首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this research project was to evaluate the antibody and cell-mediated immune responses to a multivalent vaccine containing killed bovine viral diarrhea virus (BVDV) types 1 and 2. Twenty castrated male crossbred beef cattle (350-420kg body weight) seronegative to BVDV were randomly divided into two groups of 10 each. Group 1 served as negative mock-vaccinated control. Group 2 was vaccinated subcutaneously twice, 3 weeks apart, with modified live bovine herpesvirus 1, parainfluenza 3 virus and bovine respiratory syncytial virus diluted in diluent containing killed BVDV type 1 (strain 5960) and type 2 (strain 53637) in an adjuvant containing Quil A, Amphigen, and cholesterol. Serum samples were collected from all cattle at days -21, 0, and days 21, 28, 35, 56 and 70 post-vaccination. Standard serum virus neutralization tests were performed with BVDV type 1 (strain 5960) and type 2 (strain 125C). Anticoagulated blood samples were collected at day 0, and days 28, 35, 56 and 70 post-vaccination. Peripheral blood mononuclear cells (PBMCs) were isolated, stimulated with live BVDV type 1 (strain TGAN) and type 2 (strain 890) and cultured in vitro for 4 days. Supernatants of cultured cells were collected and saved for interferon gamma (IFNgamma) indirect enzyme-linked immunosorbent assay (ELISA). Four-color flow cytometry was performed to stain and identify cultured PBMC for three T cell surface markers (CD4, CD8, and gammadelta TCR) and to detect the activation marker CD25 (alpha chain of IL-2 receptor) expression. The net increase in %CD25+ cells (Delta%CD25+) of each T cell subset of individual cattle was calculated. The results of all post-vaccination weeks of each animal were plotted and the areas under the curve of each T cell subset were statistically analyzed and compared between groups. The mean area under the curve of the Delta%CD25+ data for days 0-70 of all subsets, except CD4-CD8+gammadelta TCR- (cytotoxic) T cell subset of both BVDV types 1 and 2 stimulated cells, of the vaccinated group were significantly higher than the control group (P<0.05). IFNgamma production by PBMC from the vaccinated group showed significantly higher results (P<0.05) than the control group in the BVDV types 1 and 2 stimulated cells for at least some time points after vaccination. The vaccinated group also had significantly (P<0.0001) higher neutralizing antibody titers than the control group from day 28 onward.  相似文献   

2.
3.
4.
Delayed-type hypersensitivity responses to Mycobacterium paratuberculosis purified protein derivative (PPD) were decreased in cows experimentally exposed to M. paratuberculosis 7 days after exposure to a modified-live bovine viral diarrhea virus (ML-BVDV) vaccine. In vitro lymphocyte blastogenic responses to phytohemagglutinin were decreased in each of 3 cows 7 days after exposure to ML-BVDV vaccine. Also, decreased lymphocyte blastogenic responses to M. paratuberculosis PPD were observed in cultures of 2 of 3 cows 7 days after exposure to ML-BVDV vaccine. No significant differences in enzyme-linked immunosorbent assay reactions were detected in sera of M. paratuberculosis-infected cattle collected before and at 4 and 12 weeks after exposure to ML-BVDV vaccine.  相似文献   

5.
牛呼吸道症状疾病在牛场中十分高发且危害严重,在我国,根据调查发现在养牛业中65%牛疾病是感染牛呼吸系统病~([1])。本文对一些能引起呼吸道症状的病原进行了一个梳理,希望能给广大养牛户和基层兽医工作者在疫病防控方面一些中帮助。  相似文献   

6.
Efficacy and safety of components of an IM-administered vaccine for prevention of infectious bovine rhinotracheitis virus (IBRV), parainfluenza type-3 (PI-3) virus, bovine viral diarrhea virus (BVDV), and respiratory syncytial virus (RSV) infections and campylobacteriosis and leptospirosis were evaluated in cattle, including calves and pregnant cows. Challenge of immunity tests were conducted in calves for IBRV, PI-3 virus, or BVDV vaccinal components. All inoculated calves developed serum-neutralizing antibodies and had substantially greater protection (as measured by clinical rating systems) than did controls after challenge exposure to virulent strains of IBRV, PI-3 virus, BVDV, or RSV. In in utero tests, IBRV or bovine RSV vaccinal strains were inoculated into fetuses of pregnant cows. Histologic changes or abortions did not occur after fetal inoculation of the RSV vaccinal strain, and 10 of 14 fetuses responded serologically. Of 9 fetuses, one responded serologically to the IBRV vaccinal strain after in utero inoculation and was aborted 3 weeks later. In an immunologic interference test, 10 calves vaccinated with 2 doses of the multivalent vaccine, containing the 4 viral components and a Campylobacter-Leptospira bacterin, developed serum-neutralizing antibodies to IBRV, PI-3 virus, BVDV, and RSV without evidence of serologic interference. Under field conditions, 10,771 cattle, including 4,543 pregnant cows, were vaccinated. Vaccine-related abortions did not occur.  相似文献   

