首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
对膜性质的研究,无论在生物学或物理学中,都具有广泛的现实意义。由于生物膜具有脂双层的复杂结构和环境因素,因此通过实验模型对其进行系统研究,并用物理、化学观点理解生命过程是必要的。单层分子膜是一种较好的模型。目前研究单分子膜已成为表面物理学、生物化学的一个重要课题。本文主要是介绍目前用于研究单层分子膜相变形态学的一项新的光学技术──布儒斯特角反射显影术。  相似文献   

2.
黄对  王文 《农业工程学报》2014,30(19):182-190
为研究基于粗糙度定标的模型进行土壤含水率反演的可行性,该文利用2幅不同时相的高级合成孔径雷达ASAR影像,以经验相关长度(lopt)代替相关长度l,实现对积分方程模型IEM(integral equation model)的粗糙度定标,以改进IEM模型对后向散射系数的模拟。在此基础上模拟了后向散射系数与土壤体积含水率(Mv)、lopt、均方根高度(hRMS)的关系,以组合粗糙度Zs(hRMS2/lopt)代替lopt与hRMS,建立土壤含水率反演的经验与半经验方法。对比2个不同时相的土壤含水率反演值与实测站点观测数据表明,经验方法下应用2004年8月18日、2004年8月24日2个时相的反演值与实测值的相关系数分别为0.785、0.837,半经验方法下则分别为0.900、0.863,表明半经验方法精度更好。该研究为利用两幅不同时相的ASAR影像获取两幅土壤含水率数据提供依据。  相似文献   

3.
土壤水分是进行干旱监测、土壤侵蚀、农作物产量预测以及地表温度研究的重要参量,利用主被动微波协同的方法提高土壤水分的反演精度是定量遥感发展所面临的重要任务。本文基于土壤L波段微波散射辐射模拟数据集,通过对比分析主被动微波数据对土壤水分含量和粗糙度2个参数的敏感性,提出了基于L波段主被动协同的裸土土壤水分反演算法,算法充分利用了被动微波地表发射率对土壤水分较为敏感,而主动微波后向散射系数对地表粗糙度较为敏感的特点。首先由地表垂直极化发射率和 VV 极化后向散射系数协同提取地表粗糙度信息,再由被动微波双极化数据结合地表粗糙度信息来估算土壤水分信息。利用SMAPVEX12实验数据集中部分稀疏植被采样点的观测数据对算法进行验证,验证结果显示,土壤水分反演结果与地面实测数据相关性为0.6637,RMSE为0.0607 cm3/cm3。该文反演算法模型系数直接由模拟数据集计算得到,克服了常规经验算法的发展对地表实测数据的依赖性,减小了算法在实际应用中的局限性。  相似文献   

4.
传统上依赖改进型垂直干旱指数(modified perpendicular dryness index,MPDI)进行土壤水分反演时每个时期的影像反演都需要依赖于地面实测数据进行校准。为降低土壤含水率反演对实测数据的依赖,该研究利用2020—2021年间的哨兵2号卫星数据,分析了近红外与红光波段特征空间中土壤线斜率的变化及其影响因素。并推导了土壤线斜率变化对土壤含水率反演的影响,揭示了MPDI反演土壤含水率时每期都依赖实测数据校准的根本原因,最终提出了一种土壤线一致性修正方法。基于这种修正,该研究构建了一个能够多时相比较的再修正干旱指数(re-modified perpendicular drought index,RPDI)。结果表明,经过统一率定的RPDI与土壤含水率的回归方程在不同时相的影像上均适用,反演结果显示了良好的精度,率定集决定系数R2为0.49,无偏均方根误差为2.88%,验证集决定系数R2为0.54,无偏均方根误差为3.05%,与MPDI每期单独构建回归方程反演相比,RPDI基于统一方程反演与其保持了相近的精度水平,极大减少了在遥感土壤含水率估算中对地面实测数据的依赖,有效提升了遥感技术在土壤水分监测中的应用价值。研究可为光学遥感数据在大范围连续土壤水分反演领域的应用研究提供参考。  相似文献   

