首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angular leaf spot, a disease of common bean produced by Phaeoisariopsis griseola, an imperfect (Deuteromycotina) fungus, causes significant yield losses in Argentina. The development of a strategy to control and/or reduce the impact of P. griseola requires a previous knowledge of the population structure. Therefore, the purpose of this work was to analyze diversity among 45 isolates of P. griseola collected within the production area of common bean in Northwestern Argentina. Pathotypes diversity was determined based on a set of bean differentials and genomic differences between isolates were determined by means of molecular markers. We confirmed that isolates belonging to Middle American and Andean groups coexist in Northwestern Argentina and the level of diversity between them was considerable and of similar level within each group. Even though the number of isolates analyzed was 45, among them 37 were Middle American and only eight were Andean. The number of haplotypes found based on ISSR and RAPD markers were 18 and as expected, they were unrelated with pathotypes. The wild bean species, Phaseolus vulgaris var. aborigineus, showed a high level of tolerance to most pathotypes of P. griseola except 63.63 and 63.23. This together with the fact that none of the bean differentials was resistant to all pathotypes led us to conclude that the range of pathogenic responses might be conditioned by multigenic interactions between the pathogen and the host. Our results not only provided basic information about the diversity of the causative agent of the disease but it will also help to develop cultivars with enhanced tolerance and/or resistance to the disease.  相似文献   

2.
Virulence on a standard set of 12 common bean differential varieties, DNA sequence of repetitive-elements (Rep-PCR) and random amplified microsatellites (RAMS) were used to assess the genetic variability of 200 Colletotrichum lindemuthianum isolates collected from Andean and Mesoamerican bean varieties and regions. High levels of pathotypic (90 pathotypes) and genetic diversity (0.97) were identified among 200 isolates, revealing that C. lindemuthianum is a highly diverse pathogen. Although a significant number of pathotypes were common to Andean and Mesoamerican regions, many more were only found in the Mesoamerican region. Cluster analysis of virulence and molecular data did not separate isolates into groups that were structured with common bean gene pools. No genetic differentiation (G ST=0.03) was apparent between Andean and Mesoamerican isolates of C. lindemuthianum. The diversity exhibited by C. lindemuthianum does not appear to cluster according to common bean gene pools, and the high diversity found in the Mesoamerican region seems to indicate that C. lindemuthianum originated and was disseminated from this region. Due to the high genetic variation exhibited by C. lindemuthianum, stacking major resistance genes appears to be the best option for developing cultivars with durable anthracnose resistance.  相似文献   

3.
A technique to improve the sporulation of Microdochium nivale in culture and to produce mycelium-free conidial suspensions was evaluated using cellophane-covered potato dextrose agar (PDA). Time to sporulation was significantly shorter on the cellophane-covered PDA (P < 0.001), yields of conidia were higher (P < 0.01) and conidial suspensions were produced virtually free of the mycelial fragments present in suspensions from PDA only. The conidial inoculum produced on cellophane had lower pathogenicity to wheat cv. Equinox in a detached leaf assay, showing significantly longer incubation periods (P < 0.05) and latent periods (P < 0.01), than conidia produced on PDA alone. However, the apparent decline in pathogenicity of conidial suspensions produced on cellophane compared to PDA alone was small.  相似文献   

