首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrous synchronization using a Controlled Internal Drug Releasing device (CIDR) in combination with GnRH or estradiol benzoate (EB) treatment was investigated in Japanese black cows characterized with initial ovarian conditions. A total of 142 cows were allocated to one of four treatments: insertion of CIDR for eight days (Group A: n=34), CIDR with 100 microg of GnRH on d 0 (Group B: n=54, d 0=CIDR insertion), CIDR with GnRH on d 0 and 1 mg of EB on d 10 (Group C: n=20) or CIDR with 2 mg of EB on d 0 and 1 mg of EB on d 9 (Group D: n=34). All cows received 25 mg of PGF(2alpha) on d 7 and blood was collected for progesterone (P4) analysis on d 0, 8, and 21. AI was performed at estrus, but in Group D timed AI was set following a day of EB treatment. Estrus was induced in 141/142 cows, and the majority of which occurred on d 10 and 11 (98 cows, 34 cows). GnRH treatment induced more intermediate ovulation than EB treatment in cows with CL on d 0 (19.0% vs. 0%). Ovulation after CIDR removal was significantly higher in cows with CL on d 0 compared to those without CL (87.0% vs. 71.4%). Group B showed higher conception rates than those combined with Groups C and D where EB was injected after CIDR removal (51.1% vs. 38.9%). Conception had no correlation with either CL existence on d 0 or intermediate ovulation on d 8. P4 concentrations on d 8 were significantly lower compared to those on d 0 or d 21. On d 21 in cows without intermediate ovulation, Group A showed significantly lower P4 concentrations than the other 3 groups. The data suggests that CIDR insertion with PGF(2alpha) treatment is an effective method for estrous synchronization irrespective of initial ovarian conditions, and GnRH treatment at CIDR insertion induces intermediate ovulation and improves the conception rate in Japanese black cows.  相似文献   

2.
Spring-calving, crossbred (1/4 to 3/8 Brahman) primiparous (n = 56) and multiparous (n = 102) beef cows were used to evaluate the effects of progesterone, delivered via a controlled internal drug-releasing (CIDR) device, and prostaglandin F(2alpha) (PGF(2alpha)) on estrous behavior, synchronization rate, initiation of estrous cycles, and pregnancy rate during a 2-yr period. To determine luteal activity, weekly blood samples were collected 3 wk before initiation of a 75-d breeding season. Treated cows received a CIDR for 7 d beginning on d -7 of the breeding season. On d 0, CIDR were removed, and cows receiving CIDR were administered PGF(2alpha); control cows received no treatment. Cows were exposed to bulls, and estrous activity was monitored using a radiotelemetry system for the first 30 d of the breeding season. Treatment with CIDR-PGF(2alpha) increased (P < 0.05) the number of mounts received (22.5 +/- 3.0 vs. 13.7 +/- 3.9 for CIDR-PGF(2alpha) vs. untreated control cows, respectively) but did not influence duration of estrus or quiescence between mounts. Number of mounts received and duration of estrus were greater (P < 0.05) in multiparous compared with primiparous cows. Synchronization of estrus was greater (P < 0.05) in cows treated with CIDR-PGF(2alpha) (56%) compared with control cows (13%) during the first 3 d of the breeding season. More (P < 0.05) anestrous cows treated with CIDR-PGF(2alpha) than anestrous control cows were in estrus during the first 3 d (59 vs. 12%) and 30 d (82 vs. 63%) of the breeding season. Treatment with CIDR-PGF(2alpha) decreased (P < 0.05) the interval to first estrus after treatment during the first 30 d of the breeding season compared with control cows (5.5 +/- 1.1 vs. 9.0 +/- 1.4 d). First service conception rate was greater (P < 0.05) in CIDR-PGF(2alpha)-treated cows compared with control cows. Cyclic cows at initiation of the breeding season had an increased (P < 0.05) 75-d pregnancy rate compared with anestrous cows, and the pregnancy rate tended (P = 0.10) to be greater in multiparous compared with primiparous cows. We conclude that treatment of Brahman-influenced cows with progesterone via a CIDR for 7 d, along with administration of PGF(2alpha) at CIDR removal, increases the number of mounts received, improves synchronization and first service conception rates, decreases the interval to first estrus after treatment, and may be effective at inducing estrous cycles in anestrous cows.  相似文献   