5.
基于试验反射光谱数据的土壤含水率遥感反演   总被引:1,自引:2,他引:1  
杨曦光  于颖 《农业工程学报》2017,33(22):195-199
土壤含水率是土壤水循环研究中不可或缺的参数,已广泛应用于土壤水分的监测。土壤光谱特性的研究是土壤含水率光学遥感定量反演的基础。该研究首先通过野外调查收集土样;然后,在实验室条件下制备不同水分梯度的土壤样品,并利用便携式地物光谱仪采集不同水分梯度土壤样品的反射光谱;最后,通过试验光谱数据分析建立一个基于指数函数的土壤含水率遥感反演模型,并对结果进行精度评价。结果表明,基于指数函数的土壤含水率反演模型可以较好的反演土壤水分特征,在640 nm处土壤含水率的估计值与真实值之间的决定系数为0.7062,RMSE为3.49%。相关研究为表层土壤含水量的遥感监测提供新方法和新思路。  相似文献   

6.
为解决无人机遥感领域根据冠层光谱信息对猕猴桃果树根系土壤含水率(root soil water content, RSWC)进行反演时,现有算法对冠层图像信息分析不足的问题,该研究对传统卷积神经网络模型进行改进,提出一种复合视觉卷积回归神经网络(compound visual convolutional regression network, CVCRNet),该网络复合两种不同尺寸卷积层对图像数据进行卷积特征提取,并使用全连接层对卷积特征值进行降维,从而直接以多光谱图像为分析对象对RSWC进行反演,充分利用多光谱图像内所有数据,提升反演精度。研究采集徐香猕猴桃果树果实膨大期(5—9月)冠层多光谱信息和深度40 cm处的RSWC,把基于图像的CVCRNet网络反演方法与基于植被指数的传统反演方法进行对比,CVCRNet训练结果在验证集R2为0.827,RMSE为0.787%,相较于传统方法在验证集R2为0.759,RMSE为0.983%,反演结果相关性有了明显提升,准确率也有得到一定提高。结果表明,改进后的CNN网络能够作为冠层信息反演的重要工具,在冠层复杂的场景下达成良好的土壤数据反演效果。  相似文献   

7.
为研究土壤耕作层(0~40 cm)含水率的空间分布情况,利用EO-1的Hyperion传感器高光谱数据,对研究区域(106°20′~109°19′E,40°19′~41°18′N)的表层(0~10 cm)含水率进行定量反演,并利用表层含水率反演结果作为协同克里金插值的协变量,同时利用103个采样点实测的耕作层含水率作为主变量,进行协同克里金插值。结果表明:通过特征指数法提取水分反演的敏感波段集中在1 295~2 224 nm波长区间,特征指数法模型校正的相关系数r0.5但模型验证的精度较低(r0.2);通过偏最小二乘法建模,模型校正的r0.8,模型验证的r0.5,效果较好;运用协同克里金插值时,将反演的表层含水率作为协变量,可以弥补主变量耕作层含水率样本点少,变异函数欠稳定的缺点,同时,所提取理论模型的块金值(C0)与基台值(C0+C)的比值均25%,随机因素比例小,模型稳健。此外,协同克里金插值方法与利用表层与耕作层含水率线性拟合进行预测相比,能够有效提高预测精度,决定系数r2和Nash效率系数(nash-sutcliffe modelling efficiency,NSE)分别提高72.6%和89.9%,因此,将高光谱反演与协同克里金方法相结合,可以综合两者优势,节约采样成本,提高预测效率。  相似文献   

8.
基于田块尺度含水率观测的土壤水力参数多模型反演   总被引:2,自引:2,他引:2  
该文利用反演工具UCODE与4种Richards方程数值模型(Ross模型、Picard-θ模型、Picard-mix模型和Picard-h模型)进行耦合,构建了4种不同的反演模型。基于田块尺度含水率观测数据,分别用4种反演模型优化了研究田块的土壤参数。研究结果表明,4种模型的反演精度依次为:Ross模型、Picard-θ模型、Picard-mix模型和Picard-h模型,但差异并不显著,反演效率以Ross模型最优。随着网格的加密,各种模型所反演参数的模拟精度改善不明显。本文还讨论了土壤水运动中"异参同效性"现象,并提出"参数曲线带"的概念——即由反求的同效参数土壤水分曲线和水力传导度曲线形成的包络图。随着模拟精度要求越高,同效参数越少,"参数曲线带"越窄,并认为反求的同效参数曲线在含水率观测信息较多的地方交汇。  相似文献   

