首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Brown seaweeds contain fucoidan, which has numerous biological activities. Here, the anti-fine-dust activity of fucoidan extracted from Ecklonia maxima, an abundant brown seaweed from South Africa, was explored. Fourier transmittance infrared spectroscopy, high-performance anion-exchange chromatography with pulsed amperometric detection analysis of the monosaccharide content, and nuclear magnetic resonance were used for the structural characterization of the polysaccharides. The toll-like receptor (TLR)-mediated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were evaluated. The results revealed that E. maxima purified leaf fucoidan fraction 7 (EMLF7), which contained the highest sulfate content, showed the best anti-inflammatory activity by attenuating the TLR-mediated NF-κB/MAPK protein expressions in the particulate matter-stimulated cells. This was solidified by the successful reduction of Prostaglandin E2, NO, and pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β. The current findings confirm the anti-inflammatory activity of EMLF7, as well as the potential use of E. maxima as a low-cost fucoidan source due to its abundance. This suggests its further application as a functional ingredient in consumer products.  相似文献   

3.
The intestinal flora is recognized as a significant contributor to the immune system. In this research, the protective effects of oyster peptides on immune regulation and intestinal microbiota were investigated in mice treated with cyclophosphamide. The results showed that oyster peptides restored the indexes of thymus, spleen and liver, stimulated cytokines secretion and promoted the relative mRNA levels of Th1/Th2 cytokines (IL-2, IFN-γ, IL-4 and IL-10). The mRNA levels of Occludin, Claudin-1, ZO-1, and Mucin-2 were up-regulated, and the NF-κB signaling pathway was also activated after oyster peptides administration. Furthermore, oyster peptides treatment reduced the proportion of Firmicutes/Bacteroidetes, increased the relative abundance of Alistipes, Lactobacillus, Rikenell and the content of short-chain fatty acids, and reversed the composition of intestinal microflora similar to that of normal mice. In conclusion, oyster peptides effectively ameliorated cyclophosphamide-induced intestinal damage and modified gut microbiota structure in mice, and might be utilized as a beneficial ingredient in functional foods for immune regulation.  相似文献   

4.
N,N-Didesmethylgrossularine-1 (DDMG-1), a compound with a rare α-carboline structure, was isolated from an Indonesian ascidian Polycarpa aurata as responsible for the observed inhibitory activity against TNF-α production in lipopolysaccharide-stimulated murine macrophage-like RAW264.7 cells. DDMG-1 inhibited the mRNA level of mTNF-α, IκB-α degradation, and binding of NF-κB to the target DNA site in LPS-stimulated RAW 264.7 cells. Moreover, DDMG-1 had an inhibitory effect on the production of IL-8, which is produced in CD14+-THP-1 cells stimulated by LPS. DDMG-1 is thus a promising drug candidate lead compound for the treatment of chronic inflammatory diseases, such as rheumatoid arthritis.  相似文献   

5.
6.
Chronic exposure to ultraviolet (UV) light promotes the breakdown of collagen in the skin and disrupts the extracellular matrix (ECM) structure, leading to skin wrinkling. Pacific whiting (Merluccius productus) is a fish abundant on the Pacific coast. In the current study, we investigated the anti-wrinkle effect of hydrolysate from Pacific whiting skin gelatin (PWG) in UVB-irradiated human dermal fibroblasts and the molecular mechanisms involved. PWG effectively restored type 1 procollagen synthesis reduced by UVB-irradiation. Also, we found that PWG inhibited collagen degradation by inhibiting MMP1 expression. Furthermore, PWG decreased cytokines TNF-α, IL-6, and IL-1β associated with inflammatory responses and increased antioxidant enzymes, HO-1, SOD, GPx, CAT, and GSH content, a defense system against oxidative stress. In terms of molecular mechanisms, PWG increased collagen synthesis through activating the transforming growth factor β (TGF-β)/Smad pathway and decreased collagen degradation through inhibiting the mitogen-activated protein kinases/activator protein 1 (MAPK/AP-1) pathway. It also suppressed the inflammatory response through suppressing the nuclear factor-κB (NF-κB) pathway and increased antioxidant enzyme activity through activating the nuclear factor erythroid 2/heme oxygenase 1 (Nrf-2/HO-1) pathway. These multi-target mechanisms suggest that PWG may serve as an effective anti-photoaging material.  相似文献   

