首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
绿化植物废弃物堆肥对城市绿地土壤的改良效果   总被引:11,自引:2,他引:11  
顾兵  吕子文  方海兰  李桥  郝冠军 《土壤》2009,41(6):940-946
针对城市中普遍存在的绿地土壤退化和有机废弃物处理处置难的现状,选择典型城市土壤进行绿化植物废弃物堆肥不同用量的绿地现场土壤改良实验.结果表明:绿化植物废弃物堆肥能提高土壤持水能力;降低土壤的酸碱度;增加土壤有机质、总N、总P、有效P、生物量C、N和微生物总量;堆肥对土壤全K的含量总体影响不大,但速效K的含量却成倍增加;说明绿化植物废弃物能改善土壤理化性质,提高土壤肥力,且随着堆肥用量的增加,对土壤的改良作用也越显著;鉴于绿化植物废弃物高C/N,其用量宜控制在13240 kg/hm~2以内.绿化植物废弃物堆肥就地利用即能改良城市退化土壤,又减少城市废弃物量,有利于提高城市生态环境质量.  相似文献   

2.

Purpose

This study evaluates the effects of two soil amendments and the growth of two plant species on labile trace element (TE) fractions in two different contaminated soils.

Materials and methods

We studied the effects of two organic amendments (biosolid compost and alperujo compost) and two plant species (Medicago polymorpha and Poa annua) on pH, total organic carbon (TOC), and TE availability, by three extraction methods (CaCl2 aqueous solution, soil pore water (SPW), and diffusive gradient in thin film (DGT)), in two contaminated soils with contrasting pH values (Aznalcázar, 6.53, and Vicario, 3.48) in a 118-day pot experiment. The effects of the composts on labile TE fractions were compared with element concentrations in plants.

Results and discussion

No relevant effects of amendments and plants were found on the physical and chemical characteristics of the Aznalcázar soil. However, the addition of amendments was essential for plant species growing in the acid Vicario soil. In this soil, amendments and plant growth increased pH and TOC and reduced substantially TE bioavailability. Although absolute values of bioavailable TE contents obtained by the three methods were very different and followed the trend CaCl2 extraction?>?SPW?>?DGT, these values follow a similar behavior in the two studied soils and for the two species.

Conclusions

The results demonstrate that the application of organic amendments are suitable for remediating acid TE-contaminated soils, for the establishment of a vegetation cover on previously bare soils for reducing wind and water erosion and for reducing labile TE fractions to prevent leaching of pollutants into subsoil or groundwater layers. Moreover, the results obtained in this study pointed out that under microcosm conditions, the three methods tested (CaCl2 extraction, SPW, and DGT) to predict TE bioavailability were highly correlated.
  相似文献   

3.
The benefits of adding composted organic materials to soils to enhance carbon storage could be countered by the mobilisation of some harmful pollutants commonly found in frequently degraded urban soils. Therefore non-composted materials could be a safer option. In the present study, carbon and trace element fluxes in soil pore water were studied in response to the surface mulch addition and the incorporation into an urban soil of greenwaste compost versus two non-composted amendments; a woody oversize material and biochar following inoculation with the vertical burrowing earthworm Lumbricus terrestris. The aim was to establish (i) to what extent the non-composted amendments impacted on mobility of soluble trace elements in the soil, compared to the composted amendment, and (ii) if/how this was regulated by earthworm activity.Both composted and non-composted amendments enhanced dissolved organic carbon (DOC) in soil pore water to ∼100-300 mg l−1 in the upper depth of the soil profile above which they were applied as a mulch and similarly within the mesocosms in which they were mixed. Dissolved organic carbon, dissolved nitrogen (DTN) and trace metals, especially Cu and Pb, where enhanced to the greatest extent by greenwaste compost, because of strong co-mobilisation of metals by DOC. Biochar enhanced As and Cu mobility in the field profile and, additionally Pb in the mesocosms, with no effect on Cd. The woody, oversize amendment neither greatly increased DOC nor As, Cu, Pb or Zn mobility although, unlike the other amendments, earthworms increased DOC and Cd mobility when soils were amended with this material.This study concludes that non-composted amendments had a lower impact on DOC and thus trace element co-mobility than the composted greenwaste in this urban soil, whilst the general influence of earthworms was to reduce DOC and hence associated trace element mobility. In wider environmental terms the addition of non-composted materials to some urban soils, versus composted greenwaste could reduce the risk of mobilising potentially harmful elements, whilst usefully improving soil quality.  相似文献   

