG (-35%, P = 0.001) during growing but increased ADG (+13%, P = 0.001) during finishing (i.e., compensatory growth) due to greater (P = 0.001) ADFI and G:F. Hence, CG pigs were 19 d older at 110 kg of BW than AL pigs. The CG pigs were leaner at 70 kg of BW than AL (e.g., 11.7 vs. 13.5 mm of average backfat thickness for CG and AL pigs, respectively, P = 0.023), whereas the differences were reduced at 110 kg of BW (20.6 vs. 21.0 mm of average backfat thickness for CG and AL pigs, respectively, P = 0.536). At 70 kg of BW, intramuscular fat (IMF) content of LM did not differ between CG and AL pigs (1.25 vs. 1.49%, respectively, P = 0.118), whereas CG pigs had less IMF in LM at 110 kg of BW (2.19 vs. 2.53% for CG and AL pigs, respectively, P = 0.034). Feeding regimen influenced the composition of weight gain. From 30 to 70 kg of BW, feed restriction reduced (P = 0.001) lean and adipose tissue deposition at the carcass level and protein and lipid deposition at the muscle level. From 70 to 110 kg of BW, the CG feeding strategy increased (P = 0.016) deposition of adipose but not of lean tissue at the carcass level. However, lipid and protein deposition at the muscle level were not affected. Thus, realimentation promoted deposition of subcutaneous fat over IMF. Feeding regimen hardly affected technological meat quality at 110 kg of BW. The CG feeding strategy decreased (P = 0.014) the meat juiciness score in relation to the decreased IMF but did not influence other sensory traits. Elevated IMF content and improved pork quality might be achieved by modifying the onset or duration of the restriction and realimentation periods.  相似文献   

12.
Experiments were designed to compare the adipocyte cellularity of subcutaneous adipose tissue between growing Landrace (low backfat) and Meishan (high backfat) pigs at 1 week, 3 weeks, 6 weeks, 3 months and 5 months of age. As pigs aged, body weight and backfat thickness of both breeds significantly increased. When compared at equal ages, backfat thickness adjusted to equal body weight was greater for Meishan pigs. The mean diameter of fat cell size also increased with age, and by 6 weeks adipocytes from both outer and inner layers of subcutaneous adipose tissue were larger in Meishan pigs. At 5 months, approximately 80% of the adipose tissue mass in Meishan pigs was attributable to adipocytes measuring 95–165 µm in diameter, whereas adipocytes of 75–145 µm comprised most of the tissue mass in the Landrace. Although the contribution of smaller adipocytes (25–45 µm) to the tissue volume was negligible, both breeds showed a biphasic diameter distribution at all ages, suggesting that adipocyte hyperplasia is still active. Our results demonstrate that cellularity differences exist between the subcutaneous adipose tissues of Landrace and Meishan pigs, and adipocyte hypertrophy is the most overwhelming contributor to the greater backfat deposition for Meishan pigs.  相似文献   

13.
Irisin is mainly secreted by heart and skeletal muscle cells. It is an exercise‐induced protein that converts white adipose tissue to brown. Increased irisin expression was lead to weight loss and improved glucose tolerance. We investigated irisin immunoreactivity in various tissues of the dwarf hamsters (Phodopus roborovskii). Tissues were processed, embedded in paraffin, sectioned at 5 μm and stained immunohistochemically for irisin. In the retina, irisin was found almost all layers, except outer nuclear layer. Also, irisin immunoreactivity was observed in the skin, cornea, striated muscle, parotid gland, tongue, oesophagus, stomach and small intestine. The findings from this study support the notion that skeletal muscle is not the primary source of irisin.  相似文献   

