共查询到20条相似文献,搜索用时 15 毫秒
1.
Tani H Noda N Yamada K Kurata S Tsuneda S Hirata A Kanagawa T 《Journal of agricultural and food chemistry》2005,53(7):2535-2540
Quenching probe (QProbe) polymerase chain reaction (PCR) is a simple and cost-effective real-time PCR assay in comparison with other real-time PCR assays such as the TaqMan assay. We used QProbe-PCR to quantify genetically modified (GM) soybean (Roundup Ready soybean). We designed event-specific QProbes for Le1 (soy endogenous gene) and RRS (recombinant gene), and we quantified certified reference materials containing 0.1, 0.5, 1, 2, and 5% GM soybean. The TaqMan assay was also applied to the same samples, and the results were compared. The accuracy of QProbe-PCR was similar to that of TaqMan assay. When GM soybean content was 0.5% or more, the relative standard deviations of QProbe-PCR were less than 20%. QProbe-PCR is sensitive enough to monitor labeling systems and has acceptable levels of accuracy and precision. 相似文献
2.
Qualitative and quantitative polymerase chain reaction analysis for genetically modified maize MON863 总被引:1,自引:0,他引:1
Qualitative and quantitative analytical methods were developed for the new event of genetically modified (GM) maize, MON863. One specific primer pair was designed for the qualitative polymerase chain reaction (PCR) method. The specificity and sensitivity of the designed primers were confirmed. PCR was performed on genomic DNAs extracted from MON863, other GM events, and cereal crops. Single PCR product was obtained from MON863 by the designed primer pair. Eight test samples including GM maize MON863 were prepared at 0.01 approximately 10% levels and analyzed by PCR. Limit of detection of the method was 0.01% for GM maize MON863. On the other hand, another specific primer pair and probe were also designed for quantitative method using a real-time polymerase chain reaction. As a reference molecule, a plasmid was constructed from a taxon-specific DNA sequence for maize, a universal sequence for a cauliflower mosaic virus (CaMV) 35S promoter used in most genetically modified organisms, and a construct-specific DNA sequence for the MON863 event. Six test samples of 0.1, 0.5, 1.0, 3.0, 5.0 and 10.0% of GM maize MON863 were quantitated for the validation of this method. At the 3.0% level, the bias (mean vs true value) for MON863 was 3.0%, and its relative standard deviation was 5.5%. Limit of quantitation of the method was 0.5%. These results show that the developed PCR methods can be used to qualitatively and quantitatively detect GM maize MON863. 相似文献
3.
Yang L Pan A Zhang H Guo J Yin C Zhang D 《Journal of agricultural and food chemistry》2006,54(26):9735-9740
Polymerase chain reaction (PCR) methods have been the main technical support for the detection of genetically modified organisms (GMOs). To date, GMO-specific PCR detection strategies have been developed basically at four different levels, such as screening-, gene-, construct-, and event-specific detection methods. Event-specific PCR detection method is the primary trend in GMO detection because of its high specificity based on the flanking sequence of exogenous integrant. GM canola, event T45, with tolerance to glufosinate ammonium is one of the commercial genetically modified (GM) canola events approved in China. In this study, the 5'-integration junction sequence between host plant DNA and the integrated gene construct of T45 canola was cloned and revealed by means of TAIL-PCR. Specific PCR primers and TaqMan probes were designed based upon the revealed sequence, and qualitative and quantitative TaqMan real-time PCR detection assays employing these primers and probe were developed. In qualitative PCR, the limit of detection (LOD) was 0.1% for T45 canola in 100 ng of genomic DNA. The quantitative PCR assay showed limits of detection and quantification (LOD and LOQ) of 5 and 50 haploid genome copies, respectively. In addition, three mixed canola samples with known GM contents were detected employing the developed real-time PCR assay, and expected results were obtained. These results indicated that the developed event-specific PCR methods can be used for identification and quantification of T45 canola and its derivates. 相似文献
4.