4.
《Geoderma》2007,137(3-4):497-503
Soil amendment with sewage sludge (SS) from municipal wastewater treatment plants is nowadays a common practice for both increasing soil organic matter and nutrient contents and waste disposal. However, the application of organic amendments that are not sufficiently mature and stable may adversely affect soil properties. Composting and thermal drying are treatments designed to minimize these possible deleterious effects and to facilitate the use of SS as a soil organic amendment. In this work, an arid soil either unamended or amended with composted sewage sludge (CSS) or thermally-dried sewage sludge (TSS) was moistened to an equivalent of 60% soil water holding capacity and incubated for 60 days at 28 °C. The C–CO2 emission from the samples was periodically measured in order to study C mineralization kinetics and evaluate the use of these SS as organic amendments. In all cases, C mineralization decreased after the first day. TSS-amended soil showed significantly higher mineralization rates than unamended and CSS-amended soils during the incubation period. The data of cumulative C–CO2 released from unamended and SS-amended soils were fitted to six different kinetic models. A two simultaneous reactions model, which considers two organic pools with different degree of biodegradability, was found to be the most appropriate to describe C mineralization kinetics for all the soils. The parameters derived from this model suggested a larger presence of easily biodegradable compounds in TSS-amended soil than in CSS-amended soil, which in turn presented a C mineralization pattern very similar to that of the unamended soil. Furthermore, net mineralization coefficient and complementary mineralization coefficient were calculated from C mineralization data. The largest losses of C were measured for TSS-amended soil probably due to an extended microbial activity. The results obtained thus indicated that CSS is more efficient for increasing total organic C in arid soils.  相似文献   

5.
6.
彭学兰  司宗信  王月梅 《土壤》2000,32(5):278-280
论述了兰州市城肥的数量、利用现状及存在的问题,城肥利用长期得不到合理开发,污染环境和水源。提出了解决城肥利用的基本途径和发展前景。  相似文献   

7.
Changes produced in the biological characteristics of an arid soil by the addition of various urban wastes (municipal solid waste, sewage sludge and compost) at different doses, were evaluated during a 360-day incubation experiment. The addition of organic materials to the soil increased the values of biomass carbon, basal respiration, biomass C/total organic C ratio and metabolic quotient (qCO2), indicating the activation of soil microorganisms. These biological parameters showed a decreasing tendency with time. Nevertheless, their values in amended soils were higher than in control soil, which clearly indicates the improvement of soil biological quality brought about by the organic amendment. This favorable effect on soil biological activity was more noticeable with the addition of fresh wastes (municipal solid waste or sewage sludge) than with compost. In turn, this effect was more permanent when the soil was amended with municipal solid waste than when it was amended with sewage sludge. Received: 28 May 1996  相似文献   

8.
Abstract

This work investigated the kinetics of carbon (C) mineralization when different doses of organic materials with varying degrees of stability were added to an arid soil. Respiration assays showed that the incorporation of wastes led to a greater emission of carbon in the form of CO2 and greater degree of microbial activity than those occurring in the control soil. Soils treated with fresh waste (municipal solid waste and sewage sludge) gave off more CO2 than that treated with compost, with higher values being obtained at high than at low doses. Carbon dioxide emission was reduced with the length of time the organic materials remained in the soil. The data of cumulative CO2 were fitted to the equation C=C0(1‐e‐Kt)+C1. The parameters derived from this model were used as indices of organic matter decomposition, because the product of C0 and K was more precise than either value separately. In all cases, an initial rapid phase of mineralization was clearly differentiated from a second slower phase.  相似文献   