4.
A study was undertaken to examine the main source of inoculum of Bipolaris sorokiniana responsible for its reappearance in rice–wheat cropping regions of eastern India. Soil samples were collected at monthly intervals during April–October in the years 2000 and 2001 from fields having rice–wheat cropping. Bipolaris sorokiniana conidia were isolated and their viability was found to decline sharply with the onset of flooding in the month of August. In contrast to 82% in April, viability was 4% and <1% in August and September, respectively. Viable conidia were multiplied in the laboratory and inoculated on to susceptible cv. Sonalika under controlled conditions for test of pathogenicity. Appearance of symptoms typical to spot blotch were recorded after 7 days. Twenty-two different species (weeds and grasses) normally found to be associated with rice–wheat fields were tested for the presence of B. sorokiniana to evaluate their possible role as alternative hosts. Only three species, i.e. Setaria glauca, Echinochloa colonum and Pennisetum typhoids, were found to naturally harbour B. sorokiniana. Isolates from these hosts were tested for pathogenicity and also for their possible spread to wheat. When reisolated from these hosts, the pathogen did not infect wheat. Seeds of 25 different wheat genotypes were tested for B. sorokiniana infection. All genotypes were infected and the incidence of infection varied from 26% to 86%. Five isolates of wheat and one isolate from each of the three species (S. glauca, E. colonum and P. typhoids) were subjected to RAPD analysis. Two broad clusters were formed, suggesting that the wheat isolates were different from the isolates originating from other hosts. The results indicate that seeds are the most important source of inoculum for the reappearance of spot blotch of wheat in rice-wheat cropping systems in eastern India.  相似文献   

5.
The inoculum sources of ascospores of Pleospora allii and of conidia of its anamorph Stemphylium vesicarium were investigated in relation to the brown spot disease epidemiology on pear. Dead and living leaves of three pear varieties (Abate Fétel, Conference and William), seven grasses (Poa pratensis, Festuca rubra, Festuca ovina, Lolium perenne, Digitaria sanguinalis and Setaria glauca) and Trifolium repens, which are used in pear orchard lawns, were inoculated with conidia of Stemphylium vesicarium virulent on pear and incubated under controlled-environment. Stemphylium vesicarium was always re-isolated from dead leaves of the considered plants, but not from symptomless green or yellowish living leaves. The fungus was occasionally re-isolated from leaf segments showing unspecific necrosis. Inoculation of pear leaves with isolates from grasses demonstrated that the fungus did not lose pathogenicity. Pseudothecia, ascospores and conidia were produced on all the dead inoculated leaves; differences between specimens were found for phenology of pseudothecia, their density and size, and for the number of conidia produced. Pseudothecia were produced faster in the lawn species than in pear leaves, and their density was higher, especially for S. glauca, L. perenne and P. pratensis. Ascospore maturation and ejection was more concentrated for the pseudothecia developed on pear leaves than for those on F. ovina and S. glauca. All the lawn species produced more conidia than pear leaves.  相似文献   

6.
Abstract

Angular leaf spot of beans caused by Phaeoisariopsis griseola is a major problem on this crop in Eastern Africa. The sources of inoculum for this disease were investigated. The causal fungus was confirmed as seedborne in all the cultivars tested. The fungus caused seed discolouration but not all infected seeds were discoloured. Seed to seedling transmission was low. The fungus survived in infected crop debris for a maximum of nine and four to six months under indoor and outside conditions respectively. Under soil, the fungus survived for only two months. Infected offseason crops and volunteer plants were present at the time of planting the seasons’ crops and were an obvious source of the inoculum. It is concluded that the seed, crop debris, off‐season crops and volunteer plants are all possible sources of P. griseola infection under the local conditions.  相似文献   

7.
Cercospora heliotropii-bocconii is a fungal pathogen of the ephemeral annual weedHeliotropium europaeum. The effects of wetness period and inoculum concentration on disease severity were studied under controlled conditions. The fungus was grown on different artificial culture media and carrot juice agar with 5 g l–1 yeast extract was found to be the most suitable medium for conidial production under artificial conditions. Abundant disease symptoms only occurred after 8 h of wetness at 20°C. The minimum incubation period before disease symptoms appeared was 8 days following a wetness period of at least 40 h. Inoculum concentration of 1×104 conidia per ml killed plants in less than one month and reduced seed production by two thirds. These results suggest that this pathogen has the potential to reduce plant survival and seed bank replenishment of this annual weed species.  相似文献   

