首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crown rust, which is caused by Puccinia coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in 12 linkage groups. The map covered 409.4 cM of the Avena sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes.  相似文献   

2.
Genetic Analysis of Resistance to Soil-Borne Wheat Mosaic Virus Derived from Aegilops tauschii. Euphytica. Soil-Borne Wheat Mosaic Virus (SBWMV), vectored by the soil inhabiting organism Polymyxa graminis, causes damage to wheat (Triticum aestivum) yields in most of the wheat growing regions of the world. In localized fields, the entire crop may be lost to the virus. Although many winter wheat cultivars contain resistance to SBWMV, the inheritance of resistance is poorly understood. A linkage analysis of a segregating recombinant inbred line population from the cross KS96WGRC40 × Wichita identified a gene of major effect conferring resistance to SBWMV in the germplasm KS96WGRC40. The SBWMV resistance gene within KS96WGRC40 was derived from accession TA2397 of Aegilops taushcii and is located on the long arm of chromosome 5D, flanked by microsatellite markers Xcfd10 and Xbarc144. The relationship of this locus with a previously identified QTL for SBWMV resistance and the Sbm1 gene conferring resistance to soil-borne cereal mosaic virus is not known, but suggests that a gene on 5DL conferring resistance to both viruses may be present in T. aestivum, as well as the D-genome donor Ae. tauschii.  相似文献   

3.
Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating wheat diseases worldwide. Triticum aestivum-Haynaldia villosa 6VS/6AL translocation lines carrying the Yr26 gene on chromosome 1B, are resistant to most races of Pst used in virulence tests. In order to better utilize Yr26 for wheat improvement, we attempted to screen SSR and EST-based STS markers closely linked with Yr26. A total of 500 F2 plants and the F2:3 progenies derived from a cross between 92R137 and susceptible cultivar Yangmai 5 were inoculated with race CYR32. The analysis confirmed that stripe rust resistance was controlled by a single dominant gene, Yr26. Among 35 pairs of genomic SSR markers and 81 pairs of STS markers derived from EST sequences located on chromosome 1B, Yr26 was flanked by 5 SSR and 7 STS markers. The markers were mapped in deletion bins using CS aneuploid and deletion lines. The closest flanking marker loci, Xwe173 and Xbarc181, mapped in 1BL and the genetic distances from Yr26 were 1.4 cM and 6.7 cM, respectively. Some of these markers were previously reported on 1BS. Eight common wheat cultivars and lines developed from the T. aestivum-H. villosa 6VS/6AL translocation lines by different research groups were tested for presence of the markers. Five lines with Yr26 carried the flanking markers whereas three lines without Yr26 did not. The results indicated that the flanking markers should be useful in marker-assisted selection for incorporating Yr26 into wheat cultivars.  相似文献   

4.
The wheat (Triticum aestivum L.) gene Lr34/Yr18 conditions resistance to leaf rust, stripe rust, and stem rust, along with other diseases such as powdery mildew. This makes it one of the most important genes in wheat. In Canada, Lr34 has provided effective leaf rust resistance since it was first incorporated into the cultivar Glenlea, registered in 1972. Recently, molecular markers were discovered that are either closely linked to this locus, or contained within the gene. Canadian wheat cultivars released from 1900 to 2007, breeding lines and related parental lines, were tested for sequence based markers caSNP12, caIND11, caIND10, caSNP4, microsatellite markers wms1220, cam11, csLVMS1, swm10, csLV34, and insertion site based polymorphism marker caISBP1. Thirty different molecular marker haplotypes were found among the 375 lines tested; 5 haplotypes had the resistance allele for Lr34, and 25 haplotypes had a susceptibility allele at this locus. The numbers of lines in each haplotype group varied from 1 to 140. The largest group was represented by the leaf rust susceptible cultivar “Thatcher” and many lines derived from “Thatcher”. The 5 haplotypes that had the resistance allele for Lr34 were identical for the markers tested within the coding region of the gene but differed in the linked markers wms1220, caISBP1, cam11, and csLV34. The presence of the resistance or susceptibility allele at the Lr34 locus was tracked through the ancestries of the Canadian wheat classes, revealing that the resistance allele was present in many cultivars released since the 1970s, but not generally in the older cultivars.  相似文献   