3.
The study was aimed at induction/synchronization of estrus in postpartum anestrous Kankrej cows of zebu cattle maintained at an organized farm. The study included use of different hormone protocols, viz., Ovsynch, CIDR (controlled internal drug release), Ovsynch plus CIDR, and Heatsynch with estimation of plasma progesterone on days 0, 7, 9/11 (artificial insemination--AI) and on day 20 post-AI following fixed time insemination. Thirty selected anestrous animals were divided into five equal groups (four treatment and one control), and the findings were compared with the normal cyclic control group of six cows. All the protocols were initiated in cows with postpartum anestrous period of more than 4 months, considering the day of first GnRH injection or CIDR insertion as day 0. The animals were bred by fixed time artificial insemination. Pregnancy was confirmed per rectum on day 60 post-AI in non-return cases. The conception rates at induced/first heat in Ovsynch, CIDR, Ovsynch + CIDR, and Heatsynch protocols were 33.33, 66.66, 50.00 and 16.67%, respectively. The corresponding overall conception rates of three cycles post-treatment were 50.00% (3/6), 100.00% (6/6), 66.66% (4/6), and 50.00% (3/6). In normal cyclic and anestrous control groups, the pooled pregnancy rates were 83.33% (5/6) and 16.67% (1/6), respectively. The pooled mean plasma progesterone (nanograms per milliliter) concentrations were significantly (P < 0.05) higher on day 7 in Ovsynch (5.727 ± 1.26), CIDR (4.37 ± 0.66), Ovsynch plus CIDR (3.55 ± 0.34), and Heatsynch (5.92 ± 1.11) protocols as compared with their corresponding values obtained on days 0, 9/11 (AI), and on day 20 post-AI. In anestrous control group, the mean progesterone concentration at the beginning of experiment was 0.67 ± 0.33 ng/ml, which was at par with values of all other groups. The overall plasma progesterone levels on the day of initiating treatment were low in all groups, with smooth small inactive ovaries palpated per rectum twice at 10 days interval, suggesting that most of the animals used in the study were in anestrous phase. Mean (± SE) values of plasma progesterone (nanograms per milliliter) on day 20 post-AI were higher in conceived cows than the non-conceived cows of all the groups, but differed significantly (P < 0.05) only in normal cyclic group. These results suggest that use of different hormone protocols particularly Ovsynch, CIDR, and Ovsynch + CIDR may serve as an excellent tool for induction and synchronization of estrus and improvement of conception rate in postpartum anestrous Kankrej cows.  相似文献   

4.
Ovarian follicular dynamics and estrous synchronization after Gonadotropin-releasing hormone (GnRH) treatment at Controlled Internal Drug Releasing device (CIDR) insertion were investigated in Japanese Black cows. CIDR was inserted for eight cows at 7 days after estrus. Cows were allocated to either Group A: 8-day CIDR insertion with GnRH treatment on d 0 (n=4, d 0=CIDR insertion) or Group B: 8-day CIDR insertion (n=4). Both groups were injected with prostaglandin F2alpha (PGF2alpha) on d 7. Ultrasonography and blood sampling were performed twice daily. Intensive sampling was performed every 15 min for 8 hr to determine the pulsatile release of LH on d -1, d 5 and d 10. Three of four cows showed intermediate ovulation within 2 days after GnRH treatment during CIDR insertion in Group A, whereas no ovulation was found in Group B. Three of four cows in Group A and all four cows in Group B ovulated after CIDR removal. Plasma progesterone concentrations from d 3 to d 7 in three intermediate ovulatory cows in Group A (8.4 +/- 1.6 ng/ml) was significantly higher than those in Group B (4.1 +/- 1.2 ng/ml; 4 cows) during CIDR insertion (P<0.01). Interval to estrus and ovulation after CIDR removal was observed at 60.0 +/- 12.0 hr and 76.0 +/- 6.9 hr in three cows in Group A, and 75.0 +/- 15.1 hr and 93.0 +/- 20.5 hr in Group B, respectively. There was a significant increase in LH pulse frequency on d 10 compared on d -1 or d 5 in both groups (P<0.05), in addition those on d 10 in Group A tended to be higher than in Group B. As a result, GnRH treatment at CIDR insertion at 7 days after estrus induced intermediate ovulation with formation of corpus luteum (CL) and rather synchronized emergence of ovulatory follicle during CIDR insertion. These induced CL increased plasma progesterone concentrations and contributed to precise synchronization.  相似文献   