8.
江苏麦类禾谷镰刀菌变异性的研究   总被引:4,自引:0,他引:4  
1980~1981年选取代表江苏不同地区引致麦类赤霉病的禾谷镰刀菌野生型和培养型菌株17个,并人工移植1~3次后,观察培养性状的变化;同时分别接种感病小麦品种“矮秆早”,观察致病性的变化,以分析病菌的变异性。结果证明:江苏极大多数禾谷镰刀菌菌株的野生型经人工移植三次后,无论是培养性状和致病力都发生了改变。一般表现力生长速度减慢,产孢数量变少,产孢速度变慢,分生孢子变小,分生孢子分隔数减少,不易产生分生孢子或不产孢,不易形成子囊壳或不产生子囊壳而产生粘孢团,以及致病力减弱。但是,只有少数菌株的变异特别明显。以上结果说明禾谷镰刀菌菌株中存在有变异现象,但不同菌株并不一致,培养性状变异与致病力强弱变异间的关系也可能因菌株而异。至于禾谷镰刀菌在无性培养中发生变异的原因还有待进一步研究。  相似文献   

9.
为揭示向日葵大丽轮枝菌Verticillium dahliae Kleb.的致病机理,利用农杆菌介导法将带有潮霉素抗性标记和绿色荧光蛋白报告基因的双元载体转入大丽轮枝菌的分生孢子中并获得阳性转化子,以野生型菌株为对照,对随机挑取的阳性转化子的菌落形态、菌丝生长速率、产孢量、粗毒素分泌量和致病力进行了研究。结果表明,共获得800株阳性转化子,随机选取的40株阳性转化子中有2株的菌落只产生白色气生菌丝,不能形成黑色微菌核。与对照相比,40株转化子的生长速率均有不同程度降低,其中转化子A1生长速度降低最显著,菌落直径仅为3.28 cm,比对照下降了38.92%。40株转化子中有3株的产孢量高于对照,其中转化子A9的产孢量最高,为3.50×10~7个/mL,比对照提高1.10倍;转化子A1的产孢量最低,仅为1.35×10~7个/mL,比对照下降了19.16%。40株转化子中有4株的粗毒素分泌量较对照显著升高,占测定菌株的10%,有24株较对照显著降低,占60%,其余12株与对照无显著差异。40株转化子中有3株的致病力较对照显著增强,占测定菌株的7.5%;有7株的致病力较对照显著降低,占17.5%;其余30株与对照无显著差异。  相似文献   

10.
In Ehime Prefecture, Japan, lettuce leaf spot (Septoria lactucae) caused huge losses in marketable lettuce yields. To explore potential measures to control disease outbreaks, the effects of inoculum density, leaf wetness duration and nitrate concentration on the development of leaf spot on lettuce (Lactuca sativa) were evaluated. Conidia were collected from diseased plants in an infested field by single-spore isolation and were used to inoculate potted lettuce plants with different conidial concentrations. Lesions developed on inoculated lettuce plants at inoculum concentrations from 100 to 106 conidia/ml. The disease was more severe when the inoculum exceeded 102 conidia/ml, and severity increased with increasing concentrations. Assessment of the relationship between disease development and the duration of postinoculation leaf wetness revealed that symptoms appeared when the inoculated plants remained wet for 12 h or longer. The number of lesions and total nitrogen content in the lettuce leaves both increased when nitrate was applied.  相似文献   

11.
In six field experiments, seed treatment with Clonostachys rosea (IK726) significantly reduced disease caused by Fusarium culmorum. IK726 was active against the pathogen at average soil temperatures at sowing ranging from 6.2 to 12 °C. Both in the field experiments and in growth chamber experiments conducted in sand, dried and stored conidia of IK726 controlled F. culmorum as effectively as freshly harvested conidia. A high correlation was found between disease index ratings from field experiments and from corresponding growth chamber sand tests. Amendment with the stickers Pelgel or Sepiret did not influence control activity. The effective dosages of IK726 (cfu/seed) were estimated in bioassays and were very similar for freshly harvested conidia and for dried conidia. With a density of > 5×103 conidia per seed more than 80% disease control was repeatedly obtained with both types of conidia.  相似文献   