5.
The Lr56/Yr38 translocation consists primarily of alien-derived chromatin with only the 6AL telomeric region being of wheat origin. To improve its utility in wheat breeding, an attempt was made to exchange excess Ae. sharonensis chromatin for wheat chromatin through homoeologous crossover in the absence of Ph1. Translocation heterozygotes that lacked Ph1 were test-crossed with Chinese Spring nullisomic 6A tetrasomic 6B and nullisomic 6A-tetrasomic 6D plants and the resistant (hemizygous 6A) progeny were analyzed with four microsatellite markers. Genetic mapping suggested general homoeology between wheat chromosome 6A and the translocation chromosomes, and showed that Lr56 was located near the long arm telomere. Thirty of the 53 recombinants had breakpoints between Lr56 and the most distal marker Xgwm427. These were characterized with additional markers. The data suggested that recombinants #39, 157 and 175 were wheat chromosomes 6A with small intercalary inserts of foreign chromatin containing Lr56 and Yr38, located distally on the long arms. These three recombinants are being incorporated into adapted germplasm. Attempts to identify the single shortest translocation and to develop appropriate markers are being continued.  相似文献   

6.
Asian rust, caused by the fungus Phakopsora pachyrhizi, is the most severe disease currently threatening soybean crops in Brazil. The development of resistant cultivars is a top priority. Genetic characterization of resistance genes is important for estimating the improvement when these genes are introduced into soybean plants and for planning breeding strategies against this disease. Here, we infected an F2 population of 140 plants derived from a cross between ‘An-76’, a line carrying two resistance genes (Rpp2 and Rpp4), and ‘Kinoshita’, a cultivar carrying Rpp5, with a Brazilian rust population. We scored six characters of rust resistance (lesion color [LC], frequency of lesions having uredinia [%LU], number of uredinia per lesion [NoU], frequency of open uredinia [%OU], sporulation level [SL], and incubation period [IP]) to identify the genetic contributions of the three genes to these characters. Furthermore, we selected genotypes carrying these three loci in homozygosis by marker-assisted selection and evaluated their genetic effect in comparison with their ancestors, An-76, PI230970, PI459025, Kinoshita and BRS184. All three genes contributed to the phenotypes of these characters in F2 population and when pyramided, they significantly contributed to increase the resistance in comparison to their ancestors. Rpp2, previously reported as being defeated by the same rust population, showed a large contribution to resistance, and its resistance allele seemed to be recessive. Rpp5 had the largest contribution among the three genes, especially to SL and NoU. Only Rpp5 showed a significant contribution to LC. No QTLs for IP were detected in the regions of the three genes. We consider that these genes could contribute differently to resistance to soybean rust, and that genetic background plays an important role in Rpp2 activity. All three loci together worked additively to increase resistance when they were pyramided in a single genotype indicating that the pyramiding strategy is one good breeding strategy to increase soybean rust resistance.  相似文献   

7.
7–7365AB is a recessive genic male sterile (RGMS) two-type line, which can be applied in a three-line system with the interim-maintainer, 7–7365C. Fertility of this system is controlled by two duplicate dominant epistatic genes (Bn;Ms3 and Bn;Ms4) and one recessive epistatic inhibitor gene (Bn;rf). Therefore an individual with the genotype of Bn;ms3ms3ms4ms4Rf_ exhibits male sterility, whereas, plant with Bn;ms3ms3ms4ms4rfrf shows fertility because homozygosity at the Bn;rf locus (Bn;rfrf) can inhibit the expression of two recessive male sterile genes in homozygous Bn;ms3ms3ms4ms4 plant. A cross of 7–7365A (Bn;ms3ms3ms4ms4RfRf) and 7–7365C (Bn;ms3ms3ms4ms4rfrf) can generate a complete male sterile population served as a mother line with restorer in alternative strips for the multiplication of hybrid seeds. In the present study, molecular mapping of the Bn;Rf gene was performed in a BC1 population from the cross between 7–7365A and 7–7365C. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) technique was used to identify molecular markers linked to the gene of interest. From a survey of 768 primer combinations, seven AFLP markers were identified. The closest marker, XM5, was co-segregated with the Bn;Rf locus and successfully converted into a sequence characterized amplified region (SCAR) marker, designated as XSC5. Two flanking markers, XM3 and XM2, were 0.6 cM and 2.6 cM away from the target gene, respectively. XM1 was subsequently mapped on linkage group N7 using a doubled-haploid (DH) mapping population derived from the cross Tapidor × Ningyou7, available at IMSORB, UK. To further confirm the location of the Bn;Rf gene, additional simple sequence repeat (SSR) markers in linkage group N7 from the reference maps were screened in the BC1 population. Two SSR markers, CB10594 and BRMS018, showed polymorphisms in our mapping population. The molecular markers found in the present study will facilitate the selection of interim-maintainer.  相似文献   