9.
The use of organic matter (OM) amendments is widespread in tropical countries and may be beneficial for soil carbon storage. Interactions between earthworms and OM amendments in tropical soils are largely unknown. The aim of this study was to investigate the effect of bioturbation on the quantity and chemical composition of OM in soil amended with compost and vermicompost. Our approach included comparison of soil samples amended with compost, vermicompost or chemical fertilizers in the presence or absence of earthworms during a one-year greenhouse experiment. The soils were submitted to a regular cultivation cycle. After one year, we analysed bulk samples for soil OM elemental composition and characterised its lignin and non-cellulosic carbohydrate components.Our results showed a decrease of the carbon and nitrogen content in soil amended with chemical fertilizers. Vermicompost amendment led to unchanged OC content, whereas the compost amendment increased the soils OC content compared to initial soil. The addition of earthworms reduced OC and N content in soils with organic amendments. This is in contrast to soil amended with mineral fertilizer only, where the presence of earthworms did not have any effect. Bioturbation influenced the lignin signature of the soils, and to a lesser extent the non-cellulosic carbohydrate signature. In conclusion, compost amendment combined with bioturbation influenced the quality and quantity of SOM and as result carbon storage and its biogeochemical cycling in tropical soils. Implications for soil fertility remain to be elucidated.  相似文献   

10.
The distribution in soil and plant uptake of zinc (Zn) and lead (Pb) as influenced by pine bark-goat manure (PBG) compost additions were investigated from the soils artificially contaminated with Zn or Pb ions using maize (Zea mays L.) as a test crop. Soils were amended with four rates of pine bark-goat manure compost (0, 50, 100, and 200 tons ha?1) and four rates (0, 300, 600 and 1200 mg kg?1) of Zn or Pb. Maize was planted and grown for 42 days. At harvest, plants samples were analyzed for Zn and Pb concentration. Soils samples were analyzed for pH, extractable and diethylene triamine pentaacetic acid (DTPA) extractable Zn and Pb. Extractable Zn and Pb was lower in PBG compost amended soils than in unamended soils and steadily declined with increasing amount of compost applied. The extractable fraction for Zn dropped by 62.2, 65.0 and 44.6% for 300, 600 and 1200 mg Zn kg?1, respectively when 200 t ha?1 of PBG compost was applied. Metal uptake by maize plants were directly related to the rate of applied heavy metal ions with greater concentrations of metals ions found where metal ions were added to non-amended soils.  相似文献   

11.
Barren desert soil that otherwise could not support perennial plant growth was amended with six levels of common agricultural compost. Seedlings of the giant cardon cactus, one of the primary plant species responsible for soil stabilization in the southern Sonoran Desert, were inoculated with the plant-growth-promoting bacterium Azospirillum brasilense Cd, planted, and grown for 18 months under nursery conditions typical for slow-growth cacti. Control plants were grown without compost amendment, without inoculation (negative control), or in fertile, rare “resource island” soil preferred by cardon seedlings (positive control). During the prolonged growth period, the decisive factor in seedling growth in barren soil was the addition of small amounts of common compost; 6 to 25% of the growth substrate volume gave the best growth response and, to a lesser extent, so did inoculation with A. brasilense Cd. Although the bacteria significantly affects plant growth when amended with “resource island” soil and added to barren soil, its effect on plant growth was far smaller than when compost alone was added. Compost added to barren soil significantly increased the dry weight parameters of the plant to almost similar levels obtained by the “resource island” soil; however, the compost amendment supports a more voluminous and greener plant with elevated pigment levels. This study shows that barren soil supplemented with compost can replace the rare “resource island” soil for cardon nurseries destined to abate soil erosion in the desert.  相似文献   