5.
Application of AI in extensive beef cattle production would be facilitated by protocols that effectively synchronize ovarian follicular development and ovulation to enable fixed-time AI (TAI). The objectives were to determine whether use of a controlled internal drug release (CIDR) device to administer progesterone in a GnRH-based estrous synchronization protocol would optimize blood progesterone concentrations, improve synchronization of follicular development and estrus, and increase pregnancy rates to TAI in beef cows. Beef cows (n = 1,240) in 6 locations within the US Meat Animal Research Center received 1 of 2 treatments: 1)?an injection of GnRH [100 μg intramuscularly (i.m.)] followed by PGF(2α) (PGF; 25 mg i.m.) 7 d later (CO-Synch), or 2) CO-Synch plus a CIDR during the 7 d between GnRH and PGF injections (CO-Synch + CIDR). Cows received TAI and GnRH (100 μg i.m.) at 60 h after PGF. Progesterone was measured by RIA in blood samples collected 2 wk before and at initiation of treatment (d 0) and at PGF injection (d 7). Estrous behavior was monitored by Estrotect Heat Detectors. Pregnancy was diagnosed by ultrasonography 72 to 77 d after TAI. Plasma progesterone concentrations did not differ (P > 0.10) between synchronization protocols at first GnRH injection (d 0), but progesterone was greater (P < 0.01) at PGF injection (d 7) in cows receiving CO-Synch + CIDR vs. CO-Synch as a result of fewer CIDR-treated cows having progesterone ≤1 ng/mL at PGF (10.7 vs. 29.6%, respectively). A greater (P < 0.01) proportion of CO-Synch + CIDR vs. CO-Synch cows were detected in estrus within 60 h after PGF (66.7 vs. 57.8 ± 2.6%, respectively) and a greater (P < 0.01) proportion were pregnant to TAI (54.6 vs. 44.3 ± 2.6%, respectively). For both synchronization protocols, cows expressing estrus within 60 h before TAI had a greater pregnancy rate than cows without estrus. For cows with plasma progesterone ≤1 ng/mL at PGF injection, CO-Synch + CIDR increased pregnancy rate (65.2 ± 5.9 vs. 30.8 ± 3.4% with vs. without CIDR), whereas pregnancy rates did not differ (P > 0.10) between protocols (52.1 ± 2.1 vs. 50.0 ± 2.4%, respectively) when progesterone was >1 ng/mL (treatment × progesterone; P < 0.01). Inclusion of a CIDR in the synchronization protocol increased plasma progesterone concentration, proportion of cows detected in estrus, and pregnancy rate; however, the increase in pregnancy rate from inclusion of the CIDR was primarily in cows with decreasing or low endogenous progesterone secretion during treatment.  相似文献   

6.
试验旨在研究同期发情和同期排卵-定时输精技术在青年奶牛中的应用。选择1046头澳大利亚进口荷斯坦青年奶牛,随机分为两组:一组自然发情人工授精配种(对照组);另一组采用前列腺素F(PGF)诱导母牛发情或按照同期排卵-定时输精程序(Ovsynch或Ovsynch+CIDR法)处理母牛后人工授精配种(试验组),统计同期发情率、不返情率、第一次人工授精妊娠率和21d妊娠率等繁殖指标。结果表明,试验组青年奶牛人工授精后不返情率和第一次人工授精妊娠率与对照组间无显著差异(P>0.05),但21d妊娠率显著高于对照组(53.1%和35.3%,P<0.05)。试验组中,1次PG法、间隔7d2次PG法和间隔11d2次PG法的同期发情率分别为76.1%、81.7%和84.6%,差异均不显著(P>0.05);同期排卵-定时输精组中,Ovsynch法(GPG)和Ovsynch+CIDR法(GPG+CIDR)的不返情率、第一次人工授精妊娠率和21d妊娠率间无显著差异(P>0.05)。不同输精人员可显著影响青年奶牛的第一次人工授精妊娠率(P<0.05),而不同公牛常规冷冻精液对青年奶牛第一次人工授精妊娠率无显著影响(P>0.05)。同期发情及同期排卵-定时输精技术可使青年奶牛集中发情,提高参配率,从而提高21d妊娠率,有效加快青年奶牛人工授精效率,降低饲养成本。  相似文献   

7.
CIDR与GnRH诱导同期发情效果比较   总被引:1,自引:0,他引:1  
[目的]为了观察CIDR与GnRH诱导同期发情的效果。[方法]本实验利用GnRH+PG+GnRH和CIDR+EB+P4+PG对荷斯坦奶牛进行同期发情。CIDR组:在奶牛发情周期的任意一天(发情当天除外),于奶牛阴道内放CIDR同时肌注2mgEB和50mgP4,人为诱导卵泡的发生,在放入CIDR的第8d肌注PG;应用GnRH组与CIDR组同步进行同期发情处理:肌注GnRH7d后肌注PG,2d后再次肌注GnRH。[结果]表明:利用CIDR与Gn—RH两种同期方法同期发情率、情期受胎率差异均不显著。[结论]在实际生产中,GnRH便于操作,且发情略高于CIDR组。  相似文献   