8.
The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been observed in strains isolated from Puerto Rico and Central America. A few common bean lines show a differential reaction when inoculated with different Xap strains, indicating the presence of pathogenic races. In order to study the inheritance of resistance to common bacterial blight in common bean, a breeding line that showed a differential foliar reaction to Xap strains was selected and was crossed with a susceptible parent. The inheritance of resistance to one of the selected Xap races was determined by analysis of segregation patterns in the F1, F2, F3 and F4 generations from the cross between the resistant parent PR0313-58 and the susceptible parent ‘Rosada Nativa’. The F1, F2 and F3 generations were tested under greenhouse conditions. Resistant and susceptible F3:4 sister lines were tested in the field. The statistical analysis of all generations followed the model for a dominant resistance gene. The resistant phenotype was found to co-segregate with the SCAR SAP6 marker, located on LG 10. These results fit the hypothesis that resistance is controlled by a single dominant gene. The symbol proposed for the resistance gene is Xap-1 and for the bacterial race, XapV1.  相似文献   

9.
L. M. Reid  X. Zhu  A. Parker  W. Yan 《Euphytica》2009,165(3):567-578
Preliminary field observations in our maize breeding nurseries indicated that breeding for improved resistance to gibberella ear rot (Fusarium graminearum) in maize may indirectly select for resistance to another ear disease, common smut (Ustilago zeae). To investigate this, we compared the disease severity ratings obtained on 189 maize inbreds, eight of which included our inbreds developed with selection for gibberella ear rot resistance after field inoculation and breeding for 8–10 years. No correlation was found between disease severities for the 189 inbreds but the eight gibberella-resistant lines were consistently more resistant to smut. To further examine this relationship and to determine if these eight inbreds would be useful for developing inbreds with either common smut or fusarium ear rot (F. verticilliodes) resistance, we conducted a Griffing’s diallel analysis on six inbreds of maize, four with high levels of gibberella ear rot resistance representing all of the pedigree groups in our eight gibberella lines, and two with very low levels. Our most gibberella ear rot resistant inbreds, CO433 and CO441, had the lowest disease ratings for all three diseases, the consistently largest general combining ability effects and several significant specific combining ability effects. It was concluded that some inbreds bred specifically for gibberella ear rot would also be useful in breeding for resistance to common smut and fusarium ear rot.  相似文献   

10.
The recessive adult plant resistance (APR) gene Lr48 in wheat was tagged with flanking random amplified polymorphic DNA (RAPD) markers. Markers S336775 in coupling and S3450 in repulsion with Lr48 were identified in wheat line CSP44. Tests of these markers on available Thatcher near-isogenic lines (NILs) detected the likely presence of Lr48 in TcLr25. A test of allelism of APR involving the cross TcLr25 × CSP44 indicated that Lr48 was present in both lines. A separate experiment on inheritance of resistance in an F2 population of TcLr25 × Agra Local confirmed the presence of a dominant seedling resistance gene (Lr25) and a recessive APR gene (Lr48) in TcLr25. This study demonstrated the value of molecular markers in identifying the presence of masked genes in genetic stocks where direct phenotyping failed to detect their presence.  相似文献   

11.
Summary Two RAPD markers linked to gene for resistance (assayed as pustule number cm−2 leaf area) to rust [Uromyces fabae (Pers.) de Bary] in pea (Pisum sativum L.) were identified using a mapping population of 31 BC1F1 [HUVP 1 (HUVP 1 × FC 1] plants, FC 1 being the resistant parent. The analysis of genetics of rust resistance was based on the parents, F1, F2, BC1F1 and BC1F2 generations. Rust resistance in pea is of non-hypersensitive type; it appeared to be governed by a single partially dominant gene for which symbol Ruf is proposed. Further, this trait seems to be affected by some polygenes in addition to the proposed oligogene Ruf. A total of 614 decamer primers were used to survey the parental polymorphism with regard to DNA amplification by polymerase chain reaction. The primers that amplified polymorphic bands present in the resistant parent (FC 1) were used for bulked segregant analysis. Those markers that amplified consistently and differentially in the resistant and susceptible bulks were separately tested with the 31 BC1F1 individuals. Two RAPD makers, viz., SC10-82360 (primer, GCCGTGAAGT), and SCRI-711000 (primer, GTGGCGTAGT), flanking the rust resistance gene (Ruf) with a distance of 10.8 cM (0.097 rF and LOD of 5.05) and 24.5 cM (0.194 rF and a LOD of 2.72), respectively, were identified. These RAPD markers were not close enough to Ruf to allow a dependable maker-assisted selection for rust resistance. However, if the two makers flanking Ruf were used together, the effectiveness of MAS would be improved considerably.  相似文献   