14.
15.
The aim of this study was to investigate whether dietary protein intake of gilts during gestation below (50%) or above (250%) recommendations affects body composition, carcass and meat quality, and properties of skeletal muscle and subcutaneous adipose tissue (SCAT) in offspring at d 83 and 188 of age. German Landrace gilts were fed isoenergetic gestation diets (~13.7 MJ of ME/kg) containing a low (LP, 6.5%; n = 18), an adequate (AP, 12.1%; n = 20), or a high (HP, 30%; n = 16) protein content from mating until farrowing. Within 48 h of birth, offspring were cross-fostered to sows fed a standard diet. On d 83 of age, no effects of the LP diet on BW and body composition were detected, whereas HP pigs showed a slight growth delay (P = 0.06) associated with increased relative weights of small intestine (P < 0.01) and brain (P = 0.08), and reduced relative thymus weight (P < 0.01). On d 188 of age, BW was not different among the dietary groups. However, the carcass of LP pigs contained less (P = 0.01) lean and more (P = 0.07) fat compared with AP and HP pigs, which was only pronounced in pigs originating from large litters (P < 0.05). Like skeletal muscles (P = 0.06), the heart muscle weighed less (P = 0.02) in LP than AP pigs. Compared with AP pigs, LP pigs exhibited a fewer (P = 0.09) total number of myofibers in semitendinosus muscle plus LM both at d 83 and 188 of age, whereas total muscular DNA was less (P = 0.02) at d 188 only. The mRNA abundance of IGF2 measured on d 188 was reduced in SCAT (P = 0.03) and LM (P = 0.07) of LP compared with AP pigs. No changes in muscular fiber type frequency, capillary density, or creatine kinase activity, as well as SCAT adipocyte size and number, were observed at either stages of age. Meat quality characteristics remained unchanged at d 83, whereas Warner-Bratzler shear force value in LM was decreased (P = 0.03) in LP compared with AP pigs on d 188 of age. The results suggest that the maternal LP diet impairs prenatal myofiber formation, reduces the potential of postnatal lean growth related to reduced IGF2 mRNA expression and myonuclear accumulation, and consequently changes carcass quality toward reduced lean proportion and improved tenderness at market weight. In contrast, except for a slight transient growth delay, excess dietary protein during gestation seems to have little effect on the fetal programming of postnatal muscle and adipose tissue phenotype of the progeny.  相似文献   

16.
We conducted several experiments to better understand the relationship between brown adipose tissue (BAT) metabolism and thermogenesis. In Exp. 1, we examined perirenal (brown) and sternum s.c. adipose tissue in 14 Wagyu x Angus neonates infused with norepinephrine (NE). Perirenal adipocytes contained numerous large mitochondria with well-differentiated cristae; sternum s.c. adipocytes contained a few, small mitochondria, with poorly developed cristae. Lipogenesis from acetate was high in BAT but barely detectable in sternum s.c. adipose tissue. In Exp. 2, we compared perirenal and tailhead adipose tissues between NE-infused Angus (n = 6) and Brahman (n = 7) newborn calves. Brahman BAT contained two-to-three times as many total beta-receptors as Angus BAT. The mitochondrial UCP1:28S rRNA ratio was greater in Brahman BAT than in BAT from Angus calves. Lipogenesis from acetate and glucose again was high, but lipogenesis from palmitate was barely detectable. Tail-head s.c. adipose tissue from both breed types contained adipocytes with distinct brown adipocyte morphology. In Exp. 3, three fetuses of each breed type were taken at 96, 48, 24, 14, and 6 d before expected parturition, and at parturition. Lipogenesis from acetate and glucose in vitro decreased 97% during the last 96 d of gestation in both breed types, whereas the UCP1 gene expression tripled during gestation in both breed types. At birth, palmitate esterification was twice as high in Angus than in Brahman BAT and was at least 100-fold higher than in BAT from NE-infused calves from Exp. 2. Uncoupling protein-1 mRNA was readily detectable in tailhead s.c. adipose tissue in all fetal samples. In Exp. 4, male Brahman and Angus calves (n = 5 to 7 per group) were assigned to 1) newborn treatment (15 h of age), 2) 48 h of warm exposure (22 degrees C) starting at 15 h of age, or 3) 48 h of cold exposure (4 degrees C) starting at 15 h of age. Brahman BAT adipocytes shrank with cold exposure, whereas Angus BAT adipocytes did not. Similarly, BAT from neonatal lambs (Exp. 5; n = 6 per group) was depleted of lipid in response to cold exposure, although UCP1 gene expression persisted. In Exp. 4, NE stimulated lipogenesis from palmitate in BAT incubated in vitro. Lipogenesis from palmitate was higher in Angus than in Brahman BAT, and increased with both warm and cold exposure. These studies suggest that BAT from Brahman calves may be exhausted of lipid shortly after birth during times of cold exposure.  相似文献   