7.
Foot-and-mouth disease (FMD) is an economically important disease of cloven-hoofed animals. The multiplicity of FMDV serotypes in animals poses a central problem in the policy of vaccination and is of much concern to health authorities. Hence it is the practice of vaccination with polyvalent vaccine for prophylactic measure. In the present report, we analysed the early antibody responses elicited by FMDV quadrivalent (FMDV O, A, C and Asia 1 serotypes) double emulsion (Montanide ISA 206) vaccines in cattle. We observed variations between various viral serotypes in eliciting early antibody response although neutralizing antibody response against all the four serotypes were detected as early as fourth day following vaccination. The duration of immunity also appeared to maintain for long period. The neutralizing antibody titres were maintained well above 2log(10) even after 6 months of vaccination irrespective of serotypes. Thus, allows the possibilities of two vaccinations per year for the maintenance of herd immunity.  相似文献   

8.
9.
OBJECTIVE: To evaluate viral and bacterial respiratory pathogens and Mycoplasma spp isolated from lung tissues of cattle with acute interstitial pneumonia (AIP) and cattle that had died as a result of other causes. SAMPLE POPULATION: 186 samples of lung tissues collected from cattle housed in 14 feedlots in the western United States. PROCEDURE: Lung tissues were collected during routine postmortem examination and submitted for histologic, microbiologic, and toxicologic examinations. Histologic diagnoses were categorized for AIP, bronchopneumonia (BP), control samples (no evidence of disease), and other disorders. RESULTS: Cattle affected with AIP had been in feedlots for a mean of 1272 days before death, which was longer than cattle with BP and control cattle. Detection of a viral respiratory pathogen (eg, bovine respiratory syncytial virus [BRSV], bovine viral diarrhea virus, bovine herpesvirus 1, or parainfluenza virus 3) was not associated with histologic category of lung tissues. Bovine respiratory syncytial virus was detected in 8.3% of AIP samples and 24.0% of control samples. Histologic category was associated with isolation of an aerobic bacterial agent and Mycoplasma spp. Cattle with BP were at greatest risk for isolation of an aerobic bacterial agent and Mycoplasma spp. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of these results suggests that AIP in feedlot cattle is not a consequence of infection with BRSV. The increased, risk of isolation of an aerobic bacterial agent from cattle with AIP, compared with control cattle, may indicate a causal role or an opportunistic infection that follows development of AIP.  相似文献   

10.
Proinflammatory cytokines and viral respiratory disease in pigs   总被引:8,自引:0,他引:8  
Swine influenza virus (SIV), porcine respiratory coronavirus (PRCV) and porcine reproductive and respiratory syndrome virus (PRRSV) are enzootic viruses causing pulmonary infections in pigs. The first part of this review concentrates on known clinical and pathogenetic features of these infections. SIV is a primary respiratory pathogen; PRCV and PRRSV, on the contrary, tend to cause subclinical infections if uncomplicated but they appear to be important contributors to multifactorial respiratory diseases. The exact mechanisms whereby these viruses cause symptoms and pathology, however, remain unresolved. Classical studies of pathogenesis have revealed different lung cell tropisms and replication kinetics for each of these viruses and they suggest the involvement of different lung inflammatory responses or mediators. The proinflammatory cytokines interferon-alpha (IFN-alpha), tumour necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1) have been shown to play key roles in several respiratory disease conditions. The biological effects of these cytokines and their involvement in human viral respiratory disease are discussed in the second part of this review. The third part summarises studies that were recently undertaken in the authors' laboratory to investigate the relationship between respiratory disease in pigs and bioactive lung lavage levels of IFN-alpha, TNF-alpha and IL-1 during single and combined infections with the above viruses. In single SIV infections, typical signs of swine "flu" were tightly correlated with an excessive and coordinate production of the 3 cytokines examined. PRCV or PRRSV infections, in contrast, were subclinical and did not induce production of all 3 cytokines. Combined infections with these 2 subclinical respiratory viruses failed to potentiate disease or cytokine production. After combined inoculation with PRCV followed by bacterial lipopolysaccharide, both clinical respiratory disease and TNF-alpha/IL-1 production were markedly more severe than those associated with the respective single inoculations. Taken together, these data are the first to demonstrate that proinflammatory cytokines can be important mediators of viral respiratory diseases in pigs.  相似文献   