8.
The objective of the present study was to evaluate estrus synchronization and conception rate after progesterone releasing intravaginal device (PRID) treatment from the early luteal phase in the presence or absence of estradiol benzoate (EB) in heifers. Heifers (n=11) were assigned randomly to two treatments; insertion of a PRID containing 1.55 g progesterone with a capsule attached including 10 mg EB (P+EB; n=6) and the PRID withdrawn the EB capsule (P-EB; n=5). The PRID was inserted into the vagina on Day 2 of the estrous cycle (Day 0 was the day of ovulation) and was left for 12 days. The proportion of heifers exhibiting standing estrus within 3 days after PRID removal was 83.3% (5/6) for the P+EB group, and 80.0% (4/5) for the P-EB group, respectively. Conception rate by artificial insemination on synchronized estrus was 80.0% (4/5) in the P+EB group, and 100% (4/4) in the P-EB treatment group, respectively. These results suggest that a PRID treatment from 2 days after ovulation for 12 days in the presence or absence of EB has an effect on the synchronization of estrus and produces a beneficial conception rate in heifers.  相似文献   

9.
We determined whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or estrous detection plus TAI, and whether adding a controlled internal device release (CIDR) to GnRH-based protocols would enhance fertility. Estrus was synchronized in 2,598 suckled beef cows at 14 locations, and AI was preceded by 1 of 5 treatments: 1) a CIDR for 7 d with 25 mg of PG F(2alpha) (PGF) at CIDR removal, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received 100 mug of GnRH and TAI at 84 h (control; n = 506); 2) GnRH administration, followed in 7 d with PGF, followed in 60 h by a second injection of GnRH and TAI (CO-Synch; n = 548); 3) CO-Synch plus a CIDR during the 7 d between the first injection of GnRH and PGF (CO-Synch + CIDR; n = 539); 4) GnRH administration, followed in 7 d with PGF, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received GnRH and TAI at 84 h (Select Synch & TAI; n = 507); and 5) Select Synch & TAI plus a CIDR during the 7 d between the first injection of GnRH and PGF (Select Synch + CIDR & TAI; n = 498). Blood samples were collected (d -17 and -7, relative to PGF) to determine estrous cycle status. For the control, Select Synch & TAI, and Select Synch + CIDR & TAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed using the AM/PM rule. Pregnancy was diagnosed by transrectal ultrasonography. Percentage of cows cycling at the initiation of treatments was 66%. Pregnancy rates (proportion of cows pregnant to AI of all cows synchronized during the synchronization period) among locations across treatments ranged from 37% to 67%. Pregnancy rates were greater (P < 0.05) for the Select Synch + CIDR & TAI (58%), CO-Synch + CIDR (54%), Select Synch & TAI (53%), or control (53%) treatments than the CO-Synch (44%) treatment. Among the 3 protocols in which estrus was detected, conception rates (proportion of cows that became pregnant to AI of those exhibiting estrus during the synchronization period) were greater (P < 0.05) for Select Synch & TAI (70%; 217 of 309) and Select Synch + CIDR & TAI (67%; 230 of 345) cows than for control cows (61%; 197 of 325). We conclude that the CO-Synch + CIDR protocol yielded similar pregnancy rates to estrous detection protocols and is a reliable TAI protocol that eliminates detection of estrus when inseminating beef cows.  相似文献   

10.
[目的]新疆褐牛是新疆北疆牧区养牛业主导品种,夏季放牧区新疆褐牛人工授精集中冷配点模式的广泛推广,对新疆褐牛选育提高和新品系培育起到了积极作用,为探索新疆褐牛同期发情和同期排卵—定时输精最佳处理方法。[方法]试验选用2胎以上45头牛,分3组,A组,PG+PG法;B组,PG法;C组,CIDR+PG法,比较3种同期发情处理方法效果,同时选用2胎以上20头牛,分2组,D组,GnRH+PG+GnRH+AI法;E组,CIDR+GnRH+PG+GnRH+AI法,比较2种同期排卵—定时输精方法效果。[结果]结果表明,3种不同同期发情处理方法母牛集中在12~24 h内发情,其中12~24 h内A组和C组处理方法母牛发情率极显著高于B组处理方法(P0.01),C组比A组高出32.3%,B组和C组母牛总发情率差异不显著(P0.05),A、B、C 3组总发情率分别达到86.7%,40.0%,93.3%;发情母牛经人工授精配种后,情期受胎率3组差异不显著(P0.05)。2种同期排卵—定时输精方法中,E组发情牛排卵率显著高于D组,D组和E组总受胎率差异不显著(P0.05)。[结论]综上所述,新疆褐牛同期发情处理应采用B组方法,即2次PG法,即降低了成本,有可取得较好的效果;同期排卵—定时输精宜采用D组方法,成本低,且受胎率较好,适宜在牧区集中人工授精冷配点推广。  相似文献   