17.
18.
OBJECTIVE: To describe the localization of immunoreactive transforming growth factor (TGF)-beta1 in both normal skin and full-thickness dermal wounds of the limb and the thorax of the horse. STUDY DESIGN: Six full-thickness excisional wounds were created on the lateral aspect of one metacarpal region and on the midthoracic area of each horse. Sequentially collected tissue specimens from wound margins were assessed for TGF-beta1 expression by immunohistochemistry. ANIMALS: Four horses (2 to 4 years of age). METHODS: A neutralizing monoclonal anti-human TGF-beta1 antibody was used to detect the spatial expression of TGF-beta1 protein by immunohistochemical localization in biopsies obtained before wounding and at 12 and 24 hours, and 5, 10, and 14 days. RESULTS: No differences in localization of immunoreactive TGF-beta1 were detected between limb and thorax, for either intact skin or wounds. Unwounded epidermis stained moderately for TGF-beta1 protein throughout all layers, whereas the dermis was relatively devoid of immunoreactivity. During the acute stage of repair, migrating epithelium lost its stain, whereas cells of epidermal appendages remained strongly immunoreactive. The epithelium recovered its TGF-beta1 immunoreactivity during wound remodeling, although cells of the stratum corneum remained negative. Macrophages of the inflammatory exudate had positive cytoplasmic staining that diminished with time. Immunoreactivity of granulation tissue fibroblasts was evident early on and increased throughout the repair process. CONCLUSIONS: TGF-beta1 is constitutively expressed in normal, unwounded equine epithelium. Its expression is upregulated within the skin on injury and is associated with the cells involved in wound repair. CLINICAL RELEVANCE: A more precise understanding of the temporal and spatial expression of TGF-beta1 during wound repair in horses should provide the groundwork for possible future manipulations of both normal and aberrant tissue repair.  相似文献   

19.
The content and distribution of body lipids are of special interest for production efficiency and meat quality in the farm animal industry. Triglycerides represent the most variable fraction of tissue lipids, and are mainly stored in adipocytes. Although several studies have reported regional differences in the expression of genes and their products in adipocytes from various species, the characteristics of i.m. adipocytes remain poorly described. To evaluate adipocyte features according to muscle and other fat locations, adipocyte proteins were isolated from trapezius skeletal muscle, and intermuscular, s.c., or perirenal adipose tissues from 6 female pigs (80 d of age). Protein extracts were labeled and analyzed by 2-dimensional, fluorescent, differential gel electrophoresis. The comparisons revealed that 149 spots were always differentially expressed (P < 0.05, ratio exceeding |2|-fold difference) between i.m. adipocytes and the fat cells derived from the 3 other adipose locations. The proteins that were downregulated in i.m. fat cells belonged to various metabolic pathways, such as lipogenesis (cytosolic malate dehydrogenase and isocitrate dehydrogenase, P < 0.01), glycolysis (enolases and aldolase, P 相似文献   

20.
The dietary dose responsiveness of conjugated linoleic acid (CLA) addition relative to the fatty acid profile of edible lean tissue was examined in grower pigs treated with or without porcine somatotropin (pST). Gilts and barrows were fed CLA at 0, 0.25, 0.5, 1.0, or 2.0% of diet by weight from 20 to 55 kg BW. Additional pigs were administered (pST) at 0 or 100 microg x kg BW x d(-1) and fed either 0.5 or 2.0% CLA. Animals were fed diets containing 18% CP, 1.2% lysine, and 3.5 Mcal of DE/kg at 110% of ad libitum intake. The fatty acid profile in latissimus dorsi and dorsal s.c. adipose tissue samples was determined by gas chromatography. Dietary CLA replacement of corn oil increased the percentage of total fatty acids as stearic acid, whereas the percentages as oleic and linolenic acids were reduced in lattisimus muscle. Treatment with CLA + pST increased the percentages of linoleic and arachidonic acids while reducing the percentages of palmitic and oleic acids in lattisimus muscle. Dietary CLA increased the percentages of palmitic and stearic acids in s.c. adipose tissue while reducing the percentages of oleic, linoleic, linolenic, and arachidonic acids. The percentage of palmitic acid was reduced in s.c. adipose tissue, whereas linoleic acid was increased with CLA + pST. No synergistic effect was detected between CLA and pST for reducing carcass lipid content in grower pigs. However, pST increased the percentage of polyunsaturated fatty acids in lattisimus muscle and s.c. adipose tissue while reducing the percentages of saturated fatty acids in swine fed CLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号