首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
近红外光谱法在玉米粗蛋白含量测定研究中的应用   总被引:6,自引:2,他引:6  
探讨了HN1100型近红外光谱仪测定玉米粗蛋白的可行性。结果表明,定标集、检验集的预测值与化学测定值间均达极显著正相关,相关系数分别为0.982和0.937,并具有较小的定标标准差和预测标准差,分别为0.124和0.499。该仪器可用于玉米粗蛋白含量的测定。  相似文献   

2.
用近红外光谱法测定大麦品质的研究   总被引:2,自引:0,他引:2  
采用国标法和近红外光谱法(NIRS)对大麦籽粒水分、蛋白质、淀粉、赖氨酸进行分析,同时用IA-450型近红外分析仪对4个主要品质指标建立了定标方程。其相关系数Rc分别为0.9847、0.9947、0.9559、0.9742,标准误差为0.1649~9.0620,表明用近红外光谱法建立的大麦籽粒水分、蛋白质、淀粉、赖氨酸定标方程可直接用于大麦品质的快速测定和大批育种材料的筛选。  相似文献   

3.
[目的]快速测定烟草中淀粉的含量。[方法]采用近红外(NIR)漫反射光谱仪扫描140个烤烟烟叶样品,连续流动法测定其淀粉的含量,多种参数方法对谱图进行处理,最后选择消除常数法对光谱进行预处理和偏最小二乘法对数据进行拟合,建立了烤烟中淀粉的NIR预测模型,并对这些模型进行了外部验证。[结果]淀粉的预测值与连续流动法测定值的平均相对偏差均在5%以内,精密度RSD均小于5%。[结论]该模型可快速测定烟叶中淀粉的含量,对控制烟草调制过程中淀粉的转化和烟草制品中的淀粉含量具有重要意义。  相似文献   

4.
水稻籽粒直链淀粉含量非破坏性活体测定方法研究   总被引:1,自引:1,他引:1  
对533份杂交稻和常规稻材料的糙米和精米直链淀粉含量进行化学分析,并结合近红外透射光谱数据,采用改进偏最小二乘法(MPLS)分别建立糙米、精米的直链淀粉含量(AC)预测定标模型,并对其进行内部和外部验证.结果表明,杂交稻糙米及精米模型的定标相关系数(RSQ)分别为0.873和0.922,常规稻糙米及精米模型的RSQ则分别为0.924和0.939,定标标准偏差(SEC)分别为1.100,0.956,1.537,1.547;内部交叉验证预测值和真实值之间的RSQ分别为0.866,0.901,0.892和0.921,外部验证的RSQ分别为0.9506,0.9352,0.9116,0.9180,所建模型的相关性较高,预测值与真实值之间的误差小.常规稻模型可应用于大量育种材料快速、无损的早代筛选,杂交稻模型可用于新组合直链淀粉含量的快速鉴定,促进稻米品质改良,提高育种效率.  相似文献   

5.
[目的]探讨应用近红外光谱仪测定苎麻粗蛋白的可行性.[方法]以50个样品组成校正集,采用偏最小二乘法(PLS)建立近红外光谱信息与粗蛋白含量的校正模型,用该模型对10个样品的粗蛋白进行预测.[结果]该模型的相关系数为0.98.苎麻粗蛋白含量的化学测定值与近红外光谱模型预测值之间存在较好的相关性,预测值与化学值之间的平均相对误差为3.54%.[结论]用近红外光谱分析建立苎麻粗蛋白预测模型并测定苎麻粗蛋白含量是可行的.  相似文献   

6.
对533份杂交稻和常规稻材料的糙米和精米直链淀粉含量进行化学分析, 并结合近红外透射光谱数据, 采用改进偏最小二乘法(MPLS)分别建立糙米、精米的直链淀粉含量(AC)预测定标模型, 并对其进行内部和外部验证. 结果表明, 杂交稻糙米及精米模型的定标相关系数(RSQ)分别为0.873和0.922, 常规稻糙米及精米模型的RSQ则分别为0.924和0.939, 定标标准偏差(SEC)分别为1.100,0.956,1.537,1.547; 内部交叉验证预测值和真实值之间的RSQ分别为0.866,0.901,0.892和0.921, 外部验证的RSQ分别为0.9506,0.9352,0.9116,0.9180, 所建模型的相关性较高, 预测值与真实值之间的误差小. 常规稻模型可应用于大量育种材料快速、无损的早代筛选, 杂交稻模型可用于新组合直链淀粉含量的快速鉴定, 促进稻米品质改良, 提高育种效率.  相似文献   