11.
This study evaluated the pregnancy rates following either a controlled internal drug release (CIDR)-based timed artificial insemination (TAI) or an embryo transfer (TET) protocol compared with that following a single PGF(2alpha) injection and AI after estrus (AIE) in lactating repeat breeder dairy cows. Fifty-three lactating dairy cows diagnosed as repeat breeders were used in this study and were randomly assigned to the following three treatments. (1) Cows, at random stages of the estrous cycle, received a CIDR device and 2 mg estradiol benzoate (EB; Day 0), a 25 mg PGF(2) (alpha) injection at the time of CIDR removal on Day 7 and a 1 mg EB injection on Day 8. The cows then received TAI 30 h (Day 9) after the second EB injection using dairy semen (TAI group, n=13). (2) Cows, at random stages of the estrous cycle, received the same hormonal treatments as in the TAI group. The cows then received TET on Day 16 using frozen-thawed blastocysts or morula embryos collected from Korean native cattle donors (TET group, n=13). (3) Cows, at the luteal phase, received a 25 mg injection of PGF(2alpha) and AIE using dairy semen (control group, n=27). The ovaries of the cows in the TET group were examined by transrectal ultrasonography to determine ovulation of the preovulatory follicles, and blood samples were collected for serum progesterone (P4) analysis. The pregnancy rate was significantly higher in the TET group (53.8%) than in the control (18.5%) or TAI (7.7%) groups (P<0.05). The ultrasonographic observations demonstrated that all the cows in the TET group ovulated the preovulatory follicles and concomitantly formed new corpora lutea. Accordingly, the mean serum P4 concentration remained constant between Day 0 and Day 7 of the luteal phase, decreased dramatically on Day 8 (P<0.01) and subsequently increased by Day 16 (P<0.01). These data suggest that the CIDR-based TET protocol can be used to effectively increase the pregnancy rate in lactating repeat breeder dairy cows.  相似文献   

12.
Our objective was to develop treatments applied to cattle of unknown pregnancy status that would resynchronize the repeat estrus of nonpregnant females. In Exp. 1, previously inseminated dairy and beef heifers were assigned randomly to each of three treatments 13 d after AI: 1) no treatment (controls; n = 44); 2) 0.5 mg of estradiol cypionate (ECP) i.m. on d 13 and 20 at the time of insertion and removal of a used intravaginal progesterone (P4)-releasing insert (CIDR; P4 + ECP; n = 44); and 3) same as P4 + ECP without injections of ECP (P4; n = 42). The P4 + ECP (>90%) and P4 (>75%) protocols effectively synchronized repeat periods of estrus to 2 d and did not harm established pregnancies. In Exp. 2, treatments similar to those in Exp. 1 were applied to previously inseminated beef heifers (n = 439). Feeding 0.5 mg of melengestrol acetate (MGA) from d 13 to 19 after AI replaced the CIDR as a source of progestin. Of those heifers not pregnant (n = 65) after the initial AI, more than 86% were reinseminated, but conception was decreased (P < 0.05) by 28 to 39% compared with controls. In Exp. 3, previously inseminated lactating beef cows at four locations were assigned within herd to each of three treatments: 1) no treatment (control; n = 307); 2) same as in Exp. 1, but with P4 + 1 mg of estradiol benzoate on d 13 and 20 (P4 + EB; n = 153); and 3) same as in Exp. 1, P4 + ECP (n = 149). Treatments with P4 plus estrogen did not decrease conception rates in pregnant cows at any location, but increased (P < 0.05) the percentage of nonpregnant cows returning to estrus between 19 and 23 d after timed AI from 29% in controls to 86% in P4 + EB and 65% in P4 + ECP cows. Conception rates at the return estrus were not decreased when treatments occurred between d 13 and 20. In Exp. 4, lactating beef cows were assigned as in Exp. 3 to each of three treatments: 1) no treatment (controls; n = 51); 2) P4 + ECP (n = 47), as in Exp. 1; and 3) a single injection of ECP on d 13 (n = 48). Previously established pregnancies were not harmed (P = 0.70), and return rates of nonpregnant cows did not differ (P = 0.78) among treatments. In summary, in both heifers and lactating beef cows, the P4-based resynchronization treatments increased synchronized return rates when estrus detection rates were low, had no negative effects on established pregnancies, and decreased or tended to decrease conception rates at the resynchronized estrus.  相似文献   

13.
本试验研究对比了PGc、CIDR、PGC +PMSG和CIDR +PGc对 2 95头本地母水牛同期发情定时输精的发情率和受胎率。同时对处理后发情的母水牛分别在第一次输精时肌注hCG、LRHA并以不注射的作对照 ,探讨hCG和LRHA对发情母水牛排卵和受胎的效果。也分析了同一处理方法对处女水牛和经产水牛同期发情率和受胎率的差异。结果表明 :采用CIDR +PGc的同期发情率和受胎率最高 (85 .13%、4 6 .0 3% ) ,PGc +PMSG、CIDR和PGc组的发情率和受胎率分别是 73.0 1%和 4 3.4 8%、78.0 2 %和 4 3.6 6 %、6 4 .18%和 4 1.6 8%。CIDR +PG组的发情率极显著高于PGc组 (P <0 .0 1) ,其它各组间无显著差异 (P >0 .0 5 )。各组母牛的受胎率无显著差异 (P >0 .0 5 )。发情的母水牛在第一次输精时肌注hCG或者LRHA3,排卵率为 89.78%和 91.38% ,极显著高于不处理母水牛 (5 9.74 % ) (P <0 .0 1) ;但受胎率与对照组无显著差异 (P >0 .0 5 )。本试验 4种同期发情处理方法在发情率上经产牛 (84 .4 7% )显著高于处女牛 (5 5 .91% ) (P <0 .0 5 ) ;但受胎率 (45 .6 1% :38.4 6 % )无显著差异 (P >0 .0 5 )。  相似文献   

