首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
根据2014年10月、2015年3月、5月和8月在桑沟湾养殖水域开展的海洋调查所获取的营养盐状况调查数据,分析了营养盐含量的季节变化和平面分布,并对该水域营养水平状况进行了评价.结果显示,该海域秋季溶解无机氮(DIN)含量明显高于其他三个季节.夏季NO2-N的平均含量最高,秋季NO3-N的平均含量最高,春季NH4-N的平均含量最高,冬季PO4-P的平均含量最高.与海水水质标准相比,各季节DIN总体水平均低于海水一类标准值,春季和夏季PO4-P总体水平低于海水一类标准值,秋季和冬季PO4-P总体水平则高于海水一类标准值.从平面分布看,春季DIN含量呈湾内低、湾外高的趋势,夏季和秋季呈湾内高、湾外低的趋势,冬季呈自湾内南部水域向北逐渐降低的趋势.春季和冬季PO4-P含量均呈自湾内中部水域向外逐渐下降的趋势,夏季呈自湾内中部水域向外逐渐上升的趋势;秋季则呈湾内高、湾外低的趋势.春季、夏季和冬季N/P比值均高于Redfield比值,无机磷相对缺乏,而秋季N/P比值与Redfield比值基本一致.根据潜在性富营养化评价模式,桑沟湾养殖海域四个季节的营养水平较低,均属贫营养水平.与20世纪八九十年代相比,桑沟湾浮游植物生长的主要限制性因素已由整体的氮限制转变为春、夏季磷限制为主.  相似文献   

2.
桑沟湾海带养殖容量的研究   总被引:23,自引:5,他引:23  
首次对桑沟湾的海带养殖容量进行了调查研究。采用了无机氮作为估算桑沟湾海带养殖容量的关键因子,通过无机氮的供需平衡估算海带养殖容量。结果显示,海底沉积物中释放的无机氮为该湾无机氮的主要来源,而由海水交换所带入的无机氮次之。海带生长期间海水交换周期为39d,比80年代中期延长了近1倍。桑沟湾在海带生长期间由海水交换、陆地径流、动物排泄和海底沉积物中释放所进入该湾的无机氮总供应量为1228t;而浮游植物  相似文献   

3.
于2001年3月至2002年3月在2个典型养殖海湾——莱州湾和桑沟湾,对其海水中主要营养盐进行了周年监测。结果显示,在莱州湾,总无机氮(TIN)浓度春季最低,冬季最高;活性磷酸盐(PO_4~(3-)-P)浓度春季最高,冬季最低;活性硅酸盐(SiO_3~(2-)-Si)浓度夏季最高,春季和秋季最低;N与P的浓度比[C(N)/C(P)]变化范围为1.145~128.61,年平均值为21.066±22.712。Si与N的浓度比[C(Si)/C(N)]的变化范围为0.000~0.922,年平均值为0.241±0.280。说明Si有可能是该湾主要的限制性元素。在莱州湾,总无机氮(TIN)浓度春季最低,夏季最高;活性磷酸盐(PO_4~(3-)-P)浓度冬季最高,夏季最低;活性硅酸盐(SiO_3~(2-)-Si)浓度夏季最高,最低值出现在春季和秋季;C(N)/C(P)的变化范围为1.482~149.935,年平均值为18.080±28.854;除夏、秋季部分月份外,N限制的可能性较大。C(Si)/C(N)的变化范围为0.000~2.840,年平均值为0.387±0.609,但大部分时间为0.5以下,表明Si也可能是桑沟湾的主要限制性营养盐。  相似文献   

4.
桑沟湾春季营养盐分布特征及赤潮暴发诱因   总被引:4,自引:1,他引:4  
根据2006年4月和2011年4月两个航次的调查数据,对比分析了桑沟湾水域春季水温、盐度及溶解无机氮(DIN)、活性磷酸盐(PO43-)、活性硅酸盐(Si32 -Si)含量的时空分布特征,探讨了目前大面积赤潮暴发的可能原因。结果显示,2011年的氮、磷、硅浓度都高于2006年同期调查结果,分别是2006年的5.6倍,1.3倍和3.2倍。氮磷比高达(66.33?47.16),硅磷比为(35.12?21.44),硅氮比为(0.82?0.77),严重偏离Redfield比值。块状分布明显,氮、磷、硅的空间分布情况相似,都是在湾口的东南部(褚岛外海)有高值区,向湾内递减;在湾底的西北部赤潮的始发区,有次高值区,与盐度的低值区几乎重叠。从营养盐、水文、大型藻类营养盐竞争与克生作用及水温4个方面,分析了赤潮暴发的可能原因。  相似文献   