7.
为实时监测鲜木薯中水分,指导其加工,建立了近红外光谱法现场快速测定木薯中水分含量的方法。采用横切木薯茎块方式进行制样,对其横截面进行近红外光谱扫描,二阶导数法预处理光谱图,定量偏最小二乘法(QPLS)建立模型,优化了模型条件和参数,建立最佳近红外光谱数学模型。结果:数学模型良好,验证集样品的化学值和近红外预测值间相关系数为O.9755,校正标准偏差(SEC)为1.31%,相对标准偏差(RSD)为2.20%,决定系数(R:)为0.9516。未知样品预测结果相对误差O.5%~3.4%。该水分定量分析NIRS数学模型具有较高的准确性,可满足快速测定鲜木薯中水分的要求,对促进鲜木薯加工业提高效率有积极意义。  相似文献   

8.
运用近红外光谱法测定烤烟中蛋白质含量的数学模型   总被引:14,自引:1,他引:14  
运用傅立叶变换近红外漫反射光谱仪(NIRS)分析了初烤烟叶中蛋白质含量,通过应用化学计量学方法,建立近红外光谱与初烤烟叶样品中蛋白质含量间关系的数学模型。结果表明:该模型稳定性好,可用来快速、准确、无污染地测定初烤烟叶样品中的蛋白质含量。  相似文献   

9.
[目的]探讨应用近红外光谱仪测定苎麻粗蛋白的可行性。[方法]以50个样品组成校正集,采用偏最小二乘法(PLS)建立近红外光谱信息与粗蛋白含量的校正模型,用该模型对10个样品的粗蛋白进行预测。[结果]该模型的相关系数为0.98。苎麻粗蛋白含量的化学测定值与近红外光谱模型预测值之间存在较好的相关性,预测值与化学值之间的平均相对误差为3.54%。[结论]用近红外光谱分析建立苎麻粗蛋白预测模型并测定苎麻粗蛋白含量是可行的。  相似文献   

10.
利用近红外光谱法测定玉米籽粒含油量的研究   总被引:5,自引:1,他引:5  
用近红外光谱(NIRS)分析技术和偏最小二乘法(PLS)建立了玉米籽粒含油量分析数学模型,并对模型预测结果的准确性进行了评价。结果表明,定标集、检验集的预测值与化学测定值间均呈极显著正相关,相关系数分别为0.958和0.957,定标标准差和预测标准差分别为0.757和0.745。利用该技术能测定玉米籽粒含油量。  相似文献   

11.
Using 128 bulk-kernel samples of inbred lines and hybrids,a study was conducted to investigate the feasibility and method of measuring protein and starch contents in intact seeds of maize by near infrared reflectance spectroscopy(NIRS).The chemometric algorithms of partial least square(PLS)regression was used.The results indicated that the calibration models developed by the spectral data pretreatment of first derivative+multivariate scattering correction within the spectral region of 10 000-4 000 cm-1,and first derivative + straight line subtraction in 9 000-4 000 cm-1 were the best for protein and starch,respectively.All these models yielded coefficients of determination of calibration(R2ca1)above 0.97,while R2cv and R2va1 of cross and external validation ranged from 0.92 to 0.95,respectively; however,the root of mean square errors of calibration,cross and external validation(RMSEE,RMSECV and RMSEP)were below l(ranged 0.3-0.7),respectively.This study demonstrated that it is feasible to use NIRS as a rapid,accurate,and none-destructive technique to predict protein and starch contents of whole kernel in the maize quality improvement program.  相似文献   

12.
近红外反射光谱测定玉米完整籽粒蛋白质和淀粉含量的研究   总被引:31,自引:3,他引:31  
 以128份常用普通玉米自交系及杂交种的混合籽粒样品为材料,采用偏最小二乘(PLS)回归法,对近红外反射光谱(NIRS)测定玉米完整籽粒蛋白质、淀粉含量的可行性和方法进行了研究。结果表明,采用一阶导数+多元散射校正预处理、谱区为10000~4000cm-1和一阶导数+直线扣减预处理、谱区为9000~4000cm-1,分别建立的蛋白质、淀粉含量的校正模型,其校正和预测效果最佳。其校正决定系数(R2cal)均大于0.97,交叉验证和外部验证决定系数(R2cv、R2val)为0.92~0.95,各项误差(RMSEE  相似文献   

13.
近红外反射光谱(NIRS)分析技术及其在农业上的应用   总被引:3,自引:0,他引:3  
论述了近红外光谱(NIRS)分析技术的原理、技术特点,介绍了近红外光谱仪、光谱预处理方法以及化学计量学研究的发展过程,最后重点论述近红外反射光谱技术的应用现状及其发展前景。  相似文献   

