首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R L Witter 《Avian diseases》1987,31(4):752-765
Attempts were made, through selection of optimum viral strains, to develop improved vaccines against Marek's disease (MD). Seven attenuated serotype 1 strains and 22 avirulent serotype 2 strains, both alone and in combination with the FC126 strain of serotype 3, were screened for protective efficacy against challenge with virulent and very virulent MD viral strains. The three viruses selected as most promising were evaluated alone and in various combinations and compared with commercially available vaccines, including FC126, bivalent (FC126 + SB-1), and CV1988/C, in 12 separate assays. Two of these new viruses--301B/1 (serotype 2) and Md11/75C/R2 (serotype 1)--were exceptionally protective compared with prototype vaccine strains. Four new monovalent and polyvalent vaccines based on these two isolates protected chickens better than FC126 alone or CV1988/C alone. Three of these new vaccines provided better protection than the bivalent (FC126 + SB-1) vaccine. Protective synergism was noted commonly between viruses of serotypes 2 and 3 but only sporadically between serotypes 1 and 2 or between serotypes 1 and 3. Strain CVI988/C was protective but was no better than FC126 alone, and it was less effective than bivalent (FC126 + SB-1) vaccine, even when used as a bivalent vaccine with FC126 or SB-1.  相似文献   

2.
R L Witter 《Avian diseases》1991,35(4):877-891
In earlier studies, a revertant serotype 1 Marek's disease virus (MDV), clone Md11/75C/R2, was found to be a highly protective vaccine virus but was mildly pathogenic for susceptible chickens. The term "revertant" indicates that the virus, after attenuation, gained virulence following backpassage in chickens. The present study is an attempt to develop a more attenuated but still protective vaccine virus from Md11/75C/R2. Forty-two derivative viruses or clones from Md11/75C/R2 were evaluated. Two of these, designated clones R2/23 and R2/29, induced viremia but little or no pathology in preliminary trials and were selected for further study. In a series of nine trials, both clones provided protection against challenge with very virulent MDV strains that was superior to that induced by turkey herpesvirus (HVT) and was not significantly different (P greater than 0.05) from that induced by a bivalent (HVT + SB-1) vaccine. Both clones appeared fully attenuated based on pathogenicity tests in susceptible antibody-negative chickens. Both clones gained virulence on backpassage in chickens, but this seemed of little concern because neither virus spread by contact to other chickens. Although the two clones were very similar, clone R2/23 appeared to have a slightly lower pathogenic potential following backpassage and thus best meets the combined criteria of safety and efficacy.  相似文献   

3.
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly infectious, oncogenic alpha-herpesvirus known as Marek's disease virus (MDV). MD is presently controlled by vaccination. Current MD vaccines include attenuated serotype 1 strains (e.g., CVI988/Rispens), avirulent serotype 2 (SB-1), and serotype 3 (HVT) MDV strains. In addition, recombinant MDV strains have been developed as potential new and more efficient vaccines to sustain the success of MD control in poultry. One of the candidate recombinant MDV strains, named rMd5deltaMeq, was derived from Md5, a very virulent strain of MDV lacking the MDV oncogene Meq. Our earlier reports suggest that rMd5deltaMeq provided protection equally well or better than commonly used MD vaccines in experimental and commercial lines of chickens challenged with very virulent plus (vv+) strains of MDV. In this study, maternal antibody-positive (trial 1) and negative (trial 2) chickens from a series of relatively MD resistant lines were either vaccinated with the rMd5deltaMeq or CVI988/Rispens followed by infection of a vv+ strain of MDV, 648A, passage 10. This report presents experimental evidence that the rMd5deltaMeq protected significantly better than the CVI988/Rispens (P < 0.01) in the relatively resistant experimental lines of chickens challenged with the vv+ strain of MDV. Together with early reports, the rMd5deltaMeq appeared to provide better protection, comparing with the most efficacious commercially available vaccine, CVI988/Rispens, for control of MD in lines of chickens regardless of their genetic background.  相似文献   