Development of a multiplex polymerase chain reaction method for simultaneous detection of eight events of genetically modified maize 总被引:2,自引:0,他引:2
Onishi M Matsuoka T Kodama T Kashiwaba K Futo S Akiyama H Maitani T Furui S Oguchi T Hino A 《Journal of agricultural and food chemistry》2005,53(25):9713-9721
In this study, we developed a novel multiplex polymerase chain reaction (PCR) method for simultaneous detection of up to eight events of genetically modified (GM) maize within a single reaction. The eight detection primer pairs designed to be construct specific for eight respective GM events (i.e., Bt11, Event176, GA21, MON810, MON863, NK603, T25, and TC1507) and a primer pair for an endogenous reference gene, ssIIb, were included in the nonaplex(9plex) PCR system, and its amplified products could be distinguished by agarose gel and capillary electrophoreses based on their different lengths. The optimal condition enabled us to reliably amplify two fragments corresponding to a construct specific sequence and a taxon specific ssIIb in each of the eight events of GM maize and all of nine fragments in a simulated GM mixture containing as little as 0.25% (w/w) each of eight events of GM maize. These results indicate that this multiplex PCR method could be an effective qualitative detection method for screening GM maize. 相似文献
5.
Kumar R 《Journal of agricultural and food chemistry》2011,59(19):10448-10453
Vegetative insecticidal protein (Vip) is being employed for transgenic expression in selected crops such as cotton, brinjal, and corn. For regulatory compliance, there is a need for a sensitive and reliable detection method, which can distinguish between approved and nonapproved genetically modified (GM) events and quantify GM contents as well. A quantitative immunopolymerase chain reaction (IPCR) method has been developed for the detection and quantification of Vip protein in GM crops. The developed assay displayed a detection limit of 1 ng/mL (1 ppb) and linear quantification range between 10 and 1000 ng/mL of Vip-S protein. The sensitivity of the assay was found to be 10 times higher than an analogous enzyme-linked immunosorbent assay for Vip-S protein. The results suggest that IPCR has the potential to become a standard method to quantify GM proteins. 相似文献
6.
Masri S Rast H Ripley T James D Green M Jia X Devlin RH 《Journal of agricultural and food chemistry》2002,50(11):3161-3164
A PCR-based protocol for the identification of genetically modified salmon carrying a growth hormone transgene was developed. Several primer pairs were examined, and the primers that gave consistent results were selected to conduct routine testing. Comparison among several DNA extraction procedures, as well as different buffer compositions, led to the adoption of TriZol as the method of choice. Low potassium and high magnesium chloride concentrations were very important in the overall success of the PCR reaction, whereas buffer pH, ranging from 8.3 to 9.2, had little impact on the amplification reaction. The optimal primer annealing temperature was 52 degrees C. Although fish muscle tissues were the primary source for DNA samples, detection of the transgene was also possible in bones, skin, fins, and other organs. No benefits were achieved by the addition of additives such as dimethyl sulfoxide and betaine to the PCR reaction. This optimized PCR method was used to identify all samples tested (61 samples and 17 controls) with 100% accuracy. 相似文献
7.
In this study, the event-specific primers for insecticide-resistant maize, MON810, and herbicide-tolerance maize, NK603, have been designed. Simplex PCR and multiplex PCR detection method have been developed. The detection limit of the multiplex PCR is 0.5% for MON810 and NK603 in 50 ng of the template for one reaction. Quantitative methods based on real-time quantitative PCR were developed for MON810 and NK603. Plasmid pMulM2 as reference molecules for the detection of MON810 and NK603 was constructed. Quantification range was from 0.5 to 100% in 100 ng of the DNA template for one reaction. The precision of real-time Q-PCR detection methods, expressed as coefficient of variation for MON810 and NK603 varied from 1.97 to 8.01% and from 3.45 to 10.94%, respectively. The range agreed with European interlaboratories test results (25%). According to the results, the methods for quantitative detection of genetically modified maize were acceptable. 相似文献
8.
Yang L Xu S Pan A Yin C Zhang K Wang Z Zhou Z Zhang D 《Journal of agricultural and food chemistry》2005,53(24):9312-9318
Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate. 相似文献
9.