7.
This study involves enzymatic extraction of fucoidan from Sargassum swartzii and further purification via ion-exchange chromatography. The chemical and molecular characteristics of isolated fucoidan is evaluated concerning its anti-inflammatory potential in RAW 264.7 macrophages under LPS induced conditions. Structural properties of fucoidan were assessed via FTIR and NMR spectroscopy. NO production stimulated by LPS was significantly declined by fucoidan. This was witnessed to be achieved via fucoidan acting on mediators such as iNOS and COX-2 including pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), with dose dependent down-regulation. Further, the effect is exhibited by the suppression of TLR mediated MyD88, IKK complex, ultimately hindering NF-κB and MAPK activation, proposing its therapeutic applications in inflammation related disorders. The research findings provide an insight in relation to the sustainable utilization of fucoidan from marine brown algae S. swartzii as a potent anti-inflammatory agent in the nutritional, pharmaceutical, and cosmeceutical sectors.  相似文献   

8.
Objective: This study is to evaluate the anti-obese effects of glucosamine (GLC) and chitosan oligosaccharide (COS) on high-fat diet-induced obese rats. Methods: The rats were randomly divided into twelve groups: a normal diet group (NF), a high-fat diet group (HF), Orlistat group, GLC high-, middle-, and low-dose groups (GLC-H, GLC-M, GLC-L), COS1 (COS, number-average molecular weight ≤1000) high-, middle-, and low-dose groups (COS1-H, COS1-M, COS1-L), and COS2 (COS, number-average molecular weight ≤3000) high-, middle-, and low-dose groups (COS2-H, COS2-M, COS2-L). All groups received oral treatment by gavage once daily for a period of six weeks. Results: Rats fed with COS1 gained the least weight among all the groups (P < 0.01), and these rats lost more weight than those treated with Orlistat. In addition to the COS2-H and Orlistat groups, the serum total cholesterol (CHO) and low-density lipoprotein cholesterol (LDL-C) levels were significantly reduced in all treatment groups compared to the HF group (P < 0.01). The various doses of GLC, COS1 and COS2 reduced the expression levels of PPARγ and LXRα mRNA in the white adipose tissue. Conclusions: The results above demonstrated that GLC, COS1, and COS2 improved dyslipidemia and prevented body weight gains by inhibiting the adipocyte differentiation in obese rats induced by a high-fat diet. Thus, these agents may potentially be used to treat obesity.  相似文献   

9.
Fucosterol is a phytosterol that is abundant in marine brown algae and is a renowned secondary metabolite. However, its ability to protect macrophages against particulate matter (PM) has not been clarified with regard to inflammation; thus, this study aimed to illustrate the above. Padina boryana, a brown algae that is widespread in Indo–Pacific waters, was applied in the isolation of fucosterol. Isolation was conducted using silica open columns, while identification was assisted with gas chromatography-mass spectroscopy (GC-MS) and NMR. Elevated levels of PM led the research objectives toward the implementation of it as a stimulant. Both inflammation and oxidative stress were caused due the fact of its effect. RAW 264.7 macrophages were used as a model system to evaluate the process. It was apparent that the increased NO production levels, due to the PM, were mediated through the inflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and pro-inflammatory cytokines (i.e., interleukin-6 (IL-6), interleukin-1 (IL-1β) and tumor necrosis factor-α (TNF-α), including prostaglandin E2 (PGE2)). Further, investigations provided solid evidence regarding the involvement of NF-κB and mitogen-activated protein kinases (MAPKs) in the process. Oxidative stress/inflammation which are inseparable components of the cellular homeostasis were intersected through the Nrf2/HO-1 pathway. Conclusively, fucosterol is a potent protector against PM-induced inflammation in macrophages and hence be utilized as natural product secondary metabolite in a sustainable manner.  相似文献   