12.
Rust resistance genes (introgressions S24 and S13) transferred to hexaploid wheat from two Aegilops speltoides accessions could not be used commercially due to associated gametocidal (Gc) genes. Crosses to wheat followed by rigorous selection for increased fertility were employed in an attempt to separate the unmapped S24 stem rust resistance from the Gc gene(s). However, improved fertility of the better selections could not be maintained in subsequent generations. Since the S13 introgression (leaf, stripe and stem rust resistances) mapped to chromosome 3A, allosyndetic pairing induction was used in an attempt to remove the Gc gene(s). This produced putative primary recombinants with improved fertility and plant type, the best of which had exchanged a small region of Ae. speltoides chromatin, yet was still associated with (reduced) Gc effects. This selection (04M127-3, which appears to have the Su1-Ph1 suppressor) was then crossed with wheat. Surprisingly, the 04M127-3 gametocidal effect differed drastically from that of the original introgression allowing the recovery of 35 recombinant, leaf rust resistant progeny. Microsatellite and DArT markers showed that each secondary recombinant had exchanged most of the Ae. speltoides chromatin. Although the data suggested that a complex multigenic interaction may govern the gametocidal response, preliminary indications are that the Gc effect had largely been removed and it now seems possible to completely separate the gametocidal genes from the S13 leaf rust resistance gene (here designated Lr66). The associated (S13) stripe rust and stem rust resistance genes were lost during recombination.  相似文献   

13.
Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study.  相似文献   

14.
The Brassicas are affected by several diseases, of which black rot, Xanthomonas campestris pv. campestris (Pam.) Dowson (Xcc), is one of the most widespread and devastating worldwide. The black rot bacteria causes systemic infection in the susceptible plants and penetrate the plants through the hydathodes or wounds. Typical disease symptoms are ‘V’ shaped necrotic lesions appearing from the leaf margins with blackened veins. Periodic outbreaks of the black rot pathogen have occurred worldwide, especially in the continental regions, where high temperatures and humidity favor the incidence of disease occurrence causing huge yield loss. The challenge to control the losses in vegetable brassicas production is made more difficult by the adverse climatic changes and evolution of new pathogenic races. The development of black rot resistant hybrids/varieties is the most reliable long term practical solution for effective disease control. Identification of new resistant genetic resources, tightly linked markers with resistance loci and QTL mapping would facilitate the breeding programme for black rot resistance. Information regarding genetics of resistance and mapping of resistance genes/QTLs will accelerate the marker assisted resistance breeding in brassica crops against Xcc. In future we need to identify the race specific candidate genes for and their validation through transgenics and gene expression. Moreover, it is imperative to identify functional markers for resistance genes through identification of R gene families and their relationship with resistance expression. This comprehensive review will help the researchers working in this area to understand the dynamics of black resistance breeding and to formulate future breeding strategies.  相似文献   

15.
The genus Tospovirus was considered as monotypic with Tomato spotted wilt virus (TSWV) being the only assigned species. However, extensive studies with worldwide isolates revealed that this genus comprises a number of species with distinct virulence profiles. The Neotropical South America is one center of Tospovirus diversity with many endemic species. Groundnut ringspot virus (GRSV), TSWV, Tomato chlorotic spot virus (TCSV), and Chrysanthemum stem necrosis virus (CSNV) are the predominant tomato-infecting species in Brazil. Sources of resistance were found in Solanum (section Lycopersicon) mainly against TSWV isolates from distinct continents, but there is an overall lack of information about resistance to other viral species. One-hundred and five Solanum (section Lycopersicon: Solanaceae) accessions were initially evaluated for their reaction against a GRSV isolate by analysis of symptom expression and systemic virus accumulation using DAS-ELISA. A subgroup comprising the most resistant accessions was re-evaluated in a second assay with TSWV, TCSV, and GRSV isolates and in a third assay with a CSNV isolate. Seven S. peruvianum accessions displayed a broad-spectrum resistance to all viral species with all plants being free of symptoms and systemic infection. Sources of resistance were also found in tomato cultivars with the Sw-5 gene and also in accessions of S. pimpinellifolium, S. chilense, S. arcanum, S. habrochaites, S. corneliomuelleri, and S. lycopersicum. The introgression/incorporation of these genetic factors into cultivated tomato varieties might allow the development of genetic materials with broad-spectrum resistance, as well as with improved levels of phenotypic expression.  相似文献   

16.