11.
12.
Pathogens causing bovine respiratory tract disease in Finland were investigated. Eighteen cattle herds with bovine respiratory disease were included. Five diseased calves from each farm were chosen for closer examination and tracheobronchial lavage. Blood samples were taken from the calves at the time of the investigation and from 86 calves 3-4 weeks later. In addition, 6-10 blood samples from animals of different ages were collected from each herd, resulting in 169 samples. Serum samples were tested for antibodies to bovine parainfluenza virus-3 (PIV-3), bovine respiratory syncytial virus (BRSV), bovine coronavirus (BCV), bovine adenovirus-3 (BAV-3) and bovine adenovirus-7 (BAV-7). About one third of the samples were also tested for antibodies to bovine virus diarrhoea virus (BVDV) with negative results. Bacteria were cultured from lavage fluid and in vitro susceptibility to selected antimicrobials was tested. According to serological findings, PIV-3, BAV-7, BAV-3, BCV and BRSV are common pathogens in Finnish cattle with respiratory problems. A titre rise especially for BAV-7 and BAV-3, the dual growth of Mycoplasma dispar and Pasteurella multocida, were typical findings in diseased calves. Pasteurella sp. strains showed no resistance to tested antimicrobials. Mycoplasma bovis and Mannheimia haemolytica were not found.  相似文献   

13.
OBJECTIVE: To determine whether a single intranasal dose of modified-live bovine respiratory syncytial virus (BRSV) vaccine protects calves from BRSV challenge and characterize cell-mediated immune response in calves following BRSV challenge. ANIMALS: 13 conventionally reared 4- to 6-week-old Holstein calves. PROCEDURES: Calves received intranasal vaccination with modified live BRSV vaccine (VC-group calves; n = 4) or mock vaccine (MC-group calves; 6) 1 month before BRSV challenge; unvaccinated control-group calves (n = 3) underwent mock challenge. Serum virus neutralizing (VN) antibodies were measured on days -30, -14, 0, and 7 relative to BRSV challenge nasal swab specimens were collected for virus isolation on days 0 to 7. At necropsy examination on day 7, tissue specimens were collected for measurement of BRSV-specific interferon gamma (IFN-gamma) production. Tissue distribution of CD3+ T and BLA.36+ B cells was evaluated by use of immunohistochemistry. RESULTS: The MC-group calves had significantly higher rectal temperatures, respiratory rates, and clinical scores on days 5 to 7 after BRSV challenge than VC-group calves. No difference was seen between distributions of BRSV in lung tissue of VC- and MC-group calves. Production of BRSV-specific IFN-gamma was increased in tissue specimens from VC-group calves, compared with MC- and control-group calves. Virus-specific IFN-gamma production was highest in the mediastinal lymph node of VC-group calves. Increased numbers of T cells were found in expanded bronchial-associated lymphoid tissue and airway epithelium of VC-group calves. CONCLUSIONS AND CLINICAL RELEVANCE: An intranasal dose of modified-live BRSV vaccine can protect calves against virulent BRSV challenge 1 month later.  相似文献   

14.
15.
A system for a reproducible in vitro restimulation of bovine viral diarrhea virus (BVDV)-specific cytotoxic T-cells (CTL) was developed. Lymphocyte cultures of BVDV-immunised cattle were stimulated with infectious BVDV isolate PT810 and recombinant bovine interleukin-2 for 12 to 25 days. A specific lysis of Concanavalin A-stimulated BVDV-infected autologous target cells was observed, whereas allogeneic BVDV-infected target cells were only marginally lysed as detected by flow cytometry. BVDV-specific lymphocyte transformation was further characterised by the expression of bovine lymphocyte activation antigens and bovine MHC class-II molecules. Secondary stimulation of CTL was influenced by in vitro production of BVDV-specific neutralising antibodies, which were secreted exclusively in BVDV-inoculated lymphocyte cultures of immunised cattle. These results demonstrate the presence of CTL in peripheral blood mononuclear cells (PBMC) of immunised cattle which can kill autologous BVDV-infected antigen-presenting cells after in vitro restimulation.  相似文献   

