首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
外源性氮和磷对尾叶桉凋落叶分解的影响   总被引:2,自引:1,他引:1  
通过研究外源性氮和磷对尾叶桉(Eucalyptus urophylla)凋落叶分解速率、分解过程中N、P含量变化的影响,为森林养分管理提供科学依据。采用尼龙网袋分解法,在广东的尾叶桉林内建立4块5 m×5 m的小样地,放置凋落叶样品,测定其分解速率和N、P含量变化。结果表明,外源性N在试验前期分解速率有促进作用,后期阻碍了凋落叶分解。24个月时对照、施N、P和N+P的凋落叶残留量分别为初始重量的0.23%、1.59%、0.19%和0.49%。凋落叶分解24个月时尾叶桉林地各处理的凋落叶N、P含量均大于初始值,对照、施N、P和N+P的凋落叶N的残留量分别为初始N重量的0.54%、2.41%、0.35%和0.81%,凋落叶P的残留量分别为初始P重量的0.48%、1.74%、0.56%和1.52%,表明4种处理的凋落叶N和P均为释放模式。施N抑制尾叶桉凋落叶的分解,而施P及N+P促进其凋落物的分解,表明施用P肥可以促进尾叶桉凋落叶的分解和养分循环。  相似文献   

2.
2007年12月在广东省佛山市高明区云勇林场的杉木和藜蒴锥林下以不施肥为对照,采用完全随机区组试验设计,进行施N肥、施P肥及施N + P肥等处理,分析华南地区杉木和藜蒴锥人工林的混合凋落叶分解对外源性N和P的响应。结果表明:施N对杉木和藜蒴锥林下混合凋落叶的分解有抑制作用,而施P的凋落叶分解速率最快,施N + P也促进了凋落叶分解。总体来看,藜蒴锥林下混合凋落叶的分解速率大于杉木林下的混合凋落叶。24个月后,杉木林下施N和N + P的混合凋落叶N含量显著大于其初始含量,而藜蒴锥林下各处理的混合凋落叶N含量均小于其初始含量;在杉木和藜蒴锥林下,施P和N + P的混合凋落叶P含量均显著大于其初始含量;混合凋落叶K含量在整个分解过程中波动较大。  相似文献   

3.
【目的】研究外源性N和P对火力楠Michelia macclurei和马尾松Pinus massoniana凋落叶分解速率的影响,以及分解过程中的N、P、K含量变化,了解混合凋落叶分解对外源性N和P的响应机制,为森林资源管理提供参考。【方法】将火力楠和马尾松混合凋落叶置于火力楠林地及马尾松林地,分别设立4块5 m×5 m的小样方,喷施N、P和N+P,比较其分解速率及分解过程中的N、P、K含量变化。【结果】在2种林地的不同处理下,24个月后,火力楠林地混合凋落叶残留量为施N(4.99 g)对照(4.14 g)施N+P(2.17 g)施P(1.16 g),马尾松林地混合凋落叶残留量为施N(2.72 g)对照(1.21 g)施N+P(0.36 g)施P(0.16 g),施N对火力楠和马尾松林下的混合凋落叶的分解有抑制作用;施P后两者的混合凋落叶的分解速率均不同程度地有所加快;施N+P后两者的混合凋落叶的分解速率也均加快,但慢于施P处理。马尾松林下混合凋落叶残留量均小于火力楠林下混合凋落叶残留量。分解24个月后,火力楠林地施N、P和N+P的混合凋落叶N质量分数分别为13.72、12.34和13.70 g·kg~(–1),而马尾松林地分别为12.63、13.46和14.54 g·kg~(–1),均显著大于其凋落叶的初始N质量分数(9.90 g·kg~(–1));施P和N+P处理的火力楠林地混合凋落叶P质量分数由初始的0.38 g·kg~(–1)分别增至0.86和0.74 g·kg~(–1),而马尾松林地混合凋落叶P质量分数由初始的0.38 g·kg~(–1)分别增至1.37和1.05 g·kg~(–1)。凋落叶K含量的变化无规律。【结论】火力楠和马尾松混交可促进火力楠凋落叶分解,提高混合凋落叶的分解速率。  相似文献   