4.
In the genome of strains of very virulent Marek's disease virus serotype 1(vvMDV1), such as Md5 and RB1B, the meq open reading frame (ORF) encoding a 339-amino-acid bZIP protein, is present, while a slightly longer meq ORF, termed as L-meq, in which a 180-bp sequence is inserted into the meq ORF is found in other strains of MDV1, such as CV1988/R6 and attenuated JM. When chickens were infected with vvMDV1 strains and the meq gene was amplified by nested polymerase chain reaction (PCR), the meq gene was detected throughout the experimental period for 7 weeks post inoculation (pi). However, the L-meq gene was also detected at 3 to 5 weeks and 3 to 4 weeks pi. in Md5-infected and RB1B-infected chickens, respectively. In the case of chickens infected with an attenuated MDV1, the JM strain, the L-meq gene was detected at 2 to 7 weeks pi., and the meq gene was also detected at 2 to 6 weeks pi. Both L-meq and meq genes were detected in chickens infected with an attenuated nononcogenic vaccine strain of MDV1 (CVI988/R6), throughout the experimental period. Though quantitative PCR was not performed, a larger amount of the PCR products corresponding to the L-meq than the meq gene was amplified from chickens infected with JM or CVI988/R6. These results suggest that a dynamic population shift between the MDV subpopulations displaying meq and L-meq genes occurs in chickens during the course of MDV infection. Since the MDV subpopulation that displays the L-meq gene only displays it during the latent phase, the L-meq and its gene product, if any, might contribute to the maintenance of the MDV latency.  相似文献   

5.
鸡马立克氏病活疫苗免疫效力比较试验   总被引:1,自引:0,他引:1  
用HVT冻干苗、HVT细胞结合苗、CVI988细胞结合苗、SB1+FC126双价活疫苗、301B/1+FC126双价活疫苗和Z4+FC126双价活疫苗等6种鸡马立克氏病(MD)疫苗免疫SPF白来航鸡或普通伊莎鸡,用鸡马立克氏病病毒(MDV)强毒GA株、京-1血毒以及鸡马立克氏病超强毒vvMDV-Md5毒株分别攻击进行免疫效力比较试验。试验表明,MD单价苗的免疫效力强弱顺序依次是CVI988、HVT细胞结合苗和HVT冻干苗,这3种MD单价苗均能给免疫鸡群提供有效的免疫保护力。SB1+FC126、Z4+FC126和301B/1+FC126等3种MD双价苗免疫效力显著高于MD单价苗,均能给免疫鸡群提供较强的免疫保护力,并能有效地抵抗vvMDV-Md5毒株的致瘤作用。Z4+FC126和301B/1+FC126MD双价苗免疫效力无显著差异  相似文献   

6.
The meq gene was thought to be only detected in Marek's disease virus serotype 1 (MDV 1) including a very virulent strain, Md5, while L-meq, in which a 180-bp sequence is inserted into the meq open reading frame, is found in other strains of MDV 1, such as CVI 988/R6. However, both meq and L-meq were previously detected by PCR in chickens infected with MDV 1, suggesting that MDV 1 may consists of at least two subpopulations, one with meq, the other with L-meq. To further analyze these subpopulations, we analyzed the time course changes in distribution of these subpopulations among T cell subsets from chickens infected with MDV 1. Both meq and L-meq were detected in CD4+ and CD8+ T cells infected with strain Md5 or CVI 988/R6. The shift in MDV subpopulations from one displaying meq to the other displaying L-meq and/or the conversion from meq to L-meq occurred mainly in the CD8+ T cell subset from Md5-infected chickens. PCR products corresponding to L-meq rather than meq were frequently amplified from the CD8+ T cell subset from CVI 988/R 6 -infected chickens. These results suggest that a dominant subpopulation of MDV 1 changes depending on the T cell subsets, and that L-meq is dominantly present in the CD8+ T cells which play a role in the clearance of pathogenic agents.  相似文献   