16.
17.
18.
19.
Cattle show considerable variability in their responses to a wide range of disease challenges, and much of the variability is genetic. This review highlights genetic variation in disease susceptibility in Bos taurus cattle, with variation found at the breed level and also within breeds. Disease challenges come from bacteria and viruses, parasites and feed-borne toxins. For an animal to survive, it needs its own mechanisms for resisting these challenges, or for being resilient to them, or it must be protected artificially from them. Disease challenges have been classified as 'diseases from without', but there is also another class of genetic diseases resulting from inborn errors of metabolism, which might be called 'diseases from within'. Degrees of inheritance (heritabilities) are reviewed for a range of economically important traits including resistance to mastitis, ketosis, lameness, nematode parasites, external parasites, eye disease, respiratory disorders, tuberculosis, brucellosis, Johne's disease, foot-and-mouth disease, bovine spongiform encephalopathy, metabolic disorders caused by toxins found on the feed, and threshold levels of minerals and metabolites. Many, but not all, of the above require an immune response as part of the fight against an external challenge, and measurements have been made of general immune response as a way of describing or predicting how an animal will respond. There are now some examples of industry or breed societies applying selection for resistance to one or more diseases as part of a complete breeding objective in dairy cattle, beef cattle or dual purpose livestock. In most cases, industry and breed societies are in the early stages of applying effective selection pressure for resistance to specific cattle diseases, with the notable exceptions of Scandinavian cattle schemes, which lead the world in this respect.  相似文献   

20.
Various vaccine adjuvant candidates were assessed with the modified-live porcine reproductive and respiratory syndrome virus (MLV PRRSV) (Ingelvac PRRS MLV) vaccine. Their influence on humoral-mediated immune (HMI) and cell-mediated immune (CMI) responses as well as protection from virulent PRRSV challenge (MN-184) was evaluated. Ninety seronegative pigs were randomly divided into nine groups of 10 pigs. One group received MLV vaccine alone. Five groups received MLV vaccine with either bacterial endotoxin-derived adjuvant (ET), mixed open reading frame 5 (ORF5) peptides derived from various PRRSV isolates, porcine interferon alpha (IFNalpha), polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose (poly-ICLC), or porcine interleukin-12 (IL-12). One group did not receive MLV vaccine but was immunized with ORF5 peptides conjugated with cholera toxin (ORF5 peptide/CT). Two groups served as challenged and unchallenged non-vaccinated controls. Four-color flow cytometry was utilized to simultaneously identify three major porcine T-cell surface markers (CD4, CD8, and gammadelta TCR) and detect activation marker CD25 (alpha chain of IL-2 receptor) or intracellular IFNgamma. The MLV PRRSV vaccine alone successfully primed CD4(-)CD8(+)gammadelta- T-cells as demonstrated by a significant increase in %IFNgamma+ cells when live PRRSV was used as a recall antigen. Booster immunizations of mixed ORF5 peptides and co-administration of IL-12 with MLV PRRSV vaccine significantly enhanced IFNgamma expression by some T-cell subsets (CD4(-)CD8(+)gammadelta+ and CD4(-)CD8(-)gammadelta+ for mixed ORF5 peptides and CD4(+)CD8(+)gammadelta- and CD4(-)CD8(+)gammadelta+ for IL-12). All groups receiving MLV-vaccine with or without adjuvants had reduced lung lesions after challenge. The group immunized with only ORF5 peptide/CT did not have significant T-cell recall responses and was not protected from challenge. Expression of IFNgamma by several T-cell subsets correlated with reduced lung lesions and viremia, whereas expression of CD25 did not. Expression of surface CD25 did not correlate with IFNgamma production. PRRSV ELISA s/p ratio prior to challenge also correlated with reduced lung lesions and viremia. In conclusion, booster immunizations of the mixed ORF5 peptides and co-administration of IL-12 effectively enhanced the CMI response to MLV vaccine. However, neither adjuvant significantly contributed to reducing clinical effects when compared to MLV alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号