14.
近红外漫反射光谱法测定青贮玉米品质性状的研究   总被引:24,自引:0,他引:24  
【目的】研究利用近红外漫反射光谱法(NIDRS)测定青贮玉米的体外干物质消化率 (IVDMD)、中性洗涤纤维(NDF)、酸性洗涤纤维 (ADF)、粗蛋白(CP)和粗脂肪(EE)含量的可行性。【方法】以普通、高油和超高油玉米全株和秸秆的青贮样为材料,采用光谱的主成分空间技术和偏最小二乘回归法(PLS)。【结果】所建立的IVDMD、NDF、ADF、CP和EE的校正模型的交叉验证决定系数(R2cv)分别为0.9133、0.9764、0.9789、0.9254和0.7294,外部验证决定系数(R2val)分别为0.8879、0.9455、0.9635、0.9387和0.7333,各项误差(RMSEE、RMSECV和RMSEP)为0.24(CP)~2.23(NDF)。【结论】利用近红外漫反射光谱法测定青贮玉米品质性状是完全可行的,该结果可满足畜牧业对青贮饲料品质快速分析的需要,对青贮玉米育种材料的快速鉴定筛选具有重要的意义。  相似文献   

15.
采用独立分量分析(ICA)方法,对玉米样品的近红外光谱进行分解,得到统计上独立的各成分光谱;然后用多元回归方法建立基于ICA成分的玉米粗蛋白质、粗淀粉和粗脂肪含量的定量分析模型,3种成分建模集和预测集的化学值和近红外预测值之间的相关系数都较高,且平均相对误差都较低。结果表明,ICA方法建立的玉米样品3个主要成分的近红外模型预测准确度都较高,可应用于玉米育种中大批样品的快速品质分析。  相似文献   

16.
基于近红外光谱的玉米秸秆捆包青贮饲料的品质测定研究   总被引:1,自引:1,他引:1  
以112个玉米秸秆整杆捆包方式青贮的饲料为试验材料,利用近红外漫反射光谱技术,结合偏最小二乘法,对捆包青贮饲料的pH值、粗蛋白(CP)、粗灰分(CA)、干物质(DM)和可溶性碳水化合物(WSC)含量进行测定和分析。结果表明,pH值、CP、CA和DM的校正模型决定系数(R^2)以及外部验证决定系数R2V均大于0.85,且pH值、CA和CP的相对分析误差RPD(SD/SECV)均大于2.5。WSC的RPD大于2,外部验证决定系数RV^2为0.72。近红外漫反射法可以很好地测定捆包青贮样品的pH值、CA和CP含量。测定DM含量时,需进一步扩大样品含量变异范围。该方法也可对WSC含量进行粗略估测,但精度有待提高。  相似文献   

17.
利用近红外光谱法对烟叶氮钾含量的快速测定   总被引:1,自引:0,他引:1  
探讨了近红外光谱法无损快速测定烟叶氮钾含量的可行性,利用傅里叶变换近红外光谱仪测定建模集(104个)和检验集(40个)烟叶样品的近红外光谱,采用偏最小二乘法(PLS)把测得的烟叶光谱值与常规化学分析法测得的全氮和全钾数值拟合建立定标模型,经分析得出:预测模型分析氮的相关系数(R)为0.951,预测标准差(RMSEP)0.301;钾的相关系数(R)为0.928,预测标准差(RMSEP)为0.278。近红外法测定结果与常规方法已有较好的相关性,能为今后快速诊断烟叶的营养状况提供新技术。  相似文献   

18.
利用近红外分析技术测定胡麻种质资源品质   总被引:6,自引:0,他引:6  
党照  赵利 《西北农业学报》2008,17(2):110-113
利用Perten公司DA7200型近红外透射光谱分析仪,对甘肃胡麻种质资源库的364份胡麻资源的籽粒品质成分进行测定。结果表明,胡麻籽粒4种品质成分在不同材料间存在明显差异,硬脂酸、木酚素、棕榈酸和油酸变异系数较大;碘价、粗脂肪、亚油酸和亚麻酸含量的变异系数较小。资源中粗脂肪平均含量为38.64%,硬脂酸平均含量为4.94%,棕榈酸平均含量为5.58%,油酸、亚油酸、亚麻酸、碘价和木酚素平均含量依次为29.15%、11.4%、51.31%、175.69和9.60 mg/g。筛选出了123份优异种质资源供育种利用。并对近红外技术在胡麻品质育种中的利用作了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号