7.
Comparative 50% protective dose (PD50) assays were performed using a plaque-purified preparation of Marek's disease virus (MDV) strain CVI-988 at the 65th chicken embryo fibroblast (CEF) passage level (MDV CVI-988 CEF65 clone C) and three commercial MD vaccines: herpesvirus of turkeys (HVT) FC126, MDV CVI-988 CEF35, and a bivalent vaccine composed of HVT FC126 and MDV SB-1. In addition, comparative PD50 assays were performed in groups of chickens with maternal antibody to each of the three vaccines. Three representatives of the newly emerged biovariant very virulent (vv) MDV strains-RB/1B, Tun, and Md5-were employed as challenge virus. The experiments made feasible the differentiation between virulent MDV and vvMDV strains, within serotype 1. Vaccination with CVI-988 clone C vaccine resulted in PD50 estimates of about 5 plaque-forming units (PFUs) against challenge infection with each of the three vvMDV strains. The PD50 estimate of CVI-988 clone C vaccine was 12-fold below the PD50 of HVT FC126. The protective synergism of bivalent vaccine, composed of HVT and SB-1, was confirmed by groups given the lowest vaccine doses. The bivalent vaccine, however, resulted in incomplete protection in groups given the highest vaccine doses. Homologous maternal antibodies to serotype 1 caused a fivefold increase in the PD50 estimate of CVI-988 clone C. Heterologous maternal antibodies against HVT did not interfere with efficacy of CVI-988 clone C vaccination. However, the combination of maternal antibodies against both HVT and SB-1 (serotypes 2 and 3) showed a strong adverse effect on CVI-988 clone C vaccine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Zhang Y  Sharma JM 《Avian diseases》2001,45(3):639-645
CVI988, a serotype 1 Marek's disease virus (MDV), was used as an in ovo vaccine in specific-pathogen-free chickens to determine if this virus induces early posthatch protection against Marek's disease as has been shown previously for turkey herpesvirus. MDV CVI988 was injected at embryonation day (ED) 17 (group 1) or at hatch (group 2). A third group (group 3) was left unvaccinated. At 1, 2, 3, 4, 5, and 7 days of age, chickens from each group were sampled and examined as follows: a) single-cell suspensions of spleen were inoculated onto chicken embryo fibroblast monolayers to isolate the virus; b) sections of bursal tissues were stained by indirect immunofluorescence assays with anti-pp38 monoclonal antibody to identify viral antigen expression; and c) chickens were exposed intra-abdominally to MDV RB1B, a virulent serotype 1 MDV. Results revealed that in chickens given MDV CVI988 at ED 17, virus and virus-encoded protein were not detected until chickens were 3 and 2 days old after hatching, respectively. Results also indicated that during the first 4 days after hatch, the chickens given MDV CVI988 at ED 17 were better protected against virulent MDV than those given MDV CVI988 at hatch (P < or = 0.001). These results suggested that MDV CVI988 proteins were adequately expressed in the embryo to initiate prehatch immunologic response. Additional efforts with more sensitive techniques than used in this study are needed to identify the nature of viral expression in embryos.  相似文献   

9.
Earlier studies have shown that the B haplotype has a significant influence on the protective efficacy of vaccines against Marek's disease (MD) and that the level of protection varies dependent on the serotype of MD virus (MDV) used in the vaccine. To determine if the protective glycoprotein gene gB is a basis for this association, we compared recombinant fowlpox virus (rFPV) containing a single gB gene from three serotypes of MDV. The rFPV were used to vaccinate 15.B congenic lines. Nonvaccinated chickens from all three haplotypes had 84%-97% MD after challenge. The rFPV containing gB1 provides better protection than rFPV containing gB2 or gB3 in all three B genotypes. Moreover, the gB proteins were critical, since the B*21/*21 chickens had better protection than chickens with B*13/*13 or B*5/*5 using rFPV with gB1, gB2, or gB3. A newly described combined rFPV/gB1gEgIUL32 + HVT vaccine was analyzed in chickens of lines 15 x 7 (B*2/*15) and N (B*21/*21) challenged with two vv+ strains of MDV. There were line differences in protection by the vaccines and line N had better protection with the rFPV/gB1gEgIUL32 + HVT vaccines (92%-100%) following either MDV challenge, but protection was significantly lower in 15 X 7 chickens (35%) when compared with the vaccine CVI988/Rispens (94%) and 301B1 + HVT (65%). Another experiment used four lines of chickens receiving the new rFPV + HVT vaccine or CVI988/Rispens and challenge with 648A MDV. The CVI 988/Rispens generally provided better protection in lines P and 15 X 7 and in one replicate with line TK. The combined rFPV/gB1gEgIUL32 + HVT vaccines protected line N chickens (90%) better than did CVI988/Rispens (73%). These data indicate that rFPV + HVT vaccines may provide protection against MD that is equivalent to or superior to CVI988/ Rispens in some chicken strains. It is not clear whether the rFPV/gB1gEgIUL32 + HVT vaccine will offer high levels of protection to commercial strains, but this vaccine, when used in line N chickens, may be a useful model to study interactions between vaccines and chicken genotypes and may thereby improve future MD vaccines.  相似文献   