12.
To reclaim a limestone quarry, 200 and 400 Mg/ha of municipal sewage sludge were mixed with an infertile calcareous substrate and spread as mine soil in 1992. Soil samples were taken 1 week later and again after 17 yr of mine soil rehabilitation so as to assess changes in the amount and persistence of soil organic carbon (SOC). Sludge application increased SOC as a function of the sludge rate at both sampling times. Seventeen years after the sludge amendments, the nonhydrolysable carbon was increased in the 400 Mg/ha of sludge treatment. The recalcitrance of SOC was less in sludge‐amended soils than in the control treatment at the initial sampling, but 17 yr later this trend had reversed, showing qualitative changes in soil organic carbon. The CO2‐C production had not differed between treatments, yet the percentage of mineralized SOC was less in the high sludge dose. When the size of active (Cactive) and slow (Cslow) potentially mineralizable C pools was calculated by curve fitting of a double‐exponential equation, the proportion of Cactive was observed to be smaller in the 400 Mg/ha sludge treatment. Soil aggregate stability, represented by the mean weight diameter of water‐stable soil aggregates, was significantly greater in mine soil treated with the high dose of sludge (18.5%) and SOC tended to be concentrated in macro‐aggregates (5–2 mm). Results suggest that SOC content in sludge‐amended plots was preserved due by (i) replacement of the labile organic carbon of sludge by more stable compounds and (ii) protection of SOC in aggregates.  相似文献   

13.
Summary The effect of incorporating sesbania and rice straw and of period of decomposition on urea hydrolysis was studied in a wetland soil under laboratory conditions. Urea hydrolysis proceeded more rapidly in the crop residue-amended soil than in the control soil, and increased with increases in the rate of addition of crop residues and with longer periods of decomposition. Irrespective of amendment treatment, urea hydrolysis followed first-order reaction kinetics, and rate constants in the unamended soil ranged from 0.021 to 0.024 h-1 after urea application of 200 g N g-1 soil. In the amended soil, hydrolysis rates ranged from 0.033 to 0.149 h-1 with sesbania and 0.071 and 0.250 h-1 with rice straw, depending on the length of decomposition period.  相似文献   

14.
Abstract

Municipal Waste Compost was added to soils in the glasshouse and field to assess its impact upon soil physical properties. Application was by mulch and incorporation, and the amelioration of temperature, soil water content, unsaturated hydraulic conductivity, and evaporation were investigated. Incorporation in the glasshouse pot experiments increased early season evaporation, while compost applied by either means raised soil temperature. In later stages of drying, the presence of compost reduced the evaporation rate. In the field, compost addition to trials of maize (Zea mays van Melody) improved retention of soil water during a normally wet summer, but not during a very dry summer. Furthermore, soil temperature tended to be reduced by mulching. It is concluded that compost application is beneficial to soil water retention and its subsequent utilization by a crop in conditions of normal rainfall under a temperate climate. Furthermore, it is concluded that the common practice of extrapolating glasshouse‐derived information to field conditions creates serious problems, at least in soil physical experimentation.  相似文献   

15.
施用碱稳定固体的酸性土壤的Cu和Zn的形态分布   总被引:2,自引:1,他引:2  
LUO Yong-Ming 《土壤圈》2002,12(2):165-170
Fractionation of metals in a granite-derived acid sandy loam soil amended with alkaline-stabilised sewagesIudge biosolids was conducted in order to assess metal bioavailability and environmental mobility soil solution was extracted by a centrifugation and filtration technique. Metal speciation in the soil solution wasdetermined by a cation exchange resin method. Acetic acid and EDTA extracting solutions were used forextraction of metals in soil solid surfaces. Metal distribution in different fractions of soil solid phase was determined using a three-step sequential extraction scheme. The results show that the metals in the soilsolution existed in different fractions with variable lability and metals in the soil solid phase were also presentin various chemical forms with potentially different bioavail ability and environmental mobility Alkaline-stabilised biosolids could elevate solubility of Cu and proportion of Cu in organically complexed fractionsboth in soil liquid and solid phases, and may therefore increase Cu mobility. In contrast, the biosolids lowered the concentrations of water-soluble Zn (labile fraction) and exchangeable Zn and may hence decrease bioavailability and mobility of Zn. However, Fe and Mn oxides bound and organic matter bound fractions are likely to be Zn pools in the sludge-amended soil. These consequences possibly result from the liming effect and metal speciation of the sludge product and the difference in the chemistry between the metals in soil.  相似文献   