4.
尾叶桉与马占相思人工复层林生物量及生产力研究   总被引:1,自引:1,他引:1  
应用相对生长法和样方收获法,于2006年对广西国营高峰林场3年生尾叶桉与马占相思不同混交模式人工林群落生物量及生产力进行研究,结果表明:尾叶桉与马占相思不同混交模式各器官生物量与测树因子(D2H)存在紧密相关关系。在相同混交比例下,群落生物量、乔木层生物量及净生产力水平随林分密度的增加而上升。当尾叶桉与马占相思混交比例为1∶1时,林分密度为1 050和1 320株/hm2的群落生物量分别为28.556和47.853 t/hm2,平均净生产力分别为9.51和15.95 t/(hm2·a),其中乔木层生物量分别为22.100和42.182 t/hm2,占总生物量的77.39%和88.15%;当尾叶桉与马占相思混交比例为2∶1时,林分密度810和1 170株/hm2的群落生物量分别为49.482和76.556 t/hm2,平均净生产力分别为16.49和25.51 t/(hm2·a),乔木层生物量分别为44.340和72.733 t/hm2,占总生物量的89.60%和95.01%;当林分密度同为1 727株/hm2时,尾叶桉纯林、尾叶桉与马占相思以1∶1.6比例混交林的群落生物量分别为84.586和106.904 t/hm2,平均净生产力为28.20和35.63 t/(hm2·a),其中乔木层生物量分别为73.942和101.480 t/hm2,占总生物量的87.42%和94.93%,混交林群落生物量比纯林群落生物量高出26.38%。在相同混交比例下,灌木层、草本层、枯枝落叶层生物量随林分密度的增加而下降;在相同密度下,尾叶桉纯林灌木层、草本层、枯枝落叶层生物量均比混交林高。在6个林分更新处理中,当尾叶桉与马占相思的混交比例为1∶1.6时,混交林的成层性最明显,林分总生物量、净生产力水平也最高,且与其他各处理间的差异达到极显著水平,是较佳的一种混交模式。   相似文献   

5.
外源性氮和磷对火力楠凋落叶分解的影响   总被引:1,自引:0,他引:1  
【目的】研究外源性氮和磷对火力楠Michelia macclurei凋落叶分解速率以及分解过程中N、P、K含量变化的影响,为科学合理经营火力楠人工林提供科学依据。【方法】在广东云勇林场的火力楠林地上建立4块5 m×5 m的小样地,将凋落叶放入尼龙网袋,并分别喷施N、P或N+P,每隔3个月取样测定凋落叶分解速率和N、P、K含量的变化。【结果】施N、P及N+P后凋落叶的分解速率有不同程度的加快,分解24个月后,对照及施N、P和N+P的凋落叶分别分解了52%、66%、78%和73%;对照及施N、P和N+P的凋落叶N含量分别增加了23%、33%、23%和31%,火力楠林地各处理的凋落叶N含量显著大于凋落叶的初始N含量,其中施N和N+P的凋落叶N含量显著大于对照;对照及施N、P和N+P的凋落叶P含量分别增加了7%、18%、59%和46%,且显著大于初始P含量,其中施P和N+P的凋落叶P含量显著大于对照。各处理的凋落叶K含量变化无规律,施N和N+P的凋落叶K含量显著小于对照,而施P的显著大于对照。对照的凋落叶N和K残留量显著大于其他处理,而施N处理的凋落叶P残留量显著小于对照。【结论】施N、P及N+P均可促进火力楠凋落叶的分解,其中施用P肥效果最佳,建议在火力楠林地可适当施用P肥,促进火力楠林的养分循环。  相似文献   

6.
研究华南地区杉木人工林凋落叶分解对外源性N和P的响应,可为杉木林经营管理的养分管理提供参考。结果表明:施N对凋落叶分解有抑制作用,施P的凋落叶分解速率最快,施N + P也加快凋落叶分解。处理24个月后,施N处理的凋落叶N含量显著大于其初始含量,施P及N + P的N含量显著小于其初始含量; 所有处理的凋落叶P含量显著大于其初始含量; 凋落叶K在分解过程中呈现淋溶—富集—释放模式。  相似文献   