10.
由于CVI988/Rispense疫苗优良的免疫特性,已经被认为是目前防控马立克氏病(Marek'sdisease,MD)效果最好的疫苗。然而,近年来随着马立克病毒(Marek'sdisease virus,MDV)毒力的不断增强。CVI988/Rispense需要与MDV-Ⅱ或者HVT联合使用才能防止免疫失败的发生。本实验通过空斑计数和间接免疫荧光相结合的方法测定了马立克病毒CVI988/Rispense+FC126二价活疫苗的效价。结果显示批次A中CVI988为4400PFU/dose,HVT为2600/dose;批次B中CVI988为4800PFU/dose,HVT为2400PFU/dose;批次C中CVI988为4600PFU/dose,HVT为2800PFU/dose。所得结果均显著高于国家标准CVI988不少于2000PFU/dose,HVT不少于1000PFU/dose,并且批次之间非常稳定,适合用作鸡群马立克氏病的防控。  相似文献   

11.
The ‘gold standard’ vaccine against Marek’s disease in poultry is the CVI988/Rispens virus, which is not easily distinguishable, antigenically or genetically, from virulent Marek’s disease herpesvirus. Accurate differential measurement of the CVI988 vaccine and virulent viruses is important to investigate mechanisms of vaccinal protection. Minimal sequence differences between CVI988 and virulent MDV strains restrict the application of molecular diagnostic methods such as real-time PCR to distinguish between these viruses. The use of bacterial-artificial-chromosome (BAC) cloned CVI988 virus, which carries the BAC vector sequences in place of the Us2 gene, allows its differential quantification from virulent strains using real-time PCR assays that target the BAC vector sequence and the US2 gene respectively. These novel assays allowed investigation of replication of both serotype-1 vaccine virus (cloned CVI988) and challenge virus (RB-1B strain) in tissues of individual chickens in an experimental vaccination-challenge model of Marek’s disease.  相似文献   