12.
Phialophora gregata f. sp. adzukicola, a causal agent of brown stem rot in adzuki beans, produces phytotoxic compounds: gregatins A, B, C, D, and E. Gregatins A, C, and D cause wilting and vascular browning in adzuki beans, which resemble the disease symptoms. Thus, gregatins are considered to be involved in pathogenicity. However, molecular analyses have not been conducted, and little is known about other pathogenic factors. We sought to isolate nonpathogenic and gregatin-deficient mutants through Agrobacterium tumefaciens-mediated transformation (ATMT) for cloning of pathogenicity-related genes. The co-cultivation of P. gregata and A. tumefaciens for 48 h at 20°C with 200 μM acetosyringone resulted in approximately 80 transformants per 106 conidia. The presence of acetosyringone in the A. tumefaciens pre-cultivation period led to an increase in T-DNA copy number per genome. Of 420 and 110 transformants tested for their pathogenicity and productivity of gregatins, one nonpathogenic and three gregatin-deficient mutants were obtained, respectively. The nonpathogenic mutant produced gregatins, whereas the gregatin-deficient mutants had pathogenicity comparable to the wild-type strain. This is the first report of ATMT of P. gregata. Further analysis of these mutants will help reveal the nature of the pathogenicity of this fungus including the role of gregatin in pathogenesis.  相似文献   

13.
ABSTRACT Coevolution of the angular leaf spot pathogen, Phaeoisariopsis griseola, with its common bean host has been demonstrated, and P. griseola isolates have been divided into Andean and Mesoamerican groups that correspond to defined bean gene pools. Recent characterization of P. griseola isolates from Africa has identified a group of isolates classified as Andean using random amplified polymorphic DNA (RAPD), but which are able to infect some Mesoamerican differential varieties. These isolates, designated Afro-Andean, have been identified only in Africa. Random amplified microsatellites, RAPD, and restriction digestion of amplified ribosomal intergenic spacer region were used to elucidate the relationships among the Afro-Andean, Andean, and Mesoamerican groups of P. griseola. Cluster and multiple correspondence analysis of molecular data separated isolates into Andean and Meso-american groups, and the Afro-Andean isolates clustered with Andean isolates. Analysis of molecular variance ascribed 2.8% of the total genetic variation to differences between Afro-Andean and Andean isolates from Africa. Gene diversity analysis revealed no genetic differentiation (G(ST) = 0.004) between Afro-Andean and Andean isolates from Africa. However, significant levels of genetic differentiation (G(ST) = 0.39) were observed between Afro-Andean or Andean isolates from Africa and Andean isolates from Latin America, revealing significant geographical differentiation within the Andean lineage. Results from this study showed that Afro-Andean isolates do not constitute a new P. griseola group and do not represent long-term evolution of the pathogen genome, but rather are likely the consequents of point mutations in genes for virulence. This finding has significant implications in the deployment of resistant bean genotypes.  相似文献   

14.
Twenty-seven seed samples belonging to the lettuce cultivars most frequently grown in Lombardy (northwestern Italy), in an area severely affected by Fusarium wilt of lettuce, were assayed for the presence ofFusarium oxysporum on a Fusarium-selective medium. Isolations were carried out on subsamples of seeds (500 to 1500) belonging to the same seed lots used for sowing, and either unwashed or disinfected in 1% sodium hypochloride. The pathogenicity of the isolates ofF. oxysporum obtained was tested in four trials carried out on lettuce cultivars of the butterhead type, very susceptible to Fusarium wilt. Nine of the 27 samples of seeds obtained from commercial seed lots used for sowing in fields affected by Fusarium wilt were contaminated byF. oxysporum. Among the 16 isolates ofF. oxysporum obtained, only one was isolated from disinfected seeds. Three of the isolates were pathogenic on the tested cultivars of lettuce, exhibiting a level of pathogenicity similar to that of the isolates ofF. oxysporum f.sp.lactucae obtained from infected wilted plants in Italy, USA and Taiwan, used as comparison. The results obtained indicate that lettuce seeds are a potential source of inoculum for Fusarium wilt of lettuce. The possibility of isolatingF. oxysporum f.sp.lactucae, although from a low percent of seeds, supports the hypothesis that the rapid spread of Fusarium wilt of lettuce observed recently in Italy is due to the use of infected propagation material. Measures for prevention and control of the disease are discussed. http://www.phytoparasitica.org posting Dec. 16, 2003.  相似文献   