14.
受体牛不同处理方法同期发情与冷冻胚胎移植效果研究   总被引:1,自引:1,他引:0  
选择本地黄牛及其杂交牛为受体,在集中补饲添加维生素和微量元素的混合精料50~60 d后,分别采用一次注射PG、二次注射PG、CIDR PG、CIDR PG VE4种方法进行同期发情处理,并设自然发情组作移植效果比较。结果4种同期发情处理后的发情率分别为:70.00%、85.71%、88.57%、86.70%,一次注射PG法的同期发情率明显(P<0.01)低于其它3种处理方法;二次注射PG、CIDR PG、CIDR PG VE及自然发情组的移植受胎率分别为:51.85%、52.00%、47.06%和47.34%,这几组间差异不显著(P>0.05),但它们的移植受胎率均明显(P<0.01)高于受胎率为38.89%的一次注射PG组。  相似文献   

15.
The objectives of this study were to determine the effects of incorporating a progesterone intravaginal insert (CIDR) between the day of GnRH and PGF2alpha treatments of a timed AI protocol using estradiol cypionate (ECP) to synchronize ovulation on display of estrus, ovulation rate, pregnancy rate, and late embryonic loss in lactating cows. Holstein cows, 227 from Site 1 and 458 from Site 2, were presynchronized with two injections of PGF2alpha on study d 0 and 14, and subjected to a timed AI protocol (100 mixrog of GnRH on study d 28, 25 mg of PGF2alpha on study d 35, 1 mg of ECP on study d 36, and timed AI on study d 38) with or without a CIDR insert. Blood was collected on study d 14 and 28 for progesterone measurements to determine cyclicity. Ovaries were scanned on d 35, 37, and 42, and pregnancy diagnosed on d 65 and 79, which corresponded to 27 and 41 d after AI. Cows receiving a CIDR had similar rates of detected estrus (77.2 vs. 73.8%), ovulation (85.6 vs. 86.6%), and pregnancy at 27 (35.8 vs. 38.8%) and 41 d (29.3 vs. 32.3%) after AI, and late embryonic loss between 27 and 41 d after AI (18.3 vs. 16.8%) compared with control cows. The CIDR eliminated cows in estrus before the last PGF2alpha injection and decreased (P < 0.001) the proportion of cows bearing a corpus luteum (CL) at the last PGF2alpha injection because of less ovulation in response to the GnRH and greater spontaneous CL regression. Cyclic cows had greater (P = 0.03) pregnancy rates than anovulatory cows at 41 d after AI (33.8 vs. 20.4%) because of decreased (P = 0.06) late embryonic loss (16.0 vs. 30.3%). The ovulatory follicle was larger (P < 0.001) in cows in estrus, and a greater proportion of cows with follicles > or = 15 mm displayed estrus (P < 0.001) and ovulated (P = 0.05) compared with cows with follicles <15 mm. Pregnancy rates were greater (P < 0.001) for cows displaying estrus, which were related to the greater (P < 0.001) ovulation rate and decreased (P = 0.08) late embryonic loss for cows in estrus at AI. Cows that were cyclic and responded to the presynchronization protocol (high progesterone at GnRH and CL at PGF2alpha) had the highest pregnancy rates. Incorporation of a CIDR insert into a presynchronized timed AI protocol using ECP to induce estrus and ovulation did not improve pregnancy rates in lactating dairy cows. Improvements in pregnancy rates in cows treated with ECP to induce ovulation in a timed AI protocol are expected when more cows display estrus, thereby increasing ovulation rate.  相似文献   