10.
The Ascomycota Dichotomomyces cejpii was isolated from the marine sponge Callyspongia cf. C. flammea. A new gliotoxin derivative, 6-acetylmonodethiogliotoxin (1) was obtained from fungal extracts. Compounds 2 and 3, methylthio-gliotoxin derivatives were formerly only known as semi-synthetic compounds and are here described as natural products. Additionally the polyketide heveadride (4) was isolated. Compounds 1, 2 and 4 dose-dependently down-regulated TNFα-induced NF-κB activity in human chronic myeloid leukemia cells with IC50s of 38.5 ± 1.2 µM, 65.7 ± 2.0 µM and 82.7 ± 11.3 µM, respectively. The molecular mechanism was studied with the most potent compound 1 and results indicate downstream inhibitory effects targeting binding of NF-κB to DNA. Compound 1 thus demonstrates potential of epimonothiodiketopiperazine-derived compounds for the development of NF-κB inhibitors.  相似文献   

11.
In the course of studies on bioactive metabolites from marine fungi, a new 10-membered lactone, named penicillinolide A (1) was isolated from the organic extract of Penicillium sp. SF-5292 as a potential anti-inflammatory compound. The structure of penicillinolide A (1) was mainly determined by analysis of NMR and MS data and Mosher’s method. Penicillinolide A (1) inhibited the production of NO and PGE2 due to inhibition of the expression of iNOS and COX-2. Penicillinolide A (1) also reduced TNF-α, IL-1β and IL-6 production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP), a competitive inhibitor of HO activity, it was verified that the inhibitory effects of compound 1 on the production of pro-inflammatory mediators and NF-κB DNA binding activity were partially associated with HO-1 expression through Nrf2 nuclear translocation.  相似文献   

12.
In this study, we examined the protective effects of porphyra-334 against UVA-irradiated cellular damage and elucidated the underlying mechanisms. Porphyra-334 prevented UVA-induced cell death and exhibited scavenging activities against intracellular oxidative stress induced by UVA irradiation in skin fibroblasts. We found that porphyra-334 significantly reduced the secretion and expression of IL-6 and TNF-α, reduced nuclear expression of Nuclear factor-κB (NF-κB), and sustained NF-E2-related factor 2 (Nrf2) activation. Further mechanism research revealed that porphyra-334 promoted the Nrf2 signaling pathway in UVA-irradiated skin fibroblasts. Our results show that the antioxidant effect of porphyra-334 is due to the direct scavenging of oxidative stress and its inhibitory effects on NF-κB-dependent inflammatory genes, such as IL-6 and TNF-κ. Therefore, we hypothesize that boosting the Nrf2- NF-κB-dependent response to counteract environmental stress is a promising strategy for the prevention of UVA-related damage.  相似文献   

13.
14.
15.
16.
Considerable literature has been published on polysaccharides, which play a critical role in regulating the pathogenesis of inflammation and immunity. In this essay, the anti-inflammatory effect of Mytilus coruscus polysaccharide (MP) on lipopolysaccharide-stimulated RAW264.7 cells and a dextran sulfate sodium (DSS)-induced ulcerative colitis model in mice was investigated. The results showed that MP effectively promoted the proliferation of RAW264.7 cells, ameliorated the excessive production of inflammatory cytokines (TNF-α, IL-6, and IL-10), and inhibited the activation of the NF-κB signaling pathway. For DSS-induced colitis in mice, MP can improve the clinical symptoms of colitis, inhibit the weight loss of mice, reduce the disease activity index, and have a positive effect on the shortening of the colon caused by DSS, meliorating intestinal barrier integrity and lowering inflammatory cytokines in serum. Moreover, MP makes a notable contribution to the richness and diversity of the intestinal microbial community, and also regulates the structural composition of the intestinal flora. Specifically, mice treated with MP showed a repaired Firmicutes/Bacteroidetes ratio and an increased abundance of some probiotics like Anaerotruncus, Lactobacillus, Desulfovibrio, Alistipe, Odoribacter, and Enterorhabdus in colon. These data suggest that the MP could be a promising dietary candidate for enhancing immunity and protecting against ulcerative colitis.  相似文献   