5.
桑沟湾营养盐时空分布及营养盐限制分析   总被引:3,自引:0,他引:3       下载免费PDF全文
根据2006年4、7、11月和2007年1月共4个航次的调查数据,分析了桑沟湾水域的溶解无机氮(DIN)、活性磷酸盐(PO43-)和活性硅酸盐(Si)含量的时空分布特征,采用营养盐浓度阈值法和化学计量法对桑沟湾营养盐潜在的限制性进行了分析。结果显示,桑沟湾DIN、PO43-、Si含量及分布呈现出明显的季节变化:DIN在秋季最高,春季最低;PO43-在秋季最高,夏季最低;Si在夏季最高,秋季最低。春季DIN和PO43-的含量低于理论上浮游植物生长的营养盐阈值的站位分别占44%和39%;夏季PO43-的潜在限制性较强,浓度低于营养盐阈值的站位占68%,受PO43-潜在限制的几率达79%,DIN和Si分别为5%和0;秋、冬季Si可能是浮游植物生长的主要限制因子。讨论了海水养殖、陆源输入及外海交换对营养盐时空分布的影响。目前,桑沟湾营养盐浓度基本属于国家一类、二类水质。但是,长期变化趋势显示DIN有上升的趋势。  相似文献   

6.
桑沟湾养殖海域营养状况及其影响因素分析   总被引:10,自引:0,他引:10  
桑沟湾营养现状调查结果表明,桑沟湾营养状况不仅受沿岸排放水的影响,而且大面积的海带和扇贝养殖对于营养盐的补充与消耗也有较大的影响,特别是在扇贝养殖区水域,富营养化水平较高。由N/P比值计算结果表明,从整个海湾看,冬季无机氮显得相对紧缺,而其他季节无机磷则显得相对紧缺。但从局部海域看,各季节扇贝养殖区无机磷显得相对紧缺。而在扇贝和海带混养区的1月,以及在海带单养区养殖海带期间的1月和4月无机氮显得相  相似文献   

7.
桑沟湾养殖海域的水环境特征   总被引:14,自引:0,他引:14  
本文研究了桑沟湾养殖海域的水环境特征,并与10年前的历史资料作了比较。该湾各种化学指标的垂直分布均匀;受大面积高密度养殖影响,该湾水动力状况与10年前相比发生了明显变化,营养物质输送和海水自净能力降低;各种化学指标、初级生产力、营养状况及类型等平面分布和季节性变化都有更加显著的差异。在海带养殖期间,IN和IN/IP始终处于低水平,其季节变化明显受该湾初级生产力制约,故IN必然成为桑沟湾初级生产的限制因素。另外,海带养殖也加速了其养殖期间湾内水体中IN的物质循环速率。  相似文献   

8.
莱州湾东部养殖水域氮、磷营养盐的分布与变化   总被引:7,自引:1,他引:7  
根据1997年5月-1998年6月对莱州湾的6次调查资料,研究了莱州湾氮,磷营养盐的平面分布和季节变化规律,结合历史资料讨论了莱州湾氮,磷营养盐的历史演变。提出在研究近岸海生态体系中氮,磷营养盐限制性,应该对氮,磷营养盐的周转速进行研究。  相似文献   

