首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the preliminary steps in olive oil production (harvesting and washing) on pesticide residues in olives and olive oil has been investigated. Analyses were performed by GC-MS/MS and revealed that endosulfan sulfate and two herbicides (diuron and terbuthylazine) were the most frequently found residues in olives and olive oil. The harvesting method has a decisive influence on herbicide concentrations found in olives. Thus, 16 and 48% of the olive samples harvested on the ground after falling from the tree presented concentrations higher than the maximum residue limit (MRL) for diuron and terbuthylazine, respectively. In olives harvested directly from the tree, diuron was not found at concentrations higher than MRL and terbuthylazine was found in only 10% of the samples. The washing step performed routinely in olive mills was effective in removing the superficial contamination by herbicides present in olives harvested on the ground. Nevertheless, even after washing, the olive oil obtained from ground olives showed herbicide residue concentrations higher than those obtained from tree olives.  相似文献   

2.
The activity of olive microbiota during the oil extraction process could be a critical point for virgin olive oil quality. With the aim to evaluate the role of microbiological activity during the virgin olive oil extraction process, just before oil extraction freshly collected healthy olive fruits were immersed in contaminated water from an olive mill washing tank. The oils extracted were then compared with control samples from the same batch of hand-picked olives. The presence of lactic and enteric bacteria, fungi and Pseudomonas on the surface of olives was proved to be much higher in washed than in control olives, with increments in cfu/g between 2 and 3 orders of magnitude. The biogenesis of volatile compounds and the extraction of olive polyphenols and pigments were significantly influenced by the microbiological profile of olives even without any previous storage. In most cases the effect of olive microbiota on oil characteristics was greater than the effect exerted by malaxation time and temperature. Oils from microbiologically contaminated olives showed lower amounts of C5 volatiles and higher levels of C6 volatiles from the lipoxygenase pathway and some fermentation products. On the other hand, a decrease of chlorophylls, pheophytins, xanthophylls and the ratio chlorophyll/pheophytin was observed in these oils. Likewise, the microbiological activity during oil extraction led to significantly lower amounts of polyphenols, in particular of oleuropein derivatives. These differences in olive oil chemical composition were reflected in oil sensory characteristics by the decrease of the green and bitter attributes and by the modification of the oil color chromatic ordinates.  相似文献   

3.
The production of olive oil yields a considerable amount of waste water, which is a powerful pollutant and is currently discarded. Polyphenols and other natural antioxidants, extracted from olives during oil extraction process, partially end up in the waste waters. Experimental and commercial olive oil waste waters from four Mediterranean countries were analyzed for a possible recovering of these biologically interesting constituents. Identification and quantitation of the main polyphenols were carried out by applying HPLC-DAD and HPLC-MS methods. Representative samples of ripe olives were also analyzed at the same time to correlate, if possible, their polyphenolic profiles with those of the corresponding olive oil waste waters. The results demonstrate that Italian commercial olive oil waste waters were the richest in total polyphenolic compounds with amounts between 150 and 400 mg/100 mL of waste waters. These raw, as yet unused, matrices could represent an interesting and alternative source of biologically active polyphenols.  相似文献   

4.
The behavior in the field and the transfer from olives to olive oil during the technological process of imidacloprid, thiacloprid, and spinosad were studied. The extraction method used was effective in extracting the analytes of interest, and no interfering peaks were detected in the chromatogram. The residue levels found in olives after treatment were 0.14, 0.04, and 0.30 mg/kg for imidacloprid, thiacloprid, and spinosad, respectively, far below the maximum residue levels (MRLs) set for these insecticides in EU. At the preharvest interval (PHI), no residue was detected for imidacloprid and thiacloprid, while spinosad showed a residue level of 0.04 mg/kg. The study of the effect of the technological process on pesticide transfer in olive oil showed that these insecticides tend to remain in the olive cake. The LC/DAD/ESI/MS method showed good performance with adequate recoveries ranging from 80 to 119% and good method limits of quantitation (LOQs) and of determination (LODs). No matrix effect was detected.  相似文献   

5.
The evolution of 1,3- and 1,2-isomers of diacylglycerols (DGs) in olive oils obtained from healthy olives and the influence of the olive quality was studied. Healthy olive fruits yielded oils containing almost exclusively 1,2-isomers whereas altered olives produced oils with significant amounts of 1,3-isomers. Virgin olive oils obtained from various olive cultivars and stored at different temperatures showed triacylglycerol hydrolysis and diacylglycerol isomerization depending on the acidity and temperature. The results indicated that the relationship between acidity and total diacylglycerol content has scarce utility for detecting mild refined oil in virgin olive oil. On the other hand, the 1,3-/1,2-DG isomers ratio is useful for assessing the genuineness of virgin olive oils with low acidities during the early stages of storage.  相似文献   