16.
We examined the relations between plasma insulin-like growth factor (IGF) -I concentrations during treatment with CIDR-based or Ovsynch protocol for timed AI and conception and plasma steroid concentrations in early postpartum Japanese Black beef cows. Cows in the control group (Ovsynch; n = 21) underwent Ovsynch protocol (GnRH analogue on Day 0, PGF(2alpha) analogue on Day 7, and GnRH analogue on Day 9), with AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the Ovsynch+CIDR group (n = 22) received Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Cows in the further treatment group (EB+CIDR+GnRH; n = 22) received 2 mg of estradiol benzoate (EB) on Day 0 in lieu of the first GnRH treatment, followed by the same treatment as in the Ovsynch+CIDR protocol. Plasma IGF-I concentrations were determined on Days -7, 0, 7, 9 and 17. Conception rates were improved in the CIDR-combined groups (both CIDR-treated groups were combined) relative to Ovsynch group (P < 0.05) for cows with low IGF-I concentrations (<1,000 ng/ml) on Days -7, 0, and 7, but improved conception rate produced by the CIDR-based protocols did not occur in cows with a high IGF-I concentration (> or =1,000 ng/ml). Plasma estradiol-17beta concentrations increased from Day 0 to 7 (P < 0.05) and were unchanged from Day 7 to 9 in the Ovsynch group with low IGF-I concentrations on Day 0, while they were unchanged from Day 0 to 7 and increased from Day 7 to 9 (P < 0.05) in the Ovsynch group with high IGF-I concentrations on Day 0 and in the CIDR-combined group. Plasma progesterone concentrations in the Ovsynch group with low IGF-I concentrations on Day 0 were higher on Day 14 than in the Ovsynch group with high IGF-I concentrations on Day 0 and in the CIDR-combined group (P < 0.05). In conclusion, CIDR-based protocols may improve conception relative to Ovsynch in early postpartum beef cows with lower plasma IGF-I concentrations at the start of the protocols. This improvement is probably due to prevention of premature increases of estradiol-17beta and progesterone concentrations, which occurred in cows with low IGF-I concentrations treated with Ovsynch, by the CIDR treatment.  相似文献   

17.
We compared synchronization and pregnancy rates, and the increase in blood progesterone concentrations during luteal development, between (1) Ovsynch plus an intravaginal controlled internal drug release (CIDR) device protocol followed by timed embryo transfer (timed ET), and (2) a conventional estrus synchronization method using PGF(2 alpha) and ET in suckled postpartum Japanese Black beef cows. Cows in the PGF group (n=18) received a PGF(2 alpha) analogue when a CL was first palpated per rectum at 10-d intervals after 1 to 2 month postpartum. Cows (n=11), which showed estrus (Day 0) within 5 d of the PGF(2 alpha), and had a CL on Day 7, received ET. Cows in the Ovsynch+CIDR group (n=19) underwent the Ovsynch protocol plus a CIDR for 7 d (GnRH analogue and CIDR on Day-9, PGF(2alpha) analogue with CIDR removal on Day-2, and GnRH analogue on Day 0), with ET on Day 7. The ovulation synchronization (100%) and embryo transfer (100%) rates in the Ovsynch+CIDR group were greater (P<0.01) than the estrus synchronization (66.7%) and the embryo transfer (61.1%) rates in the PGF group. The postpartum interval at ET in the Ovsynch+CIDR group (62.5 +/- 2.5 d) was shorter (P<0.01) than in the PGF group (74.9 +/- 3.9 d). The pregnancy rate in the Ovsynch+CIDR group (57.9%) did not differ significantly from that in the PGF group (50.0%). Plasma progesterone concentrations were not significantly different in the two groups on Days 0, 1, 2, 5, 7, 14 and 21. In summary, higher synchronization and transfer rates, and shorter postpartum interval to ET, can be achieved with timed ET following the Ovsynch plus CIDR protocol than after estrus with the single PGF(2 alpha) treatment followed by ET in suckled postpartum recipient beef cows. Pregnancy rates were similar. Also, the increase in blood progesterone concentrations during luteal development following ovulation synchronized by the Ovsynch plus CIDR protocol was similar to that after estrus induced by the PGF(2 alpha) treatment.  相似文献   

18.
同期发情处理方法对受体牛胚胎移植效果影响的研究   总被引:4,自引:0,他引:4  
试验设计3个组.分别采用CIDR+PGF2α法、PGF2α一次注射法和PGF2α二次注射法3种不同的处理方法对120头西门塔尔杂交受体牛进行同期发情处理。结果表明:CIDR+PGF2α法同期发情处理的受体牛黄体不合格率达47.4%.显著高于其他两组(P〈0.05);胚胎移植产犊率为45.0%,分别比PGF2α一次注射法和PGF2α二次注射法低10.2和13.1个百分点。PGF2α二次注射法同期发情处理后的受体牛黄体不合格率仅20.5%,低于PGF2α一次注射法(P〉0.05),显著低于CIDR+PGF2α法(P〈0.05);胚胎移植产犊率达58.1%,均高于其他两组。本试验初步显示:采用PGF2α二次注射法进行同期发情处理受体牛效果好,成本较低,操作方便,产犊率也较高。  相似文献   