7.
尾叶桉与马占相思人工复层林碳储量及分布特征研究   总被引:1,自引:0,他引:1  
应用相对生长法和样方收获法研究3年生尾叶桉与马占相思不同混交比例人工林的碳素含量、碳储量以及空间分配特征.结果表明:林分各器官、草本层、灌木层、枯落物层的碳素含量分别介于433.6~491.5 g/kg,412.9~437.3 g/kg,430.6~437.3 g/kg,458.6~465.3 g/kg.在相同混交比例下,乔木层碳储量随林分密度的增加而上升,灌木层、草本层和枯落物层碳储量随林分密度的增加而下降,土壤层在不同处理下碳储量无明显变化.当尾叶桉与马占相思混交比例为1: 1时,林分密度为1 050株/hm2和1 320株/hm2的生态系统碳储量分别为55.247 t/hm2,67.396 t/hm2;当尾叶桉与马占相思混交比例为2: 1时,林分密度810株/hm2和1 170株/hm2的生态系统碳储量分别为69.106 t/hm2,83.446 t/hm2;当林分密度同为1 727株/hm2时,尾叶桉纯林、尾叶桉与马占相思以1: 1.6比例混交林的生态系统碳储量分别为76.356 t/hm2,95.502 t/hm2.在相同混交比例下,灌木层、草本层、枯枝落叶层碳储量随林分密度的增加而下降;在相同密度下,尾叶桉纯林灌木层、草本层、枯枝落叶层碳储量均比混交林高.在6个林分更新处理中,当尾叶桉与马占相思混交比例为1: 1.6时,混交林的成层性最明显,林分总碳储量最高,且与其他各处理间的差异达到极显著水平,是固碳能力较佳的一种混交比例.  相似文献   

8.
通过样地调查,了解巨尾桉和马占相思混交林林下物种种类的组成情况,为桉树混交林发展提供理论依据。  相似文献   

9.
为促进杉木凋落叶分解,采用网袋法对杉木凋落叶多样性模式的失重率、种间相互作用和分解速率与初始质量的关系进行分析。结果表明:经过1 a的分解,除MS和SN 2组处理,其他处理的分解速率均大于杉木凋落叶。通过多样性处理,对凋落叶分解均有促进作用,尤其是SHN、SHR和SRN 3组处理,对杉木凋落叶分解具有一定作用,其中SHN、SHR、SRN和SHRN凋落叶多样性处理较其他处理能更好地促进杉木凋落叶分解,SHRNM凋落叶多样性处理则抑制杉木凋落叶分解。相关性检验表明,凋落叶的分解速率与初始纤维素含量达到极显著的正相关水平;与C含量和木质素含量及木质素/N具有极显著的负相关性,与C/N、C/K和木质素/K具有显著的负相关性。  相似文献   

10.
模拟氮沉降对油松林单一及混合叶凋落物分解的影响   总被引:3,自引:1,他引:2  
通过长期原位模拟氮沉降试验,研究暖温带油松林单一和混合叶凋落物分解对外源氮添加的响应过程与机制。氮处理水平分别为对照(0 kg/(hm2a),N0),低氮(50 kg/(hm2a),N1),中氮(100 kg/(hm2a),N2)和高氮(150 kg/(hm2a),N3)。利用凋落袋法对天然林油松针叶、辽东栎阔叶、油松--辽东栎混合叶以及人工林油松针叶进行原位分解试验。研究结果表明,自然状态下天然林油松针叶、辽东栎阔叶、油松--辽东栎混合叶、人工林油松针叶分解95%所需时间分别为7.58、4.89、6.92、8.03 年。氮沉降显著促进了人工林油松针叶的分解,抑制天然林辽东栎阔叶的分解;分解前期,N沉降促进天然林油松针叶、油松--辽东栎混合叶分解,并在分解后期对油松针叶分解产生抑制作用,而对油松--辽东栎混合叶分解无显著影响。在氮沉降持续增加的背景下,研究结果可为油松林生态系统物质循环和能量流动提供基础数据。   相似文献   