9.
为了丰富土壤含水率的测量手段,拓展宇宙射线缪子技术在农业工程领域的应用,该研究提出了利用宇宙射线缪子监测土壤含水率的方法,即通过放置在土壤中的缪子探测器测得的宇宙射线缪子计数来反推出土壤含水率。利用蒙特卡罗程序FLUKA对不同含水率的土壤建模并进行数值模拟,得出土壤含水率的探测分辨率,进一步得到最佳的缪子探测器放置深度。结果表明,探测半径与探测器放置深度相关,将探测器放置在地表下方80 cm深度处时,探测半径为6.2 m,此时当探测时长为2 h时,对土壤含水率的探测分辨率可以达到0.1 cm3/cm3;当探测时长达到8 h时,探测分辨率可以达到0.05 cm3/cm3。相较于60、70、80、100、110、120 cm等不同深度,探测器放置在地表下方90 cm处时,在相同探测时长条件下,土壤含水率的探测分辨精度最高,达到0.038 cm3/cm3。验证试验结果表明,缪子计数值的变化可以反映出待测物质质量厚度的较小变化。相较于传统的点测量方法和宇宙射线中子法,该方法的探测范围适中(探测半径为6~8 m),且测量结果不易受土壤密度之外的因素影响,可以作为其他监测技术的重要补充,具有广阔的应用前景。  相似文献   

10.
无人机多光谱遥感反演各生育期玉米根域土壤含水率   总被引:1,自引:3,他引:1  
为准确及时地获取植被覆盖条件下农田土壤水分信息,该文以不同水分处理的大田玉米为研究对象,利用无人机遥感平台对夏玉米进行多期遥感监测,并同步采集玉米根域不同深度土壤含水率(Soil Water Content,SWC)。基于2018年夏玉米拔节期、抽雄-吐丝期和乳熟-成熟期的无人机多光谱遥感影像数据集,通过支持向量机(Support Vector Machine,SVM)分类剔除土壤背景,提取玉米冠层光谱反射率并计算10种植被指数(VegetationIndex,VI),然后利用全子集筛选(FullSubsetSelection)法对不同波段和植被指数进行不同深度土壤含水率的敏感性分析,并分别采用岭回归(Ridge Regression,RR)和极限学习机(ExtremeLearningMachine,ELM)2种方法构建全子集筛选后0~20、20~45和45~60cm不同深度下的土壤含水率定量估算模型。结果表明:基于贝叶斯信息准则(BayesianInformationCriterion,BIC)的全子集筛选法可以有效筛选最优光谱子集,筛选变量基本都通过了显著性检验,自变量个数较少;在同一生育期、同一深度条件下,ELM模型效果均优于RR模型;玉米在拔节期、抽雄-吐丝期的最佳监测深度为0~20cm,在乳熟-成熟期的最佳监测深度为20~45cm;乳熟-成熟期的20~45cm深度下的ELM反演模型效果最优,其建模集和验证集的决定系数Rc2和Rv2分别为0.825和0.750,均方根误差RMSEc和RMSEv分别为1.00%和1.32%,标准均方根误差NRMSEc和NRMSEv分别为10.85%和13.55%。利用全子集筛选法与机器学习相结合的方法可以提高土壤含水率的反演精度和鲁棒性,本研究为快速、准确地监测农田土壤墒情、实施精准灌溉提供了一种新的途径。  相似文献   