6.
The phenolic composition of "lampante olive oil", "crude olive pomace oil", and "second centrifugation olive oil" was characterized by high-performance liquid chromatography with UV, fluorescence, and mass spectrometry detection. The phenolic profile of these olive oils intended for refining was rather similar to that previously reported for virgin olive oil. However, a new compound was found in these oils, which is mainly responsible of their foul odor. It was identified as 4-ethylphenol by comparison of its UV and mass spectra with those of a commercial standard. Although 4-ethylphenol was discovered in all oils intended for refining, its presence was particularly significant in "second centrifugation olive oils", its concentration increasing with time of olive paste storage. Similar trends were observed for hydroxytyrosol, hydroxytyrosol acetate, tyrosol, and catechol, the concentration of these substances reaching values of up to 600 mg/kg of oil, which makes their recovery for food, cosmetic, or pharmaceutical purposes attractive.  相似文献   

7.
There is increasing interest in olive polyphenols because of their biological properties as well as their contribution to the color, taste, and shelf life of olive products. However, some of these compounds remain unidentified. It has been shown that hydroxytyrosol 4-beta-D-glucoside (4-beta-D-glucosyl-3-hydroxyphenylethanol) coeluted with hydroxytyrosol [(3,4-dihydroxyphenyl)ethanol] under reversed phase conditions in the phenolic chromatograms of olive pulp, vegetation water, and pomace of olive oil processing. A method to separate this compound from hydroxytyrosol by HPLC has been developed. The concentration of this glucoside increased in olive pulp with maturation and could be the main phenolic compound in mature olives. In contrast, the presence of this compound was not detected in olive oil by using HPLC-MS. The compound must be considered both in table olives and olive oil processing because of its glucose and hydroxytyrosol contribution to these products.  相似文献   

8.
Highly sensitive enzyme-linked immunoassays for chlorpyrifos, one of the most applied insecticides, are presented. Several haptens were synthesized for immunoreagent production and ELISA development. The best immunoassays obtained are based on an indirect coated-plate immunoassay format. Two assays were optimized; one shows a limit of detection of 0.3 ng L(-1), an I50 of 271 ng L(-1), and a dynamic range between 4 and 16 474 ng L(-1). The other one has a limit of detection of 0.07 ng L(-1), an I50 of 7 ng L(-1), and a dynamic range between 0.4 and 302 ng L(-1). The assays were used to quantify chlorpyrifos in olive oil using a simple and rapid sample extraction procedure. The good recoveries achieved in both assays (109% mean value) and the agreement with values given by the GC reference method (110% mean value) indicate their potential for either screening or laboratory quantification.  相似文献   

9.
Storage at 3 and 18 °C of 'Arbequina' olives (Olea europaea L.) cultivated in hedgerows and harvested manually or mechanically (wine grape harvester) was tested. Fruit characteristics and oil quality were monitored. Mechanical harvesting caused internal fruit damage that induced its rapid softening and decay, but also facilitated obtaining higher amounts of oil, which suffered a rapid deterioration during fruit storage. This oil presented lower tocopherol and phenol contents and lower oxidative stability than the oil extracted from manually harvested olives, but showed similar fatty acid composition. Cold storage (3 °C) delayed all of these deterioration processes. It allowed maintaining the best commercial level of quality ("extra") in the oil from mechanically harvested olives for 10 days. This cold storage could be considered as an alternative to the increase in machinery for processing the growing olive production, due to both hedgerow cultivation and mechanized harvesting.  相似文献   

10.
The partition coefficient (K(p)) of the natural phenolic antioxidant compounds in the olive fruit between aqueous and olive oil phases was determined. The antioxidants of olive oil are either present in the olive fruit or formed during the olive oil extraction process. The antioxidants impart stability to and determine properties of the oil and are valuable from the nutritional point of view. The olive oil antioxidants are amphiphilic in nature and are more soluble in the water than in the oil phase. Consequently, a large amount of the antioxidants is lost with the wastewater during processing. The determination of antioxidants was performed using HPLC, and the K(p) was estimated to be from as low as 0.0006 for oleuropein to a maximum of 1.5 for 3,4-DHPEA-EA (di-hydroxy-phenyl-ethanol-elenolic acid, oleuropein aglycon). Henry's law fitted very well to the experimental data. The partition coefficients were also estimated by applying the activity coefficients of the antioxidants in the two phases using a predictive group contribution method, the UNIFAC equation. The K(p) values estimated with UNIFAC method were of the same order of magnitude but varied from the experimental values. Nevertheless, this method may be a rough predictive tool for process optimization or design. Because the K(p) values were very low, some changes in the process are recommended in order to achieve a higher concentration of antioxidants in the oil. A temperature increase may lead to increasing the partition coefficient. Also, limiting the quantity of water during oil extraction could be a basis for designing alternative processes for increasing the antioxidant concentration in the olive oil.  相似文献   