9.
莱州湾海域近年营养盐状况分析   总被引:8,自引:0,他引:8  
海水中的无机氮和无机磷等营养盐类,是海洋浮游植物生长、繁殖所必需的成分,其浓度高低可直接反映出海域的营养化程度。在此,仅就1996~1998年度莱州湾监测水域营养盐状况作一分析。1材料与方法在莱州湾5m以上水域均匀布设14个监测站位,在0m、5m层分别采取水样。湾底部浅水区站之间的间距较密,小清河口、黄河口外也没有站位。每年两航次监测相同的站位,时间分别在枯水期(5月底)和丰水期(8月底)。主要分析项目为氨氮、亚硝酸盐、硝酸盐、磷酸盐等。按《海洋监测规范》进行操作。2结果与分析2.1无机氮的年度数值变化图1莱州湾1996…  相似文献   

10.
基于海流、波浪、水环境和沉积环境指标的实测资料,探讨了桑沟湾贝类养殖水域沉积物再悬浮的动力机制,并估算了一次大的动力过程作用下桑沟湾沉积物中氮、磷营养盐的释放量。结果表明,(1)在小风速(≤5.0m/s)条件下,波浪在海水-沉积物界面产生的切应力量值与底流切应力大致相当;在较大风速(5.0~11.8m/s)条件下,波浪切应力比底流切应力高出一个量级;(2)当风浪较小(风速≤3.6m/s)时,随底层流速的周期性变化,底层水体浊度变化并未呈现出明显的规律性,二者相关系数值仅为0.22,这说明底流作用只会引起沉积物的水平输运,对沉积物再悬浮的贡献相对较小,沉积物再悬浮的动力主要来自波浪扰动;(3)据估计,桑沟湾贝类养殖水域沉积物再悬浮的临界波浪切应力在0.04N/m2左右,对应的风速约为8m/s;(4)据估算,一次大的动力过程作用下桑沟湾沉积物中无机氮和活性磷酸盐的最大释放量,春季分别为10.24t和1.71t,这相当于全湾水体中无机氮平均含量增加9.54μg/L,活性磷酸盐平均含量增加1.59μg/L;夏季分别为11.04t和0.95t,相当于全湾水体中无机氮平均含量增加10.28μg/L,活性磷酸盐平均含量增加0.88μg/L;(5)贝类养殖使桑沟湾生物沉积作用加强,而沉积物再悬浮造成的内源释放,又对桑沟湾的水产养殖产生反馈作用。  相似文献   

11.
虾塘养殖水环境中氮磷营养盐的存在特征与行为   总被引:23,自引:0,他引:23  
孙耀 《水产学报》1998,22(2):117-123
根据现场调查结果,讨论了虾塘养殖水环境中氮磷营养盐的存在特征与行为,在该水环境中,IP的季节变化相对平稳,而IN则在养殖中后期变化幅度较大,IN和IP的垂直分布均匀;IN的形态分布有显著的季节变化,且与开阔浅海不同,NO2N也成为IN的主要存在形态,IN与IP比值始终较低,且IN在虾养殖期间的大部分时间内都处于贫瘠水平,从而构成该养殖水环境中初级生产的限制因素,而相对较高密度的浮游植物,则是缩短该  相似文献   

12.
桑沟湾养殖水域的初级生产力及其影响因素的研究   总被引:8,自引:1,他引:8  
桑沟湾是我国黄海沿岸的重要水产养殖水。近年来,由于该养殖水域的养殖密度大幅度增长,引发了养殖生物低增长率、高死亡率和养殖生产上高投入、低产出等问题的产生。通过本次调查,作者初步了解了该海域初级生产力分布状况及其季节变化以及水产养殖状况和其他环境因素对初级生产力的影响,并与10年前的历史调查资料相比较。  相似文献   

13.
桑沟湾海水中悬浮颗粒物的动态变化   总被引:8,自引:0,他引:8  
用常规调查分析结合自动监测法对桑沟湾海水中悬浮颗粒物的季节性变化、水平与垂直分布作了全面的调查。结果表明,该湾总悬浮颗粒物和有机悬浮颗粒物的月平均数量变动范围分别为4.62~40.06和1.90~6.14mg/L;叶绿.素α和悬浮颗粒物的质量变动范围分别为0.95~9.68μg/L和0.07~0.80μg/mg。悬浮颗粒物质量的周日变化与潮流运动有关;而其数量无明显的周日变化。悬浮颗粒物质量的水平分布趋势为从湾口到湾底逐渐增加;数量的水平分布趋势与之相反。悬浮颗粒物数量的垂直分布趋势为从上到下逐渐升高;质量垂直分布趋势与之相反。在扇贝养殖区内由于扇贝的消耗,中层水中悬浮颗粒物的数量与质量最小。  相似文献   

