首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstructing the typical analogue of extracellular matrix (ECM) in engineered biomaterials is essential for promoting tissue repair. Here, we report an ECM-mimetic scaffold that successfully accelerated wound healing through enhancing vascularization and regulating inflammation. We prepared an electrospun fiber comprising a brown alga-derived polysaccharide (BAP) and polyvinyl alcohol (PVA). The two polymers in concert exerted the function upon the application of PVA/BAP2 fiber in vivo; it started to reduce the inflammation and promote angiogenesis at the wound site. Our serial in vitro and in vivo tests validated the efficacy of PVA/BAP2 fiber. Particularly, PVA/BAP2 fiber accelerated the repair of a full-thickness skin wound in diabetic mice and induced optimal neo-tissue formation. Generally, our results suggest that, by mimicking the function of ECM, this fiber as an engineered biomaterial can effectively promote the healing efficiency of diabetic wounds. Our investigation may inspire the development of new, effective, and safer marine-derived scaffold for tissue regeneration.  相似文献   

2.
Zhang Z  Zhao M  Wang J  Ding Y  Dai X  Li Y 《Marine drugs》2011,9(5):696-711
Care for diabetic wounds remains a significant clinical problem. The present study was aimed at investigating the effect of skin gelatin from Chum Salmon on defective wound repair in the skin of diabetic rats. Full-thickness excisional skin wounds were made in 48 rats, of which 32 were diabetes. The diabetic rats were orally treated daily for 14 days with skin gelatin from Chum Salmon (2 g/kg) or its vehicle. Sixteen non-diabetic control rats received the same amount of water as vehicle-treated non-diabetic rats. Rats were killed to assess the rate of wound closure, microvessel density (MVD), vascular endothelial growth factor (VEGF), hydroxyproline (HP) contents in wound tissues and nitrate in plasma and wound tissue at 7 and 14 days after wounding. Skin gelatin-treated diabetic rats showed a better wound closure, increased MVD, VEGF, hydroxyproline and NO contents and a reduced extent of inflammatory response. All parameters were significant (P < 0.05) in comparison to vehicle-treated diabetic group. In light of our finding that skin gelatin of Chum Salmon promotes skin wound repair in diabetic rats, we propose that oral administration of Chum Salmon skin gelatin might be a beneficial method for treating wound disorders associated with diabetes.  相似文献   

3.
The purpose of this study was to develop an effective potential wound dressing material based on a polyvinyl alcohol (PVA) and tannic acid (TA) composite film. To prepare the PVA/TA films, PVA and TA blended aqueous solutions were cast into film form by spreading the solutions and drying them. Then the films were heat treated at 155 oC for 3 min to promote esterification between the PVA and TA. After removing un-crosslinked moieties from the films by rinsing and drying, the films were investigated by swelling behavior, FTIR spectroscopy, XRD and TGA. And, the antibacterial and antioxidant abilities of the films were also examined in this study. Through this investigation it was discovered that TA effectively acts as a functional antibacterial and antioxidant agent as well as crosslinker in the PVA/TA system. Thus, the PVA/TA composite films prepared by the casting and heat treatment method proposed in this study are expected to be used for topical medication, such as wound dressing material.  相似文献   

4.
Conventional textile based wound dressing materials are cost effective and highly absorbent, but when used alone fails to provide optimal wound healing conditions like homeostasis, non-adherence, maintenance of a moist wound bed, etc. Electrospun polymer web meets the requirements outlined for wound healing, by their microfibrous structures provide suitable environment for wound healing apart from the function of polymers. In this study, blends of soy protein isolate (SPI) and poly(ethylene oxide) (PEO) nano fiber web was prepared by electro spinning process. The developed blended nano fiber web was subjected to SEM, FTIR to evaluate fiber size and functional properties respectively. The Moisture vapour transmission rate (MVTR) result shows the blended electrospun web gives suitable mosit environment over wound bed such as the MVTR is 2994 g/m2/day. The blended electrospun web gives positive result on antimicrobial activity. The effect of SPI/PEO blended electrospun web on wound healing was experimented with female wistar rats and the blended electrospun web shows excellent result on wound healing by the growth of new epithelium without any significant adverse reaction. Forming of SPI/PEO electrospun fiber was fulfilled many critical elements desirable in a wound material.  相似文献   