12.
Witter RL 《Avian diseases》2002,46(4):925-937
Studies were conducted to better understand the relationship among Marcek's disease (MD) vaccine strains between induction of protective immunity and the degree of attenuation (or virulence). To obtain viruses at different stages of attenuation, very virulent plus MD strains 584A and 648A and selected clones of these strains were serially passaged in chicken and duck cells. These viruses were considered fully attenuated after passage for 70-100 times in chicken embryo cell cultures until they no longer induced gross lesions in susceptible, maternal antibody-negative (ab-) chickens. Lower passages of the same strains were considered partially attenuated, provided their virulence was less than that of the parent strain. Four of five partially attenuated preparations derived from MD virus strains 584A and 648A or the previously attenuated Md11 strain induced 28%-62% higher levels of protection in maternal antibody-positive (ab+) chickens against virulent MD challenge than the fully attenuated counterpart viruses. The partially attenuated 584A/d2/3 strain replicated in chickens but was totally nonprotective. Data from two subsequent trials in ab+ chickens confirmed that protection induced by the partly attenuated (passage 80) preparations was 79% and 118% higher, respectively, than that induced by the fully attenuated (passage 100) preparations of strain 648A. However, in one trial with ab- chickens, no difference in protection between partially and fully attenuated virus was observed. Strong protection (up to 85%) against highly virulent challenge also was provided by preparations of 648A at passages 40-60, which were moderately oncogenic when used alone. Partially attenuated strains tended to replicate to higher titers in both ab+ and ab- chickens compared with fully attenuated vaccines. Also, ab+ and ab- chickens vaccinated with partially attenuated strains developed three- to nine fold more extensive microscopic lesions in peripheral nerves at 14 and 22 days after virulent challenge than chickens vaccinated with fully attenuated strains. When measured in ab+ chickens, loss of lesion induction by 648A was achieved 30 passages earlier (at passage 70) than when measured in ab- chickens. Thus, maternal antibodies appeared to abrogate the pathogenicity of some partially attenuated strains. These studies establish for MD the principle that at least some partially attenuated MD viruses may replicate better and induce stronger immunity against virulent challenge than fully attenuated preparations of the same strain, at least when tested in ab+ chickens. Moreover, depending on passage level, partially attenuated vaccine strains may be relatively innocuous for ab+ chickens, causing few or no lesions.  相似文献   

13.
Revaccination against Marek's disease is a widespread practice in some countries. The rationale of this practice is unknown, and there is no consensus in the protocols. Recently, we have demonstrated that administration of the first vaccine at 18 days of embryonation followed by a more protective second vaccine at hatch (18ED/1d) reproduced systematically the benefits of revaccination under laboratory conditions. Here, we have used the same model to optimize the revaccination protocols by using currently available vaccines and to determine whether two features associated with Marek's disease vaccine-induced protection (activation of T cells and replication of vaccine virus) are involved in the revaccination protocols. Protection conferred by three revaccination protocols (turkey herpesvirus [HVT] 18ED/HVT+SB-1 1d, HVT 18ED/CVI988 1d, and HVT+SB-1 18ED/ CVI988 1d) was evaluated. Revaccination protocols also were compared with single vaccination protocols (HVT 18ED, HVT+SB-1 18ED, HVT+SB-1 1d, CVI988 18ED, and CVI988 1d). Our results demonstrated that it is possible to improve efficacy of the currently available vaccines by using them in revaccination programs. Administration of HVT 18ED/CVI988 1d and HVT+SB-1 18ED/CVI988 1d were the two protocols that conferred the highest protection against a very early challenge (2 days of age) with very virulent plus Marek's disease virus strain 648A. In a separate experiment, we evaluated vaccine replication and activation of T cells in single and revaccination protocols. Our results demonstrated that replication of the second vaccine, although decreased compared with single vaccination, could be detected at 3 days (HVT, CVI988) or at 6 days (SB-1). Administration of the first vaccine (HVT) at 18ED resulted in a high percentage of activated T cells. Administration of a second vaccine (either HVT-SB-1 or CVI988) at 1d resulted in increased intensity of MHC-II stain in activated T cells.  相似文献   