11.
A new multiresidue method has been developed and validated for the simultaneous determination of 100 pesticide residues in olive oil. The determination of pesticide residues was carried out in only 19 min by gas chromatography coupled to tandem mass spectrometry using a triple quadrupole mass analyzer. The mass spectrometer was operated in electron ionization and the selection reaction monitoring mode was used, acquiring two or three fragmentation reactions per compound. Two extraction processes were studied, and an evaluation of the stability and sensitivity of the chromatographic system has been performed for the tested extraction procedures. The final proposed methodology was based on a liquid-liquid partition with an n-hexane/acetonitrile mixture followed by a gel permeation chromatography cleanup step. An adequate lineal relation was obtained in the studied concentration range (10-200 microg kg (-1)); the recovery values were in the range 70-110% for the two levels of concentration studied: 12 and 50 microg kg (-1). Precision values, expressed as relative standard deviation, were lower than 18% at the aforementioned spiking levels; detection limits, confirmation limits, and quantitation limits were below or equal to 1.9, 2.6, and 3.6 microg kg (-1), respectively. The developed methodology was applied to the analysis of pesticide residues in real samples of olive oil from the south of Spain.  相似文献   

12.
A multicolumn solid-phase extraction cleanup for the determination of organophosphorus (OP) and organochlorine (OC) pesticides plus PCB congeners in virgin olive oil is presented. The method involves dissolution of the olive oil in hexane, followed by a cleanup system using a diatomaceous earth column (Extrelut-QE) with reversed (C(18)) and normal (alumina) phase SPE columns. Determination of OPs was by GC-NPD, while the OCs and PCBs were analyzed using GC-ECD. Recovery assays for OPs varied from 81.7% to 105.3%, for OCs ranged between 74.3% and 99.4%, while for PCBs were from 60.1% to 119.2%. Quantitation limits ranged from 10 to 25 microg/kg olive oil for OPs, and from 1 to 6 microg/kg olive oil for OCs and PCBs. In the case of positive samples, the confirmation of pesticide identity was performed by ion-trap GC-MS/MS. The applicability of the method was assayed with 19 virgin olive oil samples collected from different olive mills of Aragón (Spain). Only one OP pesticide (acephate) was detected in one sample at a concentration of 10 microg/kg. Organochlorine pesticides were found in 5-47% of samples at very low levels ranging from 1.5 to 5.2 microg/kg. PCBs were found in 20-90% of samples, showing concentrations between 2.3 and 17.3 microg/kg.  相似文献   

13.
Results obtained in a set of experiments point to an effective participation of olive seeds in the biosynthesis of olive oil aroma through the lipoxygenase pathway during the extraction process to produce virgin olive oil. Data showed that olive seeds should contain enzymatic activities metabolizing 13-hydroperoxides other than hydroperoxide lyase, giving rise to a net decrease in the content of C6 unsaturated aldehydes during the olive oil extraction process. Olive seeds seem also to supply this process with alcohol dehydrogenase activity, being more specific for saturated C6 aldehydes and not acting on C5 alcohols. Moreover, olive seeds would be responsible for the biosynthesis of 30-50% esters during the olive oil extraction process of intact fruits. Thus, olive seeds would afford a load of alcohol acyltransferase activity that might be quite unspecific in terms of substrate, producing any kind of esters.  相似文献   

14.
The Mediterranean diet appears to be associated with a reduced risk of several chronic diseases including cancer and cardiovascular and Alzheimer's diseases. Olive products (mainly olive oil and table olives) are important components of the Mediterranean diet. Olives contain a range of phenolic compounds; these natural antioxidants may contribute to the prevention of these chronic conditions. Consequently, the consumption of table olives and olive oil continues to increase worldwide by health-conscious consumers. There are numerous factors that can affect the phenolics in table olives including the cultivar, degree of ripening, and, importantly, the methods used for curing and processing table olives. The predominant phenolic compound found in fresh olive is the bitter secoiridoid oleuropein. Table olive processing decreases levels of oleuropein with concomitant increases in the hydrolysis products hydroxytyrosol and tyrosol. Many of the health benefits reported for olives are thought to be associated with the levels of hydroxytyrosol. Herein the pre- and post-harvest factors influencing the phenolics in olives, debittering methods, and health benefits of phenolics in table olives are reviewed.  相似文献   