Li X Pan L Li J Zhang Q Zhang S Lv R Yang L 《Journal of agricultural and food chemistry》2011,59(24):13188-13194
For implementation of the issued regulations and labeling policies for genetically modified organism (GMO) supervision, the polymerase chain reaction (PCR) method has been widely used due to its high specificity and sensitivity. In particular, use of the event-specific PCR method based on the flanking sequence of transgenes has become the primary trend. In this study, both qualitative and quantitative PCR methods were established on the basis of the 5' flanking sequence of transgenic soybean A2704-12 and the 3' flanking sequence of transgenic soybean A5547-127, respectively. In qualitative PCR assays, the limits of detection (LODs) were 10 copies of haploid soybean genomic DNA for both A2704-12 and A5547-127. In quantitative real-time PCR assays, the LODs were 5 copies of haploid soybean genomic DNA for both A2704-12 and A5547-127, and the limits of quantification (LOQs) were 10 copies for both. Low bias and acceptable SD and RSD values were also achieved in quantification of four blind samples using the developed real-time PCR assays. In addition, the developed PCR assays for the two transgenic soybean events were used for routine analysis of soybean samples imported to Shanghai in a 6 month period from October 2010 to March 2011. A total of 27 lots of soybean from the United States and Argentina were analyzed: 8 lots from the Unites States were found to have the GM soybean A2704-12 event, and the GM contents were <1.5% in all eight analyzed lots. On the contrary, no GM soybean A5547-127 content was found in any of the eight lots. These results demonstrated that the established event-specific qualitative and quantitative PCR methods could be used effectively in routine identification and quantification of GM soybeans A2704-12 and A5547-127 and their derived products. 相似文献
10.
Côté MJ Meldrum AJ Raymond P Dollard C 《Journal of agricultural and food chemistry》2005,53(17):6691-6696
Several genetically modified (GM) cultivars are registered in Canada although they are not currently in commercial production. The GM cultivars can be distinguished from the non-GM and other GM cultivars by analyzing the DNA nucleotide sequence at the insertion site of the transgene corresponding to a single transformation event in the plant genome. Techniques based on modified polymerase chain reaction (PCR) strategies were used to generate sequence information from the plant genome flanking the insertion site of transgenic DNA for specific GM potato events. The plant genome sequence adjacent to the transgenic insertion was used to design PCR primers, which could be used in combination with a primer annealing to one of the nearby inserted genetic elements to amplify an event specific DNA fragment. The event specific PCR fragments generated were sequenced to confirm the specificity of the method. 相似文献
11.
García-Cañas V González R Cifuentes A 《Journal of agricultural and food chemistry》2002,50(5):1016-1021
In this paper, the possibilities of capillary gel electrophoresis (CGE) to detect transgenic maize in flours are shown. The method is based on the extraction and amplification by the polymerase chain reaction (PCR) of a specific DNA fragment from transgenic maize and its subsequent analysis by CGE with UV detection or laser-induced fluorescence (LIF). Some useful considerations regarding the optimization of DNA extraction and amplification conditions are given. Also, a comparison is established between the two CGE protocols for DNA detection based on ultraviolet absorption (CGE-UV) and LIF (CGE-LIF). The requirements, advantages, and limitations of both CGE methods are discussed. To our knowledge, this is the first paper on the use of CGE-LIF to detect transgenic food. 相似文献
12.
Genetically modified organisms in food-screening and specific detection by polymerase chain reaction 总被引:20,自引:0,他引:20
Vollenhofer S Burg K Schmidt J Kroath H 《Journal of agricultural and food chemistry》1999,47(12):5038-5043
PCR methods for the detection of genetically modified organisms (GMOs) were developed that can be used for screening purposes and for specific detection of glyphosate-tolerant soybean and insect-resistant maize in food. Primers were designed to amplify parts of the 35S promoter derived from Cauliflower Mosaic Virus, the NOS terminator derived from Agrobacterium tumefaciens and the antibiotic marker gene NPTII (neomycin-phosphotransferase II), to allow for general screening of foods. PCR/hybridization protocols were established for the detection of glyphosate-tolerant RoundUp Ready soybean and insect-resistant Bt-maize. Besides hybridization, confirmation of the results using restriction analysis was also possible. The described methods enabled a highly sensitive and specific detection of GMOs and thus provide a useful tool for routine analysis of raw and processed food products. 相似文献
13.