5.
In the present study, naringin, a flavonoid isolated from the grape and citrus fruit species, was incorporated with poly(ε-caprolactone)/gelatin composite mats in order to develop a potential wound dressing. The composite mats were prepared by electrospinning of poly(ε-caprolactone)/gelatin (1:1 (w/w)) solution incorporated with 1.50 %, 3 % and 6 % (w/w) of naringin. The electrospun mats were evaluated regarding their morphology, contact angle, water-uptake capacity, water vapor transmission rate, tensile properties, drug release, cellular response and in vivo wound healing activity. The study showed that after 2 weeks, the full-thickness excisional wounds of Wistar rats treated with the naringin-loaded dressings achieved a wound closure of higher than 94 % and the dressing containing 6 % (w/w) naringin had almost 100 % wound closure. The sterile gauze, as the control group, showed nearly 86 % of wound closure after this period of time. Our results provided evidence that supports the possible applicability of naringin-loaded wound dressing for successful wound treatment.  相似文献   

6.
This study aimed to produce poly(4-vinyl pyridine) and hydroxypropyl methacrylamide (HPMA)-based bilayer wound dressings materials enhancing healing mechanism for the wounds which have self-healing problem and high infection risk. These materials were designed to protect wound from secondary traumas caused microorganism invasion and do not have toxic substance release problem. Synthesis of quaternary poly(4-vinyl pyridine) (poly(Q4-VP)) which is the antibacterial layer of wound dressing material was carried out in two stages. At first stage, poly(4-vinyl pyridine) polymer was synthesized from 4-vinyl pyridine monomer by free radical polymerization. Then, poly(Q4-VP) was synthesized from poly(4-VP) by alkylation reaction with 6-bromocaproic acid. Resulted polymer was structurally characterized by FT-IR. The macroporous spongy structure, as the lower layer of wound dressing material, was prepared by cryogelation of HPMA. Then, the antibacterial polymer was electrospun onto the cryogel structure and bilayered material was obtained. Cryogel structure, fiber morphology and layer integration was examined by SEM. In order to enhance wound healing process, ascorbic acid (vitamin C) was loaded to cryogel layer and release was followed by spectrophotometrically. The antimicrobial properties of the materials were examined against Escherichia coli, Staphylococcus aureus and Candida albicans, respectively. According to the results, bilayered, antibacterial and antifungal against Staphylococcus aureus and Candida albicans, temporary wound dressings which can stimulate wound healing and have high swelling capacity were obtained successfully.  相似文献   

7.
A series of antimicrobial fibers with different weight ratio of chitosan (CS) and polyvinyl alcohol (PVA) were fabricated via a primarily industrialized trail of wet-spinning method, and the morphology and structure of the resulting fibers were studied with the aid of scanning electron micrography (SEM), infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The CP60 blend fiber (60 % chitosan content) was confirmed as the best optimal sample among the blend fibers owing to strong intermolecular hydrogen bonds between PVA and chitosan and showed the maximum mechanical, antistatic, moisture absorption/desorption properties. The CP60 also exhibited good antimicrobial effects against Escherichia coli and Staphylococcus aureus as the chitosan fiber and could be recommended as the alternative material for the wound dressing and the food packing.  相似文献   

8.
Easy fabrication, porosity, good mechanical properties, and composition controllable of the electrospun nanofiber mat make this material a promising candidate for wound dressing applications. In the present study, nylon6/gelatin electrospun nanofiber mats are introduced as novel wound dressing materials. The introduced mats were synthesized by electrospinning of nylon6 and gelatin mixtures, three mats containing different gelatin content were prepared; 10, 20 and 30 wt%. Interestingly, addition of the gelatin did not affect the mechanical properties of the nylon 6, moreover the mat containing 10 wt% gelatin revealed higher mechanical properties due to formation of spider-net like structure from very thin nanofibers (~10 nm diameter) bonding the main nanofibers. Biologically study indicates that gelatin incorporation strongly enhances the bioactivity performance as increasing the gelatin content linearly increases the MC3T3-E1 cell attachment. Overall, the obtained results recommend exploiting the introduced mats as wound dressing material.  相似文献   

9.
Carboxymethyl cellulose (CMC) is a cellulose derivative having water-soluble property, biodegradability, and biocompatibility. It has been used in various medical applications as forms of gel, film, membrane, or powder. In this study, composite CMC nonwovens were produced, by a wet-laid nonwoven process, to improve the wet strength of carboxymethyl cellulose nonwovens. Followed by preparing the CMC fibers from cotton fiber, the composite CMC nonwovens composed of CMC fibers and PE/PP bicomponent fibers were manufactured by using 85/15 % v/v of ethanol/water solution as a dispersion medium. Structural analyses of CMC fibers, such as XRD, TGA, FT-IR, and degree of substitution indicated that CMC fibers were successfully produced. The wet strength of CMC nonwoven was dramatically increased by blending with the PE/PP fibers without sacrificing the key properties for wound dressing materials such as liquid absorption, gel blocking and liquid retention. It is expected that the composite CMC nonwovens will be a good candidate for wound dressing materials for mild exudate condition.  相似文献   