14.
Improved vaccines to control Marek's disease (MD) in chickens are desired by the poultry industry but have been difficult to develop. Studies were conducted to evaluate strategies for deriving MD vaccines of high protective efficacy, irrespective of virulence. Candidate viruses from parent strains representing v and vv+ pathotypes were modified by cell culture passage, backpassage in chickens, or insertional mutagenesis following cocultivation with retroviruses. Ten strains considered most likely to exhibit high protective efficacy were selected for further study. The ability of these modified viruses to protect commercial or maternal antibody-positive (ab+) chickens against virulent MD virus (MDV) challenge was compared with that of strain CVI988, the standard commercial MD vaccine. Modified strains were also evaluated for the ability to induce lymphomas or other pathologic changes in ab+ and antibody-negative (ab-) chickens. Two of the 10 modified viruses, strains RM1 and CVI988/BP5, provided high levels of protection against highly virulent MDV challenge. The magnitude of protection was greater than that of one laboratory and two commercial preparations of CV1988, but was approximately equal to that of two other commercial preparations of CVI988 in laboratory and field tests. Three of the strains, including RMI and CVI988/BP5, induced lymphoid organ atrophy in ab-chicks but not in ab+ commercial chicks, a property designated here as L phenotype. Seven strains, including two L+ strains, were mildly oncogenic for ab- chicks, a property designated here as O phenotype. Five of these strains caused no tumors in ab+ chickens. The two fully attenuated strains induced neither lymphomas nor lymphoid organ atrophy. The L and O phenotypes appeared not to be linked, and both (especially the L phenotype) appeared associated with high levels of protection. These studies also illustrated differences in the protective efficacy of different preparations of CVI988 vaccine, indicating the need to choose carefully the most protective strains as controls for efficacy studies. A new vv+ strain, designated as 686, is described and appears useful as a challenge virus; it is the most virulent of the 48 field isolates of MDV thus far pathotyped in this laboratory. These findings support the conclusion that new virus strains with high levels of protective immunity comparable to that of CVI988 can be developed. However, the question of whether strains can be developed that exceed the efficacy of current CVI988-based vaccines remains unanswered. After more than 30 years of unsuccessful endeavor by many laboratories toward this goal, it now may be useful to consider whether the efficacy of MD vaccines is limited by some type of biologic threshold.  相似文献   

15.
For the easy survey of Marek's disease virus (MDV), feather tip-derived DNA from MDV-infected chickens can be used because feather tips are easy to collect and feather follicle epithelium is known to be the only site of productive replication of cell-free MDV. To develop a diagnostic method to differentiate highly virulent strains of MDV from the attenuated MDV vaccine strain, CVI988, which is widely used, nested polymerase chain reaction (PCR) was performed to detect a segment of the meq gene in feather tip samples of chickens experimentally infected with MDV. In chickens infected with Md5, a strain of oncogenic MDV, the meq gene was consistently detected, whereas the L-meq gene, in which a 180-base pair (180-bp) sequence is inserted into the meq gene, was detected in CVI988-infected chickens. Moreover, the meq gene was mainly detected even in chickens co-infected with both Md5 and CVI988. These results suggest that this method is appropriate for the surveillance of the highly virulent MDV infection in the field.  相似文献   

16.
The efficacies of trivalent (Md11/75C + SB-1 + HVT), bivalent (SB-1 + HVT), and turkey herpesvirus (HVT) vaccines against Marek's disease (MD) were compared in commercial broiler flocks in four trials involving 11 farm locations and 486,300 chickens. In all four trials, chickens receiving polyvalent vaccines had lower leukosis (MD) condemnation rates than chickens vaccinated with HVT alone; when data were summarized for each vaccine type in each trial, condemnation rates for the bivalent- or trivalent-vaccinated groups were 56-96% (mean 78%) lower than those for HVT-vaccinated chickens. Polyvalent vaccination was clearly mor efficacious than HVT in 8 of 11 individual farms, although it did not always reduce leukosis condemnations to acceptable levels. Body weights of chickens vaccinated with polyvalent vaccines did not differ consistently from those vaccinated with HVT. Chickens inoculated with the trivalent vaccine had slightly lower overall leukosis condemnation rates (0.24%) than those inoculated with the bivalent vaccine (0.45%) in trials 1-3, where direct comparisons were made. Bivalent vaccines containing either 1,500 or 200 plaque-forming units of SB-1 virus were equally effective; thus, HVT may need to be supplemented with only small amounts of SB-1 to obtain the benefits of protective synergism. SB-1 virus did not appear to carry over from polyvalent-vaccinated flocks to subsequent HVT-vaccinated flocks in the same houses, even when old litter was used.  相似文献   