Yang L Pan A Zhang K Guo J Yin C Chen J Huang C Zhang D 《Journal of agricultural and food chemistry》2005,53(16):6222-6229
As the genetically modified organisms (GMOs) labeling policies are issued in many countries, qualitative and quantitative polymerase chain reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. Qualitative PCR and TaqMan real-time quantitative PCR methods to detect and identify three varieties of insect resistant cotton, i.e., Mon531 cotton (Monsanto Co.) and GK19 and SGK321 cottons (Chinese Academy of Agricultural Sciences), which were approved for commercialization in China, were developed in this paper. Primer pairs specific to inserted DNAs, such as Cowpea trypsin inhibitor (CpTI) gene of SGK321 cotton and the specific junction DNA sequences containing partial Cry1A(c) gene and NOS terminator of Mon531, GK19, and SGK321 cotton varieties were designed to conduct the identified PCR assays. In conventional specific identified PCR assays, the limit of detection (LOD) was 0.05% for Mon531, GK19, or SGK321 in 100 ng of cotton genomic DNA for one reaction. Also, the multiplex PCR method for screening the three GM cottons was also established, which could save time and cost in practical detection. Furthermore, a real-time quantitative PCR assay based on TaqMan chemistry for detection of insect resistant gene, Cry1A(c), was developed. This assay also featured the use of a standard plasmid as a reference molecule, which contained both a specific region of the transgene Cry1A(c) and an endogenous stearoyl-acyl carrier protein desaturase (Sad1) gene of the cotton. In quantitative PCR assay, the quantification range was from 0.01 to 100% in 100 ng of the genome DNA template, and in the detection of 1.0, 3.0, and 5.0% levels of three insect resistant cotton lines, respectively, all of the relative standard deviations (RSDs) were less than 8.2% except for the GM cotton samples with 1.0% Mon531 or GK19, which meant that our real-time PCR assays involving the use of reference molecule were reliable and practical for GM insect resistant cottons quantification. All of these results indicated that our established conventional and TaqMan real-time PCR assays were applicable to detect the three insect resistant cottons qualitatively and quantitatively. 相似文献
14.
The occurrence of intermixing, especially that resulting from genetically modified (GM) species, is increasingly becoming a problem in the delicate chain of feed and food quality control. Thus, a strategy is needed for precisely quantifying the presence of intermixing. An analytical assay based on real-time PCR has been developed; it can ascertain the extent of unexpected intermixing of GM soybean with maize meal. Three soybean-maize mix levels, with soybean intermix percentages of, respectively, 0.1, 0.5, and 1%, were prepared to simulate samples containing traces of soybean. As calibrator standards, ad hoc multiple-target pGEM-T plasmids containing soybean and maize reference genes in a 1:1 ratio were constructed. Four different maize endogenous genes, alcohol dehydrogenase 1 (adh1), high-mobility group protein a (hmga), invertase 1 (ivr1), and zein (zein), were assessed, each combined with the soybean endogenous lectin 1 (lect1) gene. Plasmids containing adh1-lect1 and zein-lect1 genes were found to be the most reliable calibration systems for this analysis, providing precise and accurate quantification results. Measuring the percentage of GM soybean intermixing makes it possible to calculate the actual transgenic component of the total sample. 相似文献
15.
He X Brandon DL Chen GQ McKeon TA Carter JM 《Journal of agricultural and food chemistry》2007,55(2):545-550
Due to the potential for intentional contamination of food with crude preparations containing ricin, a real-time PCR method was developed for the detection of castor plant material in ground beef. One primer pair was identified and confirmed to be castor-specific and efficient for amplification of ricin in DNA extracts from castor or beef matrices. Of three different DNA extraction protocols compared, the hexadecyltrimethylammonium bromide (CTAB) method yielded the highest quality of DNA for QPCR assay. The detection limit for castor contamination in ground beef samples was <0.001% (<10 microg of castor acetone powder per gram of beef, corresponding to 0.5 microg of ricin), indicating excellent sensitivity for the assay, well below the threshold for oral toxicity. 相似文献
16.
Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods 总被引:27,自引:0,他引:27
Vaïtilingom M Pijnenburg H Gendre F Brignon P 《Journal of agricultural and food chemistry》1999,47(12):5261-5266
A fast and quantitative method was developed to detect transgenic "Maximizer" maize "event 176" (Novartis) and "Roundup Ready" soybean (Monsanto) in food by real-time quantitative PCR. The use of the ABI Prism 7700 sequence detection system allowed the determination of the amplified product accumulation through a fluorogenic probe (TaqMan). Fluorescent dyes were chosen in such a way as to coamplify total and transgenic DNA in the same tube. Using real-time quantitative PCR, 2 pg of transgenic or total DNA per gram of starting sample was detected in 3 h after DNA extraction and the relative amounts of "Maximizer" maize and "Roundup Ready" soybean in some representative food products were quantified. 相似文献
17.