14.
桑沟湾海水养殖现状评估及优化措施   总被引:5,自引:0,他引:5  
桑沟湾湾内外海带现养殖总水面为7500hm^2,平均养殖量为900kg/1500m^2左右,平均养殖容量约为600kg/1500m^2,养殖量高于养殖平均容量约50%。该湾栉孔扇贝现养殖总量为20亿粒,平均养殖密度为50粒/m^2。与养殖容量相比,壳高3 ̄4cm的孔扇贝的养殖密度尚未达到其养殖容量,有进一步增加养殖密度的潜力;壳高4 ̄5cm的中等大小的栉孔扇贝的养殖密度已基本增加密度的潜力;壳高4  相似文献   

15.
桑沟湾栉孔扇贝不同养殖方式及适宜养殖水层研究   总被引:11,自引:0,他引:11  
在桑沟湾内,对栉孔扇贝Chlamys(Azumapecten)farreri(JonesetPreston)的笼养与串耳养殖等不同养殖方式及不同水层(1m、2m、3m、4m)的养殖效果进行了综合试验和分析。结果表明:(1)串耳养殖的扇贝平均壳高增长比笼养扇贝生长快,两种方式效果差异极明显(P<0.01);(2)串耳养殖方式以2m为最佳养殖水层,其次为1m和3m,4m水层最差,而且2m与4m的养殖效果存在明显差异(P<0.05);(3)笼养方式的最佳水层为4m,其养殖效果依次为4m>1m>3m和2m。试验显示,在不同的养殖方式下,栉孔扇贝最佳生长的养殖水层是不同的。本文还对产生这一差异的原因进行了分析讨论  相似文献   

16.
EXISTENCE FORMS AND DISTRIBUTION OF SELENIUM IN BLUE MUSSEL AND BAY SCALLOP   总被引:1,自引:0,他引:1  
EXISTENCEFORMSANDDISTRIBUTIONOFSELENIUMINBLUEMUSSELANDBAYSCALLOPMaoWenjun1)LiYi2)GuanHuashi1)LinHong1)LiuYuhua3OceanUniversit...  相似文献   

17.
为研究近年来香溪河库湾营养盐分布特征及营养化程度,于2008-2015年春季水华敏感期对三峡水库香溪河库湾进行水环境监测,使用改进的综合营养状态指数法与主成分分析法对其水体营养化状况进行分析和评价。结果表明,香溪河库湾TN、TP浓度从香溪河上游到河口的纵向分布规律明显,TN浓度从上游至下游河口呈现逐渐递增的趋势,TP浓度从上游至下游河口呈逐渐递减的趋势;透明度为0.6~6.0m,香溪河库湾TN浓度为0.21~1.87mg/L;TP浓度为0.04~0.37mg/L;Chl-a含量为0.53~184.61μg/L,2种评价结果基本一致。从时间上看,香溪河库湾富营养化程度是上游中游下游;从年际上看,水库蓄水过程能够临时降低水库干支流水体中的营养盐浓度,但增大了来年支流水体富营养化的风险,可见未来的香溪河富营养化问题将持续存在。  相似文献   

18.
桑沟湾栉孔扇贝养殖容量的研究   总被引:46,自引:5,他引:46  
通过计算单位面积的初级生产量生产的有机碳供应量、单位面积滤食性附着生物量及其对有机碳的需求量,首次对桑沟湾栉孔扇贝养殖容量进行了估算。结果显示,当栉孔扇贝壳高为3 ̄4cm时,其养殖总容量为110亿粒左右,单位面积养殖容量估算值为90粒/m^2;当壳高为4 ̄5cm时,其养殖总容量降为75亿粒,单位面积养殖容量估算值为60粒/m^2;当壳高为5 ̄6cm时,其养殖总容量仅为40亿粒,单位面积养殖容量为3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号