15.
Conidia ofAlternaria linicola produced on infected linseed crops were mainly dispersed by wind. The numbers of conidia in the air above linseed crops collected by a Burkard spore sampler were greatest between 1200 h and 1300 h, when the relative humidity was lowest. Although numbers of conidia collected decreased with increasing height within and above the crop canopy, air-borneA. linicola conidia were present up to 80 cm above the crop canopy. Conidia ofA. linicola were transported by wind up to at least 40 m downwind from an artificial line inoculum source, but their numbers decreased with increasing distance from the source. In 1991, 1992, and 1993, the dispersal ofA. linicola conidia above linseed crops followed a seasonal periodicity which was influenced by weather conditions and cultural practices. The greatest numbers of conidia were collected during July, August and early September and coincided with periods favourable for sporulation and with an increase in the incidence of the disease in the senescent crop. Air-borneA. linicola conidia produced on point or line inoculum sources (naturally infected linseed stem debris) were responsible for the spread of the disease in linseed crops. In 1992 and 1993, the disease was first detected downwind from the sources, but by the end of the growing seasons, it had spread in all directions and up to 20 m and 60 m from the sources, respectively. Disease gradients were initially steep near the inoculum sources but they became flatter with time due to the secondary spread of the disease.  相似文献   

16.
The dynamics of the production of Stemphylium vesicarium conidia and Pleospora allii ascospores from different inoculum sources on the ground were compared in a model system of a wildflower meadow mainly composed of yellow foxtail, creeping cinquefoil and white clover. The meadow was either inoculated (each October) or not inoculated with a virulent strain of S. vesicarium, and either covered or not covered with a litter of inoculated pear leaves. Spore traps positioned a few centimetres above the ground were exposed for 170 7-day periods between October 2003 and December 2006. Ascospores and conidia were trapped in 46 and 25% of samples, respectively. Ascospore numbers trapped from the pear leaf litter were about five times higher than those from the meadow, while conidial numbers were similar from the different inoculum sources. The ascosporic season was very long, with two main trapping periods: December–April, and August–October; the former was most important for the leaf litter, the latter for the meadow. The conidial season lasted from April to November, with 92% of conidia caught between July and September. The fungus persistently colonized the meadow: the meadow inoculated in early October 2003 produced spores until autumn 2006. The present work demonstrates that orchard ground is an important source of inoculum for brown spot of pear. Thus, it is important to reduce inoculum by managing the orchard ground all year long.  相似文献   

17.
Angular leaf spot (ALS), an important disease of common bean (Phaseolus vulgaris), is caused by the fungus Pseudocercospora griseola. This pathogen has a wide genetic variability and, therefore, poses a challenge to integrated disease management. The use of resistant cultivars is difficult; hence, the application of fungicides has been a common practice in common bean cultivation. P. griseola strains were morphophysiologically characterized and their sensitivity to common fungicides used to control ALS was studied. The strains were evaluated for sporulation capacity and a representative sample of 34 strains was bioassayed to determine their sensitivity to commercial concentrations of five fungicides, namely pyraclostrobin, mancozeb, pyraclostrobin + metconazole, chlorothalonil and tebuconazole. Another sample of 29 strains was studied for conidial germination and dimensions. Sporulation capacity ranged from 0.88 to 27.67 × 104 conidia/ml and germination percentage ranged from 39% to 72%. The large differences among strains suggest a wide genetic variability among the strains. A wide variability in aggressiveness of P. griseola was observed, which has consequences for breeding programmes aimed at resistance. The behaviour of pathogen strains differed in every fungicide evaluated, even in a population that has not been under selection pressure in the field. These results confirm the need for further studies and may guide future research with this pathogen.  相似文献   