采用RT-PCR的方法利用肝组织提取的总RNA制备猪胰岛素样生长因子Ⅰ(pIGF-Ⅰ)cDNA目的片断,与pMD-18T vector连接成重组质粒,并转化Escherichia coli DH5α.联合应用PCR鉴定、α互补法、限制性酶切和序列分析法鉴定其特异性.测定纯化的重组质粒A260,确定浓度并以此制备实时荧光定量PCR(FQ-PCR)梯度浓度参考标准.结果表明:pIGF-Ⅰ cDNA目的片断成功制备,并获得稳定的重组质粒,保持了目的片断序列的特异性和完整性,成功构建了pIGF-Ⅰ实时FQ-PCR的定量参考标准. 相似文献
18.
Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat 总被引:1,自引:0,他引:1
Quality assurance is a major issue in the food industry. The authenticity of food ingredients and their traceability are required by consumers and authorities. Plant species such as barley (Hordeum vulgare), rice (Oryza sativa), sunflower (Helianthus annuus), and wheat (Triticum aestivum) are very common among the ingredients of many processed food products; therefore the development of specific assays for their specific detection and quantification are needed. Furthermore, the production and trade of genetically modified lines from an increasing number of plant species brings about the need for control within research, environmental risk assessment, labeling/legal, and consumers' information purposes. We report here the development of four independent real-time polymerase chain reaction (PCR) assays suitable for identification and quantification of four plant species (barley, rice, sunflower, and wheat). These assays target gamma-hordein, gos9, helianthinin, and acetyl-CoA carboxylase sequences, respectively, and were able to specifically detect and quantify DNA from the target plant species. In addition, the simultaneous amplification of RALyase allowed bread from durum wheat to be distinguished. Limits of detection were 1 genome copy for barley, sunflower, and wheat and 3.3 copies for rice real-time PCR systems, whereas limits of quantification were 10 genome copies for barley, sunflower, or wheat and approximately 100 haploid genomes for rice real-time PCR systems. Real-time PCR cycling conditions of the four assays were stated as standard to facilitate their use in routine laboratory analyses. The assays were finally adapted to conventional PCR for detection purposes, with the exception of the wheat assay, which detects rye simultaneously with similar sensitivity in an agarose gel. 相似文献
19.
Lerat S England LS Vincent ML Pauls KP Swanton CJ Klironomos JN Trevors JT 《Journal of agricultural and food chemistry》2005,53(5):1337-1342
A method for quantification of recombinant DNA for Roundup Ready (RR) corn and RR soybean in soil samples is described. Soil DNA from experimental field samples was extracted using a soil DNA extraction kit with a modified protocol. For the detection and quantification of recombinant DNA of RR corn and RR soybean, a molecular beacon and two pairs of specific primers were designed to differentially target recombinant DNA in these two genetically modified crops. Soil DNA extracts were spiked with RR corn or RR soybean DNA, and recombinant DNA was quantified using real-time PCR with a molecular beacon. As few as one copy of RR corn genome or one copy of RR soybean genome was detected in the soil DNA extract. 相似文献
20.
Several countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms. Real-time quantitative Polymerase Chain Reaction (PCR) has quickly become the method of choice in support of these regulations and requires the development of separate PCR assays targeting the transgenic sequence as well as a specific endogenous gene sequence. To develop a Brassica napus-specific PCR assay, partial sequences of the acetyl-CoA carboxylase BnACCg8 gene from B. napus and the closely related Brassica rapa were determined and compared, and a region of unique nucleotide sequence was identified. Universal amplification primers were designed to either side of this region, and a locked nucleic acid TaqMan probe was designed to the B. napus-specific sequence. Evaluation of this primer/probe combination indicated a high level of specificity to B. napus: no amplification signal was observed with any other species tested, including five closely related Brassica species. The method was assayed with 14 different B. napus cultivars, and comparable amplification curves were consistently obtained for all. The assay was highly sensitive, with a limit of detection between 1 and 10 haploid copies. Practically, the method was demonstrated to be effective for the detection of processed food samples and for the quantification of Roundup Ready canola content in mixed samples. 相似文献