11.
巨桉凋落叶分解初期对小白菜光合生理特性的影响   总被引:3,自引:0,他引:3  
【目的】探讨巨桉凋落叶化感物质对受体植物光合效率及光合机构的影响。【方法】采用向栽植盆中直接施加巨桉凋落叶的方法,模拟巨桉凋落叶化感物质自然释放过程,分别设置0、20、40、80、120g/盆等5个巨桉凋落叶施用水平,选择受体作物小白菜进行盆栽控制实验。【结果】随着巨桉凋落叶施用量的增加,小白菜的各种色素含量显著下降,叶绿素a降幅最大,最高处理量(120g/盆)的小白菜叶绿素a比对照降低了67.3%;Pn-PAR曲线和Pn-Ci曲线的曲角也不断减小,光饱和下AQY、Pmax、Lsp、Lcp、Rd以及CO2饱和下CE、Pmax、Rp等拟合参数也呈总体降低的趋势,Ccp逐渐升高,Csp无明显规律;光适应下Fo'、Fm'、Fs、Fv'/Fm'、ΦPSⅡ、qP、qN等叶绿素荧光参数值也显著下降,80和120g/盆两个处理与对照差异显著(P<0.05)。【结论】巨桉凋落叶分解初期释放的化感物质显著地抑制了小白菜的光合作用,表现出明显的光抑制特征,光反应系统受到损害。  相似文献   

12.
13.
14.
不同森林凋落叶混合分解试验研究   总被引:2,自引:1,他引:2  
采用尼龙分解袋的方法,对四川岷江上游地区连香树、云南松、糙皮桦和云杉4种典型人工林凋落叶进行田间混合分解试验。结果表明,糙皮桦与云杉、糙皮桦与云南松、连香树与云南松凋落叶混合后对分解有明显的促进作用,而连香树与云杉凋落叶的混合对分解的促进作用不明显。此外,放置在阔叶林地的针阔混合凋落叶分解速率较之放置在针叶林地的快,证明阔叶林地环境有利于凋落叶的分解。因此得出营造云南松和糙皮桦、云南松和连香树、云杉和糙皮桦混交林来改善凋落叶分解状况及土壤肥力、防止纯林造成的土壤极化是可行的。  相似文献   

15.
采用野外分解网袋法对沿海沙地9年生厚荚相思(Acacia crassicarpa)和木麻黄(Casuarina equisetifolia)林分凋落叶的分解速率和养分释放进行了研究。结果表明:厚荚相思和木麻黄凋落叶6-8月分解速率最快,但残留率差异不显著(p>0.05)。用Olson衰减指数模型推算分解50%和95%所需时间,厚荚相思为1.10 a和4.73 a,木麻黄为1.14 a和4.93 a。2种凋落叶N、P和Ca元素在分解末期的质量分数均高于初始质量分数,C、K和Mg均低于初始质量分数。凋落叶分解速率与C、Mg初始质量分数、C/N和C/P比呈极显著负相关(p<0.01),与N、P初始质量分数呈极显著正相关,与K质量分数呈显著负相关(p<0.05),与Ca初始质量分数呈显著正相关。在滨海沙地2种凋落叶各营养元素在分解末期均表现出释放特征,厚荚相思凋落叶养分总释放率K>Mg>C>Ca>N>P,木麻黄则为Mg>K>C>Ca>N>P。厚荚相思凋落叶N、P质量分数高,养分净释放相对较多,可以作为改造沿海沙地木麻黄纯林的混交树种。  相似文献   

16.
朱宏光  赵金龙  温远光  侯日华 《安徽农业科学》2010,38(31):17568-17570,17584
[目的]为构建尾叶桉和巨尾桉叶面积优化测算模型。[方法]以尾叶按和巨尾桉为研究对象,对其叶面积与几个叶形特征值的相关性进行了研究。[结果]2个树种的叶形特征值存在一定差异,各自的叶面积与叶长、叶宽、叶周长、叶长×叶宽、叶的长宽比、形状因子等均存在显著性相关,可以与叶面积构建回归模型。其中,利用尾叶桉和巨尾桉的叶长×叶宽值构建的2个叶面积测算模型效果最好,具有较高的精度和实际应用价值。[结论]该研究为这2个树种的研究提供了一种简便有效的叶面积测算方法。  相似文献   