10.
Water-soluble chitin (WSC) was prepared by carefully deacetylating chitins to about 50% of N-acetyl content. Topical formulations based on WSC were prepared and their effects on wound healing were evaluated on a rabbit ear model. Full-thickness, open skin wounds were made on the ears of rabbits and WSC ointments were embedded in the open wounds. The application of WSC ointments significantly accelerated wound healing and wound contraction. The areas of epithelialization and granulation tissues in WSC ointment group are remarkably larger than those in control group (no treatment) and in placebo group (treated with ointment-base materials). A large number of grown granulation tissues including dense fibroblast deposition were observed under the thickened epithelium of the wound treated with WSC ointments. The number of inflammatory cells in WSC ointment group was significantly decreased compared with those in control and placebo groups, indicating that WSC would give low stimuli to wounds and prevent excessive scar formation. Neovascularization was the most prominent in WSC ointment group. Wound contraction in WSC ointment group was much larger than those in control and placebo groups. Overall results demonstrate that the topical formulation based on WSC is considered to become an excellent dressing as a wound healing assistant.  相似文献   

11.
Lignin is the second most abundant renewable biomass-derived natural resource that has been used to replace traditional petrochemical-based materials. However, fabricating the lignin component into the various forms required for practical application is still challenging. In this work, we fabricated water-resistant lignin/poly(vinyl alcohol) (PVA) blend fibers by wet spinning and glutaraldehyde crosslinking methods. The effect of the lignin/PVA blend ratio and glutaraldehyde crosslinking process on the physicochemical properties of wet-spun lignin/PVA blend fibers were studied using maximum draw ratios, hydrolytic degradation profiles, and mechanical properties. Furthermore, the hexavalent chromium [Cr(VI)] removal behavior of lignin/PVA blend fibers was investigated according to the effect of pH, initial Cr(VI) concentration, and contact time. The wet-spun lignin/PVA blend fiber achieved excellent water stability through glutaraldehyde crosslinking and exhibited notable Cr(VI) adsorption capacity (350.87 mg/g) and good regeneration ability. These findings demonstrate that glutaraldehyde-crosslinked lignin/PVA blend fibers could be promising adsorbents for the remediation of heavy metal species containing textile wastewater.  相似文献   

12.
Surgical wounds are common injuries of skin and tissues and usually become a clinical problem. Until now, various synthetic and natural peptides have been widely explored as potential drug candidates for wound healing. Inhibition of the TNF-α signaling pathway and promotion of angiogenesis are suggested to be involved in their effects. Angiogenesis at the wound site is one of the essential requisites for rapid healing. In the present study, a novel peptide extract derived from the natural source Lates calcarifer, commonly known as sea bass or barramundi, was evaluated for its wound healing property. The specific acidic and enzymatic approaches were employed for producing sea bass extract containing small size peptides (molecular weight ranging from 1 kD to 5 kD). The cytotoxicity of the extract was examined in HaCaT and NIH3T3. After this, the effects of enzyme digested peptide extracts of sea bass on wound healing in mice were investigated. The peptide extracts (660 and 1320 mg/kg/day) and control protein (1320 mg/kg/day) was orally given to the wounded mice, respectively, for 12 days. The surgical method was improved by implanting a silicone ring at the wound site. The ring avoided the contracting effect in murine wounds, making it more closely related to a clinical condition. The results showed promising improvement at the wound site in mice. Sea bass peptide extracts accelerated the wound healing process and enhanced the microvessel formation at the wound site. The remarkable effects of this novel sea bass peptide extract in healing traumatic injuries revealed a new option for developing wound management.  相似文献   