16.
Application of feedlot manure (FLM) to cropping and grazing soils could provide a valuable N nutrient resource. However, because of its high but variable N concentration, FLM has the potential for environmental pollution of water bodies and N2O emission to the atmosphere. As a potential management tool, we utilised the low-nutrient green waste compost (GWC) to assess its effectiveness in regulating N release and the amount of N2O emission from two Vertisols when both FLM and GWC were applied together. Cumulative soil N2O emission over 32 weeks at 24°C and field capacity (70% water-filled pore space) for a black Vertisol (Udic Paleustert) was 45 mg N2O m−2 from unamended soil. This increased to 274 mg N2O m−2 when FLM was applied at 1 kg m−2 and to 403 mg N2O m−2 at 2 kg m−2. In contrast, the emissions of 60 mg N2O m−2 when the soil was amended with GWC 1 kg m−2 and 48 mg N2O m−2 at 2 kg m−2 were not significantly greater than the unamended soil. Emission from a mixture of FLM and GWC applied in equal amounts (0.5 kg m−2) was 106 mg N2O m−2 and FLM applied at 0.5 kg m−2 and GWC at 1.5 kg GWC m−2 was 117 mg N2O m−2. Although cumulative N2O emissions from an unamended grey Vertisol (Typic Chromustert) were only slightly higher than black Vertisol (57 mg N2O m−2), FLM application at 1 kg m−2 increased N2O emissions by 14 times (792 mg N2O m−2) and at 2 kg m−2 application by 22 times (1260 mg N2O m-2). Application of GWC did not significantly increase N2O emission (99 mg N2O m−2 at 1 kg m−2 and 65 mg N2O m−2 at 2 kg m−2) above the unamended soil. As observed for the black Vertisol, a mixture of FLM (0.5 kg m−2) and GWC (0.5 or 1.5 kg m−2) reduced N2O emission by >50% of that from the FLM alone, most likely by reducing the amount of mineral N (NH4+–N and NO3–N) in the soil, as mineral N in soil and the N2O emission were closely correlated.  相似文献   

17.
Soils in Mexico are often contaminated with hydrocarbons and addition of waste water sludge and earthworms accelerates their removal. However, little is known how contamination and subsequent bioremediation affects emissions of N2O and CO2. A laboratory study was done to investigate the effect of waste water sludge and the earthworm Eisenia fetida on emission of N2O and CO2 in a sandy loam soil contaminated with the polycyclic aromatic hydrocarbons (PAHs): phenanthrene, anthracene and benzo(a)pyrene. Emissions of N2O and CO2, and concentrations of inorganic N (ammonium (NH4+), nitrite (NO2?) nitrate (NO3?)) were monitored after 0, 5, 24, 72 and 168 h. Adding E. fetida to the PAHs contaminated soil increased CO2 production rate significantly 2.0 times independent of the addition of sludge. The N2O emission rate from unamended soil expressed on a daily base was 5 μg N kg?1 d?1 for the first 2 h and increased to a maximum of 325 μg N kg?1 d?1 after 48 h and then decreased to 10 μg N kg?1 d?1 after 168 h. Addition of PAHs, E. fetida or PAHs + E. fetida had no significant effect on the N2O emission rate. Adding sludge to the soil sharply increased the N2O emission rate to >400 μg N kg?1 d?1 for the entire incubation with a maximum of 1134 μg N kg?1 d?1 after 48 h. Addition of E. fetida, PAHs or PAHs + E. fetida to the sludge-amended soil reduced the N2O emission rate significantly compared to soil amended with sludge after 24 h. It was found that contaminating soil with PAHs and adding earthworms had no effect on emissions of N2O. Emission of N2O, however, increased in sludge-amended soil, but addition of earthworms to this soil and contamination reduced it.  相似文献   