17.
针对北京九龙山林下凋落叶分解缓慢、极易导致火灾发生等问题,采用凋落物分解袋法研究不同分解促进剂对凋落叶分解过程的影响.采用尿素(N)、益生菌(EM)、饲用复合酶制剂(S)及本地真菌环炳菇(Lepiota)(以下用F.L表示)和杯伞(Clitocybe)(以下用F.C表示)对栓皮栎、油松凋落叶及栓皮栎与油松1∶1的混合凋落叶进行研究.结果表明:(1)喷施分解促进剂后,各种类型凋落叶分解速率差异较大,栓皮栎分解最快,栓皮栎与油松的混合凋落叶次之,油松分解最慢.(2)经过18个月的分解,栓皮栎与油松的混合凋落叶在F.L处理下,失重率最大,达到37.9%;栓皮栎凋落叶在F.C处理下,失重率最大,达到38.7%;油松凋落叶在S处理下失重率达32.9%,这3种处理下的凋落叶失重率均显著高于对照组(P0.05).(3)通过指数模型回归分析可以看出,栓皮栎凋落叶在F.C处理下分解最快,95%分解时间为10.0 a;栓皮栎与油松混合凋落叶在F.L处理下分解最快,95%分解时间为12.5 a;油松凋落叶在S处理下分解最快,95%分解时间为13.3 a.说明分解促进剂对凋落叶分解有一定的促进作用,但不同类型凋落叶所适用的分解促进剂也不同.针对不同类型凋落叶,选出分解凋落叶最快的促进剂种类,对减少森林火灾有一定意义.  相似文献   

18.
微量元素对尾叶桉幼林生长的影响   总被引:4,自引:0,他引:4  
为研究桉树的微营养,在花岗岩发育的严重水土流失立地上开展了尾叶桉施肥试验.结果表明:微量元素的缺乏不同程度地影响了尾叶桉的生长,特别是硼素的缺乏.在施用大量元素肥料的同时,硼的添加使得尾叶桉生长显著加快;4.5年生时,全素肥料处理的尾叶桉胸径、树高生长是缺硼处理的230.2%和173.5%.在不添加硼素的情况下,不仅严重影响了生长,同时表现出典型的硼素缺乏症状:枝条组织坏死成肿瘤状,叶腋间可见丛状腋芽,枝条和干型畸形生长.  相似文献   

19.
人工林凋落叶分解对土壤性质的影响   总被引:2,自引:0,他引:2  
【目的】研究人工林凋落叶分解对土壤性质的影响,为防止土壤退化、增加土壤肥力提供理论指导。【方法】采集四川岷江流域上游的4种(连香树(Cercidiphyllum japonicum)、云南松(Pinus yunnanensis)、糙皮桦(Betula1 utilis)和云杉(Picea asperata))林木凋落叶及林地土壤样品,通过对当年凋落叶进行240 d室内分解培养试验,探讨不同凋落叶在分解过程中对土壤性质的影响。【结果】云杉和云南松凋落叶分解使土壤pH值降低,糙皮桦和连香树凋落叶分解使土壤pH值增加;4种凋落叶分解过程中,土壤有机质和全氮含量,土壤微生物量C、N以及4种土壤酶(蔗糖酶、过氧化氢酶、脲酶和蛋白酶)活性均有所增加。【结论】土壤有机质、全N、微生物量、酶活性增加的幅度与凋落叶分解速率及养分释放率有密切关系,凋落叶分解的越快,土壤状况改善的越明显。  相似文献   

20.
以滨海沙地典型人工防护林纹荚相思和木麻黄的凋落物为对象,采用网袋法研究凋落物单独分解和不同配比组合混合分解360 d后的干质量剩余率的动态变化。结果表明:凋落物干质量剩余率,受分解时间、配比以及分解时间和配比交互的影响显著(P0.05)。不同人工林下不同树种及不同处理的凋落物干质量剩余率有所差异,凋落物干质量剩余率由大到小顺序均为:A处理、C处理、D处理、B处理、E处理,分解速度均为先快后慢。纹荚相思人工林和木麻黄人工林不同处理凋落物分解360 d后,凋落物干质量剩余率分别为43.38%~54.58%和40.86%~52.42%,Olson指数衰减模型的分解系数分别为0.647~0.895和0.755~0.888,半衰期(凋落物分解50%所需的时间)分别为0.774~1.071 a和0.781~0.918 a,周转期(凋落物分解95%所需的时间)分别为3.347~4.630 a和3.374~3.968 a。从分解速率来看,E处理(m(纹荚相思)∶m(木麻黄)=2∶1)的分解为最佳组合,建议在土壤养分贫瘠的滨海沙地营林过程中,营造该比例混交林来加快林下凋落物分解,促进土壤改善养分状况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号