17.
Age-related macular degeneration (AMD) is a progressive eye disease that causes irreversible impairment of central vision, and effective treatment is not yet available. Extracellular accumulation of amyloid-beta (Aβ) in drusen that lie under the retinal pigment epithelium (RPE) has been reported as one of the early signs of AMD and was found in more than 60% of Alzheimer’s disease (AD) patients. Extracellular deposition of Aβ can induce the expression of inflammatory cytokines such as IL-1β, TNF-α, COX-2, and iNOS in RPE cells. Thus, finding a compound that can effectively reduce the inflammatory response may help the treatment of AMD. In this research, we investigated the anti-inflammatory effect of the coral-derived compound 4-(phenylsulfanyl) butan-2-one (4-PSB-2) on Aβ1-42 oligomer (oAβ1-42) added to the human adult retinal pigment epithelial cell line (ARPE-19). Our results demonstrated that 4-PSB-2 can decrease the elevated expressions of TNF-α, COX-2, and iNOS via NF-κB signaling in ARPE-19 cells treated with oAβ1-42 without causing any cytotoxicity or notable side effects. This study suggests that 4-PSB-2 is a promising drug candidate for attenuation of AMD.  相似文献   

18.
Four new sesquiterpenes, sinularianins C–F (3–6), together with known sinularianins A (1) and B (2) were identified from a South China Sea soft coral Sinularia sp. Compounds 1–6 were evaluated for inhibition of NF-κB activation using the cell-based HEK293 NF-κB luciferase reporter gene assay. Compounds 1 and 4 were exhibited a potent effect with inhibitory rates of 41.3% and 43.0% at the concentration of 10 µg/mL, respectively.  相似文献   

19.
Metastasis, the greatest clinical challenge associated with cancer, is closely connected to multiple biological processes, including invasion and adhesion. The hypoxic environment in tumors is an important factor that causes tumor metastasis by activating HIF-1α. Fucoidan, extracted from brown algae, is a sulfated polysaccharide and, as a novel marine biological material, has been used to treat various disorders in China, Korea, Japan and other countries. In the present study, we demonstrated that fucoidan derived from Undaria pinnatifida sporophylls significantly inhibits the hypoxia-induced expression, nuclear translocation and activity of HIF-1α, the synthesis and secretion of VEGF-C and HGF, cell invasion and lymphatic metastasis in a mouse hepatocarcinoma Hca-F cell line. Fucoidan also suppressed lymphangiogenesis in vitro and in vivo. In addition, accompanied by a reduction in the HIF-1α nuclear translocation and activity, fucoidan significantly reduced the levels of p-PI3K, p-Akt, p-mTOR, p-ERK, NF-κB, MMP-2 and MMP-9, but increased TIMP-1 levels. These results indicate strongly that the anti-metastasis and anti-lymphangiogenesis activities of fucoidan are mediated by suppressing HIF-1α/VEGF-C, which attenuates the PI3K/Akt/mTOR signaling pathways.  相似文献   

20.
By activity-guided fractionation based on inhibition of nitric oxide (NO) and prostaglandin E2 (PGE2), six fistularin compounds (1–6) were isolated from the marine sponge Ecionemia acervus (order Astrophorida). Based on stereochemical structure determination using Mosher’s method, fistularin-3 was assigned as a new stereoisomer. On the basis of the stereochemistry of fistularin-3, the stereochemical homogeneity of all six compounds was established by comparing carbon and proton chemical shifts. For fistularin-1 (1) and -2 (2), quantum calculations were performed to confirm their stereochemistry. In a co-culture system of human epithelial Caco-2 cells and THP-1 macrophages, all six isolated compounds showed potent anti-inflammatory activities. These bioactive fistularins inhibited the production of NO, PGE2, TNF-α, IL-1β, and IL-6 induced by lipopolysaccharide and interferon gamma. Inducible NO synthase and cyclooxygenase-2 expression and MAPK phosphorylation were downregulated in response to the inhibition of NF-κB nuclear translocation. Among the compounds tested, fistularin-1 (1) and 19-deoxyfistularin-3 (4) showed the highest activity. These findings suggest the potential use of the marine sponge E. acervus and its metabolites as pharmaceuticals for the treatment of inflammation-related diseases including inflammatory bowel disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号