18.
A boll rot of cotton (Gossypium hirsutum L.) was observed for the first time in Greece in August 1993 in Larissa and Volos counties, and in August and September 1995 in Trikala and Phthiotis counties. Fungi of the genusPhytophthora were isolated from diseased plants. Morphological characteristics of the pathogen were recorded on mounts made directly from the infected tissues or after growth of the isolated fungus on corn meal agar or sterile distilled water. Colony morphology, growth rates, features of asexual and sexual structures and maximum growth temperatures were examined. APhytophthora species new to Europe,Phytophthora boehmeriae Sawada, attacking cotton bolls, was identified. The pathogenicity of the isolates was confirmed by artificial inoculations of detached cotton bolls. Analysis of α-esterase isozymes revealed unique banding patterns for isolates ofP. boehmeriae compared with those ofP. cactorum andP. parasitica, which arePhytophthora species with similar morphology.  相似文献   

19.
In the present study, the pathogenicity of 36 isolates of Guignardia species isolated from asymptomatic ‘Tahiti’ acid lime fruit peels and leaves, ‘Pêra-Rio’ sweet orange leaves and fruit peel lesions, and a banana leaf were characterized. For pathogenicity testing, discs of citrus leaves colonized by Phyllosticta citricarpa under controlled laboratory conditions were kept in contact with the peels of fruit that were in susceptible states. In addition, pathogenicity was related to morphological characteristics of colonies on oatmeal (OA) and potato dextrose agar (PDA). This allowed the morphological differentiation between G. citricarpa and G. mangiferae. Polymerase chain reactions (PCRs) were also used to identify non-pathogenic isolates based on primers specific to G. citricarpa. A total of 14 pathogenic isolates were detected during pathogenicity tests. Five of these were obtained from leaf and fruit tissues of the ‘Tahiti’, which until this time had been considered resistant to the pathogen. Given that the G. citricarpa obtained from this host was pathogenic, it would be more appropriate to use the term insensitive rather than resistant to categorize G. citricarpa. A non-pathogenic isolate was obtained from lesions characteristic of citrus black spot (CBS), indicating that isolation of Guignardia spp. under these conditions does not necessarily imply isolation of pathogenic strains. This also applied to Guignardia spp. isolates from asymptomatic citrus tissues. Using fluorescent amplified fragment length polymorphism (fAFLP) markers, typically pathogenic isolates were shown to be more closely related to one another than to the non-pathogenic forms, indicating that the non-pathogenic isolates display higher levels of genetic diversity.  相似文献   

20.
为确定引起呼和浩特市苜蓿根腐病的病原菌种类,采用常规组织分离法对采集的疑似苜蓿根腐病病样进行病原菌分离与培养,利用形态学观察结合分子生物学方法对分离物代表菌株进行鉴定,并采用土壤接种法对代表菌株的致病性进行测定。结果表明,共分离获得6类形态学特征不同的分离物,各随机选择1株代表菌株进行鉴定,结合分子生物学鉴定结果确定呼和浩特市苜蓿根腐病病原菌有6种,分别是麦根腐平脐蠕孢菌Bipolaris sorokiniana、立枯丝核菌Rhizoctonia solani、木贼镰刀菌Fusarium equiseti、变红镰刀菌F. incarnatum、锐顶镰刀菌F. acuminatum和织球壳枯萎菌Plectosphaerella cucumerina,分别分离到1、7、14、26、7和14株菌株,占总分离菌株数的1.45%、10.14%、20.29%、37.68%、10.14%和20.29%。其中,立枯丝核菌的致病力最强,接种苜蓿幼苗发病的病情指数达82.67,其次为木贼镰刀菌、变红镰刀菌、锐顶镰刀菌、麦根腐平脐蠕孢菌和织球壳枯萎菌,病情指数分别为72.67、62.67、58.67、52....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号