11.
该文阐述了中纬度地区春季裸露耕地土壤水分监测的重要性,对比分析了目前几种主要的土壤水分反演方法。为提高裸露耕地土壤水分的监测精度,在分析AIEM土壤发射率模拟数据库的基础上,提出了一种基于L波段单角度双极化被动微波遥感数据的土壤湿度和土壤粗糙度的反演算法,并对新反演算法的创新性和可行性进行了基于仿真数据的论证。该反演算法以地表温度作为辅助数据,利用L波段47°双极化的微波亮温数据进行土壤湿度和粗糙度的反演。仿真数据的验证结果表明,在充分考虑土壤温度、土壤质地等辅助数据测量误差的条件下,算法对土壤湿度和土壤  相似文献   

12.
基于双时相ASAR影像的土壤湿度反演研究   总被引:1,自引:1,他引:1  
地表粗糙度和湿度是影响裸地后向散射系数的重要因素,为了探求ENVISAT-ASAR 数据监测土壤湿度在国内的应用,该文以ASAR影像数据为基础,利用ZSribi-Dechambre(2002)经验模型研究了中国科学院南皮农业生态试验站附近一裸地的表面粗糙度和地表湿度.对雷达入射角进行归一化处理使之满足模型需求,反演结果表明该区地表粗糙度主要分布0.05~0.50 cm之间,土壤体积含水率大多分布存10%~34%之间,局部区域由于一些积水沟渠,使得土壤体积含水率较高,这与调查的实际情况相符合.反演的土壤湿度用地面实测值验证,结果发现模拟值和实测值具有较好的一致性,其RMSE误差为3.7%.该文介绍了在没有地表先验知识的情况下,利用扣除掉土壤粗糙度影响的后向散射反演模型获取土壤湿度的方法.该法仅需要两景相邻近时相并且不同入射角的HH同极化雷达影像,根据其后向散射系数的差值△"'即σ°可估算出粗糙度和土壤湿度参数,从而方便快捷地监测局部区域的土壤湿度状况.  相似文献   

13.
盐渍化土壤水分微波雷达反演与验证   总被引:1,自引:1,他引:1  
土壤介电常数是微波遥感进行土壤含水率测量的物理基础,尤其介电常数实部是必须解决的问题,土壤介电特性的研究显得尤为重要。该文目的是试验与评价C波段RADARSAT-2 SAR(synthetic aperture radar)数据模拟土壤介电特性,进而反演土壤水分的性能。以受盐渍化影响较严重的内蒙古河套灌区解放闸灌域为试验区,首先回归分析了介电常数实部与SAR四极化后向散射系数、地表粗糙度的复杂关系,并与Oh经验模型对照,其决定系数R2为0.859 7,模拟精度较高;然后验证常用的2个介电常数模型,Dobson半经验模型、Hallikainen简化实部经验模型模拟的介电常数实部与实测值的决定系数R~2分别为0.935 9、0.869,表明2个模型均能模拟地表土壤水分与介电常数实部的密切关系;最后构建了Dobson模型、Hallikainen简化实部模型反演土壤含水率的模型,并与统计回归模型比照,其模拟数值与土壤实测值的决定系数R2分别为0.803 8、0.737 4、0.842 1,均方根误差RMSE分别为5.2%、5.7%、5%。Dobson模型与统计回归模型反演结果与实地土壤墒情分布较为吻合,具有良好的精度和适用性,从而建立了一个较为完整的土壤介电特性研究体系,为微波遥感监测土壤水分奠定了基础。  相似文献   