15.
The CIE 1976 (L*, a*, and b*) color space for virgin olive oil was determined. Such a space encompasses any acceptable sample of this type of oil irrespective of the agronomic treatment that the olives have undergone because its color is due to two types of pigments, a systematic combination of which provides the whole range of theoretically possible colors. Color is quantified from the visible spectra for pure samples. Therefore, the pigment spectra, which were the averages of those for several samples, were determined in a medium highly similar to the source oil following application of a photochemical method. A combination of the pigment spectra provided 651 spectra for virtual samples, the colors of which spanned the entire color space for virgin olive oil. The positions of more than 100 Spanish olive oil samples of diverse origins in the color space were also determined, and the results were examined in relation to oil type and quality. Similar color spaces can be obtained for other foods, which can thus be characterized in terms of an additional physical property.  相似文献   

16.
DNA analysis enables genome fingerprinting with consequent identification of different individuals. In the agro-food industry, this can have interesting applications for the identification of species and cultivars of both raw materials and processed food. In this investigation, the efficiency of DNA microsatellite analysis in identifying virgin olive oils from different cultivars was evaluated. Ten virgin oils were obtained in the laboratory from olives of 10 different cultivars and the DNA extracted from the cell residues, recovered by oil centrifugation, was used as a template with seven different primer pairs of microsatellite sequences. The electrophoretic patterns showed an adequate level of amplification and were identical to those obtained from leaves and drupes of the same cultivar. By analyzing all the patterns obtained, the smallest number of microsatellites able to distinguish the examined oils was established and an identification key for the different oils was developed.  相似文献   

17.
18.
A nondestructive analytical method based on NMR spectroscopy was developed for the determination of phospholipids in olive oil. The phospholipids extracted from virgin olive oil with a mixture of ethanol/water (2:1 v/v) were identified and quantified by high resolution (31)P NMR spectroscopy. The main phospholipids found in olive oil were phosphatidic acid, lyso-phosphatidic acid, and phosphatidylinositol. Validation of the (31)P NMR methodology for quantitative analysis of phospholipids in olive oil was performed. Sensitivity was satisfactory with detection limits of 0.25-1.24 mumol /mL. In addition, the composition of fatty acids in phospholipids model compounds and those in olive oil samples was estimated by employing one- and two-dimensional (1)H NMR. The results indicated that the fatty acid composition in phospholipids and triacylglycerols of olive oil was similar.  相似文献   

19.
The aim of this work was to determine the transfer of the chloroplast pigment fractions during the virgin olive oil extraction process, in relation to different factors: the ripening stage of the olive fruits, the irrigation water applied to the olive tree, and the addition of natural microtalc (NMT) during the oil extraction process. Results showed that the percentage of chloroplast pigments transferred from the olive paste to the oil increases with the ripening of the olive fruit (raw material). An excess of the water irrigation applied to the olive tree shows a reduction in the biosynthesis of chloroplast pigments in olive fruits, which is reflected in a low concentration in the virgin oils. Furthermore, the percentage of pigment transfer from the olive paste to the oil during the extraction process is reduced by irrigation, mainly of the chlorophyll fraction. The addition of NMT during the malaxation step produced an increase in the percentage of the total pigments transferred from the olive paste to the oil, in relation to nonaddition.  相似文献   

20.
A simple extraction method was developed to extract proteins from olive samples based on chloroform/methanol extraction followed by a protein precipitation with cold acetone. Then, a capillary electrophoresis (CE) method was carried out using an acid buffer (1 M formic acid at pH 2) to ensure a positive net charge for proteins and a neutral charge for potential interferents as polyphenols. The method developed was applied to raw and table olive samples. Interestingly, raw olive samples showed differences in protein profiles depending upon the botanical variety of olives and their geographical region. Protein profiles obtained for table olives also showed differences according to the sample treatment. Thus, a signal reduction in the electropherograms obtained for black olives was observed in comparison to those achieved for treated green olives. In this work, the use of protein profiles was demonstrated to be a powerful tool for studying variations among olive samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号