13.
The rapid preparation of safe and efficient wound dressings that meet the needs of the entire repair process remains a major challenge for effective therapeutic wound healing. Natural, sprayable Ion2+-COS/SA multifunctional dual-network gel films created by the in situ coordination of chitooligosaccharide (COS), metal ions and sodium alginate (SA) using casting and an in-situ spray method were synthesized. The gel films exhibited excellent physicochemical properties such as swelling, porosity and plasticity at a COS mass fraction of 3%. Furthermore, at this mass fraction, the addition of bimetallic ions led to the display of multifunctional properties, including significant antioxidant, antibacterial and cytocompatibility properties. In addition, experiments in a total skin defect model showed that this multifunctional gel film accelerates wound healing and promotes skin regeneration. These results suggest that the sprayable Ion2+-COS/SA multifunctional pro-healing gel film may be a promising candidate for the clinical treatment of allodermic wounds.  相似文献   

14.
In this study, two biodegradable polymers, polycaprolactone (PCL) and polyvinyl alcohol (PVA) were used to fabricate nanofiber nonwovens (NFNs). Also, the silver nanoparticles (AgNPs) successfully reduced by using tea polyphenols (TP) and incorporated in the NFNs via electrospinning. The morphologies of the NFNs and AgNPs were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. The PCL nanofibers and PVA nanofibers interweaved each other, and AgNPs with average diameter 1.53±0.15 nm were embedded in the PVA nanofibers. The properties of electrospun NFNs were characterized by pore property, swelling/weight loss, water contact angle, mechanical property, and antibacterial activity. The nanofibers cross-linked to each other forming the 3Dnetwork porous structure with diameter about 1-1.5 μm. Although the hydrophobic PCL was added in the hybrid NFNs, the NFNs still showed hydrophilic propriety, high swelling degree (i.e. swelling degree is 330 % for 48 h), and low weight loss (i.e. weight loss is 22.4 % for 48 h). Also, the hybrid PCL/PVA/AgNPs NFNs exhibited a suitable mechanical property for wound dressings (i.e. tensile strength is 4.27 MPa, and breaking elongation is 88 %). Moreover, the hybrid NFNs effectively inhibited growth of Escherichia coli and Staphylococcus aureus. In summary, this PCL/PVA/AgNPs NFNs may provide a promising candidate for accelerating wound healing.  相似文献   

15.
The purpose of this study is to fabricate a smart wound dressing by hybridizing hydrophilic polyurethane foam (PUF) and alginate hydrogel. Hydrophilic PUF is used to maintain damaged tissue in a moist environment. Despite its many strong points as a wound dressing, hydrophilic PUF cannot be loaded with ingredients such as growth factors and cytokines that would enhance wound healing. Therefore, we introduce a pH-sensitive alginate hydrogel with the ability to selectively release drugs within the pH range of wounded skin. Due to the small pore size of PUF and the high viscosity of the alginate solution, the two are not easily penetrable. As such, a vacuum method is used to insert alginate hydrogel into the PUF. The optimum conditions for the vacuum method chosen are to be proposed. However, the mechanical strength of PUF decreased after containing alginate hydrogel. Therefore, Na-alginate powder for PUF, various types of crosslinking agents and jute fiber for alginate hydrogel were introduced to improve the mechanical properties of hydrogel/PUF hybrid wound dressing. Three different types of crosslinking agents are used for the gel formation. The most suitable crosslinking agent and its concentration for alginate hydrogel is also determined by the experiments. The experimental results are discussed with proper schemes and reasonable explanations.  相似文献   

16.
New generation wound dressings require the criteria that both bioactive and conventional wound dressing materials can recompense the fundamental properties like defense of wound from microbial invasion, dehydration during the wound care duration and mimic the healing process. In this study, functional double-layered nanofibrous composite membranes were fabricated via electrospinning method. The matrices consist of a sheet of ampicillin loaded poly(2-hydroxylethyl methacrylate/polyacrylic acid (pHEMA/pAA) nanofibers on the upper side (first layer: pH sensitive antibacterial barrier) and a sheet of poly(ε-caprolactone) (PCL)/gelatin nanofibers (second layer: bioactive part). Ampicillin was successfully incorporated to double-layered matrices which greatly changed the mechanical properties, biodegradability and water uptake ratios (up to 4 fold higher values). The success of the antimicrobial activity of ampicillin on Staphylococcus aureus and Escherichia coli was indicated by the inhibition zone test. pH sensitivity was confirmed by the swelling and ampicillin release studies by shifting pH value to basic environment. Thus, double-layered pHEMA-pAA nanofibers suggest as a potential wound dressing material for its pH sensitive drug delivery ability and its bioactive part.  相似文献   