18.
Sugar beet waste (SB), treated by Aspergillus niger under the conditions of 10-, 20-, and 30-day-solid state fermentation, supplemented or not with rock phosphate (RP), was added to a soil-plant system. Plant growth responses depended on the time period of preincubation of the agrowaste characterized by different lignocellulosic composition and N and P contents before introduction into soil. Maximum growth and nutrient uptake of alfalfa during three crop cycles were recorded in a soil amended with microbially-treated SB waste+RP. This effect was more pronounced in treatments with arbuscular mycorrhizal (AM) fungus grown in soil enriched with 10- and 20-day-microbially-treated SB+RP, when the respective average total plant growth increased 233% and 343% over the non-mycorrhizal control containing untreated SB. Compared to other treatments, plant mycorrhization was ineffective when 30-day-treated agrowaste was used. Similarly, plant nodule numbers and uptake of metal ions depended on both the time period of waste preincubation and mycorrhization.  相似文献   

19.
The contribution of organic resources to the restoration of soil fertility in smallholder farming systems in East Africa is being tested as an alternative to costly fertilizers. Organic inputs are expected to have advantages over fertilizers by affecting many biochemical properties controlling nutrient cycling. Our study examined changes in soil C and N, C and N mineralization, microbial biomass C (MBC) and N (MBN), and particulate organic matter (POM) in a P-limiting soil in western Kenya after applications of organic residues and fertilizers to overcome P limitation to crops. Leaf biomass from six different tree (shrub) species was incorporated into the soil at 5 Mg ha–1 for five consecutive maize growing seasons, over 2.5 years. Triple superphosphate was applied separately at 0, 10, 25, 50, and 150 kg P ha–1 in combination with 120 kg N ha–1 as urea. Soil inorganic N, soil organic C, mineralizable N, and total C in all POM fractions and total N in the 53- to 250-m POM fraction increased following addition of all organic residues compared to the control. Whether there was an advantage of organic residue incorporation over inorganic fertilizer use depended on the soil parameter studied, the organic residue and the rate of fertilization. Most differences were found in N mineralization where 14.4–21.6 mg N kg–1 was mineralized in fertilizer treatments compared to 25.2–30.5 mg N kg–1 in organic residue treatments. C and N mineralization and the 53- to 250-m POM fractions were the most sensitive parameters, correlating with most of the studied parameters. Organic residues can contribute to improved soil nutrient cycling while the magnitude of their contribution depends on the biochemical properties of the residues.  相似文献   

20.
Lead (Pb) pollution in and around Ulaanbaatar is of national concern, given that the Mongolian capital is home to nearly half of the country’s entire population. By comparison, Mongolian countryside is a pristine environment because of its sparse population and low industrial activity. The concentration of Pb in urban soils (average of 39.1 mg kg–1) was twice the values found (average 18.6 mg kg–1) in background territories (i.e., Mongolian rural sites). Furthermore, Pb contamination was examined by using Pb stable isotopic composition, and covariance of Pb isotopic ratios showed two groups between rural and urban soils as pristine and disturbed sites. The 206Pb/207Pb ratio, the most prominent fingerprint for Pb pollution, was 1.163–1.185 for the urban whereas values for rural soils (1.186–1.207) were analogue to the regional Pb isotopic signatures. Local coal sources and their combustion products, one of the potential Pb pollution sources in Ulaanbaatar, have significant radiogenic properties in terms of Pb isotopic composition and revealed an average of 1.25 for 206Pb/207Pb and 19.551 for 206Pb/204Pb ratios. Thus, contributions from coal firing activity to Pb pollution lower than it was assumed, and smaller range of these values measured in urban soils may be attributed to the mixing of less radiogenic Pb as a constituent of the leaded gasolines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号