Background

Cucumber mosaic virus (CMV) is the most serious virus disease affecting chilli (Capsicum annuum L.) worldwide and the absence of natural resistance makes management of CMV outbreaks difficult. The characterization of improved sources of resistance to CMV in chilli would facilitate the development of commercially acceptable chilli varieties with adequate levels of CMV resistance. A total of 30 chilli genotypes were evaluated for their reaction to CMV in field and artificial inoculated conditions during 2010-2011 and 2011-2012. Large differences were observed among genotypes for disease incidence, severity indexes, and yield losses. Based on observed data, genotype CA23 (Noakhali) was identified as resistant, while CA12 (Comilla-2) was categorized as moderately resistant to CMV both in natural and inoculated conditions. Enzyme-linked immunosorbent assay absorbance values of samples taken from CMV-infected leaves corresponded well with visible viral symptoms for these genotypes. The identified C. annuum CA23 and CA12 genotypes represent previously undescribed and potentially useful sources of CMV resistance.
  相似文献   

17.
The genetics of resistance to Cucumber mosaic virus (CMV) in Cucumis sativus var. hardwickii R. Alef, the wild progenitor of cultivated cucumber was assessed by challenge inoculation and by natural infection of CMV. Among the 31 genotypes of C. sativus var. hardwickii collected from 21 locations in India the lowest mean percent disease intensity (PDI) was recorded in IC-277048 (6.33%) while the highest PDI was observed in IC-331631 (75.33%). All the four cultivated varieties (DC-1, DC-2, CHC-1 and CHC-2) showed very high PDI and susceptible disease reaction. Based on mean PDI, 8 genotypes were categorized as resistant, 13 as moderately resistant, 9 as moderately susceptible and one as susceptible. A chi-square test of frequency distribution based on mean PDI in F2 progenies of six resistant × susceptible crosses revealed monogenic recessive Mendelian ratio 1(R):3(S) to be the best fit. This monogenic recessive model was further confirmed by 1(R):1(S) ratio as the best fit for back cross with resistant parent and no fit for either 3:1 or 1:1 in the back cross with the susceptible parent. The results revealed that CMV resistance in C. sativus var. hardwickii was controlled by a single recessive gene. Considering the cross compatibility between C. sativus var. hardwickii and cultivated cucumber, the resistance trait can be easily transferred to cultivated species through simple backcross breeding.  相似文献   

18.
We have previously reported that expression of salt-responsive genes, including Bruguiera gymnorhiza ankyrin repeat protein 1 (BgARP1), enhances salt tolerance in both Agrobacterium tumefaciens and Arabidopsis. In this report, we further characterized BgARP1-expressing Arabidopsis to elucidate the role of BgARP1 in salt tolerance. BgARP1-expressing plants exhibited more vigorous growth than wild-type plants on MS plates containing 125–175 mM NaCl. Real-time PCR analysis showed enhanced induction of osmotin34 in the 2-week-old transformants under 125 mM NaCl. It was also showed that induction of typical salt-responsive genes, including RD29A, RD29B, and RD22, was blunted and delayed in the 4-week-old transformants during 24 h after 200 mM NaCl treatment. Ion content analysis showed that transgenic plants contained more K+, Ca2+, and NO3 , and less NH4 +, than wild-type plants grown in 200 mM NaCl. Our results suggest that BgARP1-expressing plants may reduce salt stress by up-regulating osmotin34 gene expression and maintaining K+ homeostasis and regulating Ca2+ content. These results indicate that BgARP1 is functional on a heterogeneous background.  相似文献   

19.
20.
Symbiotic gene mutated in the pea (Pisum sativum L.) line RisfixC is a determinant of the number of symbiotic root nodules. In parallel to a sharp increase in nodule number, its mutational inactivation brings about the insensitivity of nodulation to the ambient nitrate level (Nts trait). Using the established localization to the SYM2-NOD3 region of the pea linkage group I, functional PCR markers were developed for the orthologous region on the chromosome 5 of the model species Medicago truncatula. Owing to the conservation of the binding regions of the designed primers, pea orthologues were successfully amplified with 60% of the primer pairs tested. When applied to a mapping pea population from the cross of the line RisfixC x Afghanistan L1268 (sym2), the new markers allowed to localize the supernodulation mutation within 2.5 cM confidence interval in the pea genome. The placement of the functional markers on the M. truncatula chromosome 5 confined the orthologous gene location to eight overlapping BACs spanning approximately 710 kbp (positions 37,755,678–38,467,472). The narrowed list of the annotated Medicago genes in combination with the published data on their symbiotic and nitrate regulation can be used for the candidate gene identification, together with the requirements imposed by the known function in nodule number initiation and nitrate sensing. In addition, the new markers are applicable for tracking the RisfixC allele in breeding programmes aimed at the improvement of symbiotic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号