17.
In this study, a metal-organic framework (MOF)/polymer electrospun fiber was prepared. The MOF, copper-1,3,5- benzenetricarboxylate (Cu-BTC), was synthesized using a sonochemical method at 25 °C, with a 1:1:1 mixture of dimethylformamide, ethanol, and deionized water as solvent. The sonication time was shown to have a pronounced effect on the morphology and structure of the Cu-BTC. A square pyramid shape with sides of 100 nm was obtained after 2 h of sonication. Extending the sonication time provided a lower amount of unknown phase and produced a uniform Cu-BTC framework. The Cu-BTC-modified PVA fibers were then fabricated by electrospinning. The effect of the Cu-BTC and PVA concentration was investigated at 25 kV, a flow rate of 10 μl/min, and a working distance of 150 mm. FTIR spectra and FESEM images showed good dispersion of the Cu-BTC on the PVA fiber. The as-prepared Cu-BTC-modified PVA fibers exhibited excellent antibacterial effectiveness against S. aureus.  相似文献   

18.
Present study is focused on the preparation of two layers composite wound dressing for drug release. The outer layer is made of hydrogel which contains of drug and the core layer is made of fabric. The two layers structure of composite dressing is formed by grafting of polyacrylamide-co-acrylic acid hydrogel on cotton fabric using ammonium per sulphate (APS) as chemical initiator and polyethylene glycol (PEG) as crosslinker. The major factors affecting graft copolymerization of hydrogel on cotton fabric are optimized by varying concentration of monomers & initiator, reaction temperature and addition time of crosslinker. Maximum grafting of hydrogel is obtained at 5 % (w/v) APS and 15 % acrylamide/acrylic acid (1:1 w/w ratio) concentration. The FTIR spectra of composite dressing shows characteristics peak of acrylic acid and acrylamide. The composite wound dressing material is loaded with model drug bovine serum albumin (BSA) and drug release behaviour is studied at different pH. The dressing shows drug release in different pH with maximum release of drug in acidic medium.  相似文献   

19.
Antimicrobial peptides (AMPs) are endogenous antibiotics that directly affect microorganisms, and also have a variety of receptor-mediated functions. One such AMP, Tilapia piscidin 4 (TP4), was isolated from Nile tilapia (Oreochromis niloticus); TP4 has antibacterial effects and regulates the innate immune system. The aim of the present study was to characterize the role of TP4 in the regulation of wound closure in mice and proliferation of a keratinocyte cell line (HaCaT) and fibroblast cell line (Hs-68). In vitro, TP4 stimulated cell proliferation and activated collagen I, collagen III, and keratinocyte growth factor (KGF) gene expression in Hs-68 cells, which induces keratin production by HaCaT cells. This effect was detectable at TP4 concentrations of 6.25 µg/mL in both cell lines. In vivo, TP4 was found to be highly effective at combating peritonitis and wound infection caused by MRSA in mouse models, without inducing adverse behavioral effects or liver or kidney toxicity. Taken together, our results indicate that TP4 enhances the survival rate of mice infected with the bacterial pathogen MRSA through both antimicrobial and wound closure activities mediated by epidermal growth factor (EGF), transforming growth factor (TGF), and vascular endothelial growth factor (VEGF). The peptide is likely involved in antibacterial processes and regulation of tissue homeostasis in infected wounds in mice. Overall, these results suggest that TP4 may be suitable for development as a novel topical agent for wound dressing.  相似文献   

20.
In this study, Sericin/Poly Vinyl Alcohol (PVA)/Clay (Cloisite 30B) nanofibrous mats are prepared by electrospinning technique for antimicrobial air filtration mask. The process parameters of electro-spinning machine such as acceleration voltage, nozzle flow rate and nozzle & collector distance are optimised on the basis of morphology of fibre observed through scanning electron microscopy (SEM). The optimum conditions for producing nanofibrous mat without bead are acceleration voltage 27.5 kV, nozzle collector distance 8 cm and flow rate 0.8 ml/hr using 10 % (w/v) solution of Sericin/PVA (1:1 wt/wt). The process parameters of electro-spinning machine for the processing of Sericin/PVA/Clay nanofibrous mats with varied clay concentrations ranging from 0.1-0.75 % are also optimized. The spun fibre diameter varied from 300-400 nm at different specified conditions. These nanofibrous mats are characterized for its structural, mechanical and antimicrobial properties. Respirable Suspended Particulate Matter (RSPM) test was conducted to check the particulate matter (PM 2.5) absorption capacity of nanofibrous mats. Results shows that sericin/PVA/clay nanofibrous mat would be a promising material for making protecting clothing based air filtration mask.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号