17.
应用荷兰农业部提供的鸡马立克氏病(MD)CVI988/Rispens Ⅰ型致弱种毒, 在农业部批准的符合GMP 要求的生产车间研制出鸡马立克氏病CVI988/Rispens 疫苗。将按国际标准检验合格的三批疫苗及进口商品CVI988/Rispens 疫苗接种1 日龄SPF 雏鸡, 于7 日龄经腹腔攻击鸡马立克氏病强毒(北京- 1 株) 血毒, 全部鸡只隔离饲养观察至60 日龄并作全群剖检。经测定: 非免疫攻毒组100% 发病,健康对照组全部阴性, 三批国产CVI988/Rispens 疫苗保护指数分别为90-0, 90-0, 93-3 , 进口商品苗保护率为93-3 。结果表明国产和进口CVI988/Rispens疫苗均能提供对MD 较高的免疫保护力, 国产疫苗的保护效果达到了国际同类产品的先进水平。  相似文献   

18.
OBJECTIVE: To develop a serotype 1 Marek's disease (MD) vaccine from a very virulent MDV (vvMDV) pathotype and demonstrate safety and efficacy against early challenge with very virulent field strains in the presence of maternal antibody. STUDY DESIGN: Strain BH 16 was isolated and attenuated by serial cell culture passage. One of two cloned passages was selected for vaccine development following early laboratory-scale protection trials in commercial birds. Comparative protection trials were carded out on the BH 16 vaccine and on a CVI 988 Rispens vaccine using commercial and SPF chickens. Challenge viruses used were either a low passage strain BH 16 virus, the Woodlands No. 1 strain or MPF 57 strain of MDV. The BH 16 vaccine was back-passaged in SPF chickens six times and virus recovered from the final passage and the original vaccine virus were tested for safety. The immunosuppressive potential of the BH 16 and Rispens vaccines was also assessed in parallel. RESULTS: The BH 16 and Rispens vaccines induced comparable levels of protection when used as monovalent or multivalent vaccines, although protection achieved with the monovalent vaccines was lower. No gross tumour formation was evident in any birds receiving the BH 16 vaccine or bird-passaged virus, although microscopic lesions were present in 2/12 birds that received the bird-passaged virus. In tests for immunosuppression, there was no histological evidence of damage to either the bursa of Fabricius or the thymus. CONCLUSION: The BH 16 vaccine was shown to be safe and at least as protective as the Rispens vaccine against three highly virulent MD challenge viruses.  相似文献   

19.
Objective To develop a serotype 1 Marek's disease (MD) vaccine from a very virulent MDV (vvMDV) pathotype and demonstrate safety and efficacy against early challenge with very virulent field strains in the presence of maternal antibody.
Study design Strain BH 16 was isolated and attenuated by serial cell culture passage. One of two cloned passages was selected for vaccine development following early laboratory-scale protection trials in commercial birds. Comparative protection trials were carried out on the BH 16 vaccine and on a CVI 988 Rispens vaccine using commercial and SPF chickens. Challenge viruses used were either a low passage strain BH 16 virus, the Woodlands No. 1 strain or MPF 57 strain of MDV. The BH 16 vaccine was back-passaged in SPF chickens six times and virus recovered from the final passage and the original vaccine virus were tested for safety. The immunosuppressive potential of the BH 16 and Rispens vaccines was also assessed in parallel.
Results The BH 16 and Rispens vaccines induced comparable levels of protection when used as monovalent or multi-valent vaccines, although protection achieved with the mono-valent vaccines was lower. No gross tumour formation was evident in any birds receiving the BH 16 vaccine or bird-passaged virus, although microscopic lesions were present in 2/12 birds that received the bird-passaged virus. In tests for immunosuppression, there was no histological evidence of damage to either the bursa of Fabricius or the thymus.
Conclusion The BH 16 vaccine was shown to be safe and at least as protective as the Rispens vaccine against three highly virulent MD challenge viruses.  相似文献   

20.
本试验用北京市农林科学院畜牧兽医研究所制备的CVI988/Rispens疫苗和进口的CVI988/Rispens疫苗免疫1日龄来航鸡,7日龄以MDV北京-1株血毒进行攻击,60日龄全群剖检。经免疫效力试验两次测定,3批北京所制备的CVI98Rispens疫苗产品保护指数分别为试验的90.0、90.0、93.3和试验(2)的100.0、100.0、94.5与进口商品CVI/988Rispens苗的保  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号