14.
基于综合干旱指数的毛乌素沙地腹部土壤水分反演及分布   总被引:1,自引:3,他引:1  
为了克服单一干旱监测指数在复杂覆盖类型的适用性问题,以复杂覆盖类型的毛乌素沙地腹部乌审旗为例,在传统归一化干旱指数(normalized difference drought index,NDDI)、土壤湿度监测指数(soil moisture monitoring index,SMMI)、温度植被干旱指数(temperature vegetation drought index,TVDI)3个单一干旱监测指数的基础上,通过层次分析法确定各指数的权重,结合野外不同覆盖类型实测的土壤含水率数据,分别进行回归分析,建立多指数综合干旱监测模型,基于此模型分析研究区表层土壤水分的空间分布。结果表明:3个单一干旱指数在一定程度上均能客观反映旱情特征,与表层土壤含水率呈现不同程度的负相关,温度植被干旱指数相关性最好为0.604。引入结合多指数的综合干旱监测指数模型,在8月、9月草地和沙地与表层土壤含水率指数模型的决定系数R2均在0.7以上,高于基于单一指数模型的拟合精度。基于该模型,研究区研究区表层土壤含水率整体较低,体积含水率不高于0.15 cm~3/cm~3的面积分别占96.47%(8月)和94.8%(9月)。总体上从东到西,由北到南土壤含水率逐渐降低,与实测表层土壤样本的描述性统计结果有较好的空间一致性。  相似文献   

15.
区域蒸散和表层土壤含水量遥感模拟及影响因子   总被引:4,自引:2,他引:4  
以甘肃省武威市为研究区域,应用灌溉前后两景Landsat TM-5卫星遥感数据,采用SEBAL模型进行了区域蒸散估算,综合应用归一化植被指数(NDVI)和地表温度(Ts),计算了该区域的条件植被温度指数(VTCI),并估算了表层土壤含水量(0~20 cm)。在获得区域净辐射通量、地表温度以及植被覆盖度空间分布的基础上,进一步对灌溉前后两景影像中日蒸散和表层土壤含水量的影响因素进行了分析。结果表明,区域蒸散和表层土壤含水量的遥感估算与地面同步观测值比较,能较好地反映研究区域的蒸散和地表含水量的空间变异特征。当土壤较干时,区域蒸散的空间分布变异较大,而表层土壤含水量的空间变异较小。在灌溉前后两景影像中,日蒸散与净辐射通量、地表温度和覆盖度之间都有极显著的相关性,决定系数均在0.90以上,而日蒸散量与表层土壤含水量的相关性以灌溉后较高。此外,表层土壤含水量与地表温度、覆盖度都呈显著的相关性,但比较而言,地表温度指数关系的离散性较小,相关系数也大。但地表温度、覆盖度与表层土壤含水量的相关性都依赖于土壤干湿程度,通常土壤越湿,相关性也越高。  相似文献   

16.
含水量对黑土光谱特征影响的定量分析   总被引:4,自引:0,他引:4  
Several studies have demonstrated that soil reflectance decreases with increasing soil moisture content, or increases when the soil moisture reaches a certain content; however, there are few analyses on the quantitative relationship between soil reflectance and its moisture, especially in the case of black soils in northeast China. A new moisture adjusting method was developed to obtain soil reflectance with a smaller moisture interval to describe the quantitative relationship between soil reflectance and moisture. For the soil samples with moisture contents ranging from air-dry to saturated, the changes in soil reflectance with soil moisture can be depicted using a cubic equation. Both moisture threshold (MT) and moisture inflexion (MI) of soil reflectance can also be determined by the equation. When the moisture range was smaller than MT, soil reflectance can be simulated with a linear model. However, for samples with different soil organic matter (OM), the parameters of the linear model varied regularly with the OM content. Based on their relationship, the soil moisture can be estimated from soil reflectance in the black soil region.  相似文献   

17.
数据融合是解决不同来源遥感数据无法直接对比分析这一瓶颈的有效方法。实时更新的SMOS土壤水分数据(soil moisture and ocean salinity)可开展实时干旱评价(2010年至今),但由于序列短无法开展频率及演变分析。CCI(climate change initiative)土壤水分数据是联合了多种主被动遥感数据合成的长序列数据产品(1979—2013年)。为提高不同来源遥感数据的融合精度,该研究基于累积分布匹配原理构建了多源遥感土壤水分连续融合算法,将SMOS和CCI融合成长序列、近实时的遥感土壤水分数据。经验证分析,累积概率曲线相关性中表征干旱的低值区纳什效率系数由0.52提高到0.99,且融合后土壤水分数据可以较准确地反映当地的干旱事件。该研究提出的多源遥感土壤水分连续融合算法显著提高了现有融合算法的融合精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号