19.
We determined whether an ovulatory estrus could be resynchronized in previously synchronized, AI nonpregnant cows without compromising pregnancy from the previous synchronized ovulation or to those inseminated at the resynchronized estrus. Ovulation was synchronized in 937 suckled beef cows at 6 locations using a CO-Synch + progesterone insert (controlled internal drug release; CIDR) protocol [a 100-microg injection of GnRH at the time of progesterone insert, followed in 7 d by a 25-mg injection of PGF(2alpha) at insert removal; at 60 h after PGF(2alpha), cows received a fixed-time AI (TAI) plus a second injection of GnRH]. After initial TAI, the cows were assigned randomly to 1 of 4 treatments: 1) untreated (control; n = 237); 2) progesterone insert at 5 d after TAI and removed 14 d after TAI (CIDR5-14; n = 234); 3) progesterone insert placed at 14 d after TAI and removed 21 d after TAI (CIDR14-21; n = 232); or 4) progesterone insert at 5 d after TAI and removed 14 d after TAI and then a new CIDR inserted at 14 d and removed 21 d after TAI (CIDR5-21; n = 234). After TAI, cows were observed twice daily until 25 d after TAI for estrus and inseminated according to the AM-PM rule. Pregnancy was determined at 30 and 60 d after TAI to determine conception to the first and second AI. Pregnancy rates to TAI were similar for control (55%), CIDR5-14 (53%), CIDR14-21 (48%), and CIDR5-21 (53%). A greater (P < 0.05) proportion of nonpregnant cows was detected in estrus in the CIDR5-21 (76/110, 69%) and CIDR14-21 (77/120, 64%) treatments than in controls (44/106, 42%) and CIDR5-14 (39/109, 36%) cows. Although overall pregnancy rates after second AI service were similar, combined conception rates of treatments without a CIDR from d 14 to 21 [68.7% (57/83); control and CIDR5-14 treatments] were greater (P = 0.03) than those with a CIDR during that same interval [53.5% (82/153); CIDR5-21 and CIDR14-21 treatments]. We conclude that placement of a progesterone insert 5 d after a TAI did not compromise or enhance pregnancy rates to TAI; however, conception rates of nonpregnant cows inseminated after a detected estrus were compromised when resynchronized with a CIDR from d 5 or 14 until 21 d after TAI.  相似文献   

20.
The objectives of this study were to 1) compare cumulative pregnancy rates in a traditional management (TM) scheme with those using a synchronization of ovulation protocol (CO-Synch + CIDR) for timed AI (TAI) in Bos indicus-influenced cattle; 2) evaluate ovarian and hormonal events associated with CO-Synch + CIDR and CO-Synch without CIDR; and 3) determine estrual and ovulatory distributions in cattle synchronized with Select-Synch + CIDR. The CO-Synch + CIDR regimen included insertion of a controlled internal drug-releasing device (CIDR) and an injection of GnRH (GnRH-1) on d 0, removal of the CIDR and injection of PGF2alpha (PGF) on d 7, and injection of GnRH (GnRH-2) and TAI 48 h later. For Exp. 1, predominantly Brahman x Hereford (F1) and Brangus females (n = 335) were stratified by BCS, parity, and day postpartum (parous females) before random assignment to CO-Synch + CIDR or TM. To maximize the number of observations related to TAI conception rate (n = 266), an additional 96 females in which TM controls were not available for comparison also received CO-Synch + CIDR. Conception rates to TAI averaged 39 +/- 3% and were not affected by location, year, parity, AI sire, or AI technician. Cumulative pregnancy rates were greater (P < 0.05) at 30 and 60 d of the breeding season in CO-Synch + CIDR (74.1 and 95.9%) compared with TM (61.8 and 89.7%). In Exp. 2, postpartum Brahman x Hereford (F1) cows (n = 100) were stratified as in Exp. 1 and divided into 4 replicates of 25. Within each replicate, approximately one-half (12 to 13) received CO-Synch + CIDR, and the other half received CO-Synch only (no CIDR). No differences were observed between treatments, and the data were pooled. Percentages of cows ovulating to GnRH-1, developing a synchronized follicular wave, exhibiting luteal regression to PGF, and ovulating to GnRH-2 were 40 +/- 5, 60 +/- 5, 93 +/- 2, and 72 +/- 4%, respectively. In Exp. 3, primiparous Brahman x Hereford, (F1) heifers (n = 32) and pluriparous cows (n = 18) received the Select Synch + CIDR synchronization regimen (no GnRH-2 or TAI). Mean intervals from CIDR removal to estrus and ovulation, and from estrus to ovulation were 70 +/- 2.9, 99 +/- 2.8, and 29 +/- 2.2 h, respectively. These results indicate that the relatively low TAI conception rate observed with CO-Synch + CIDR in these studies was attributable primarily to failure of 40% of the cattle to develop a synchronized follicular wave after GnRH-1 and also to inappropriate timing of TAI/GnRH-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号