首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many studies have documented that hatchery‐reared salmonids generally have inferior survival after being stocked compared with wild conspecifics, hatchery and wild salmonids have been observed to differ in their antipredator responses. The response of brown trout (Salmo trutta) juveniles (0+) of differing backgrounds to a live predator was compared in two experiments. First, the antipredator behaviour of predator‐naïve hatchery‐reared brown trout and wild‐exposed brown trout were assessed in behavioural trials which lasted for eight days. Second, predator‐naïve and predator‐conditioned hatchery‐reared brown trout were assessed in identical behavioural trials. Brown trout were ‘predator‐conditioned’ by being held in a stream‐water aquarium with adult Atlantic salmon (Salmo salar) and adult brown trout for two days prior to behavioural trials. Predator‐conditioned hatchery‐reared brown trout spent more time in shelters in the trial aquaria than predator‐naïve hatchery‐reared fish, but did not differ in time spent in the predator‐free area. Predator conditioning may account for the increased time spent in the shelter, but does not appear to have affected time spent in the predator‐free area. However, even if significant alteration in behaviour can be noted in the laboratory, the response might not be appropriate in the wild.  相似文献   

2.
The effect of habitat on the growth and diet of brown trout, Salmo trutta L., stocked at the same densities in nine stream enclosures, comprising three habitat types of different quality, were tested. The habitats, which were created based on microhabitat preference data, were a shallow water habitat lacking cobbles (habitat 1), a deeper, mixed cobble-bottomed (128-384 mm diameter) habitat (habitat 2) and a large cobble-bottomed (256-384 mm) habitat of intermediate depth (habitat 3). Brown trout were found to have greater increases in total biomass in habitats 2 and 3 than in habitat 1. The pattern for length did not follow that of biomass as trout had greater increases in total length in habitat 2 than in the other two habitats. Biomass of food in trout diets reflected habitat-specific fish biomass changes, with a greater total biomass of prey as well a greater biomass of the leech, Erpobdella, in habitats 2 and 3 than in habitat 1. There were no habitat-specific differences in the biomass of benthic or drifting invertebrates in the enclosures, with the exception of a tendency for an effect of habitat on the biomass of Erpobdella. Although there may have been habitat-specific differences in food resources that were not detected, it is believed that the higher biomass growth in habitats 2 and 3 may have reflected differences in cover afforded by the deeper water and coarser substrates and/or improved foraging opportunities facilitated by the larger volumes of water in the deeper habitats in which the trout could search for prey.  相似文献   

3.
4.
Abstract –  We quantified the use of habitat patches by brown trout, Salmo trutta , during summer conditions in a plains stream in the western United States. A Global Positioning System was used to map discrete habitat patches (2–420 m2) consisting of macrophytes, wood accumulation, or deep water. Habitat use by brown trout was monitored by radio telemetry. Brown trout used habitat in a nonrandom manner with 99% of all daytime observations and 91% of all nighttime observations occurring in patches that consisted of combinations of deep water, wood accumulations or macrophytes even though such patches constituted only 9.8% of the available habitat. Brown trout used deep water almost exclusively during the day but broadened their habitat use at night. Most fish stayed within a large plunge pool created by a low-head dam. This pool supplemented the deep-water habitat that was naturally rare in our study area and illustrates how human modifications can sometimes create habitat patches important for stream fishes.  相似文献   

5.
The effects of biotic (density‐dependent) and environmental (flow and temperature) factors on the apparent survival, mean length and size variation of a low‐density brown trout population in the juvenile stage, that is, from their first summer (0+) to the end of the second year (1+), were determined. Apparent survival was negatively related to the age class density during the three periods (first summer, first winter and second summer). A significant interaction between the mean flow and 0+ density highlighted a gradient towards strong density dependence acting on fish loss (i.e., mortality or migration) with decreasing summer flow. Conversely, no density dependence was reported at higher mean flows. The mean length was determined by density‐dependent and density‐independent (temperature and flow) factors throughout the study period. The negative relationship between fish length and intracohort density was highly significant during the three periods. The yearling (1+) density was negatively related to 0+ fish length measured after the first summer, suggesting intercohort effects. A positive effect of temperature on fish length was observed. Mean length after the summer seasons (0+ and 1+ fish) was also positively related to mean flow. Fish size variation around the mean measured with the coefficient of variation (CV) increased with increasing 0+ densities, both at the end of the first summer and the first winter. Results suggested that density‐dependent and density‐independent factors acted jointly on apparent survival and growth with a predominance of biotic processes. We discussed the potential implications of density‐dependent regulations on growth and survival for population resilience after catastrophic events.  相似文献   

6.
The anadromous, or sea‐going, life history form of brown trout, or sea trout ( Salmo trutta), may lead to potential mixing of populations while foraging at sea. In this article, we assess the potential that multiple populations are using common semi‐enclosed estuaries and quantify the potential levels of straying (i.e. dispersal) of foreign‐produced individuals into populations by using otolith chemical signatures as natural ‘tags’. To do so, we created a database of juvenile fish otolith chemistry (a marker of freshwater production) from four rivers and compared the chemistry of harvested fish in two estuaries important to anglers, the Renews River and Chance Cove Brook, to the database. A discriminant function analysis revealed significant differences in the otolith chemistry of juvenile fish inhabiting the four rivers with a 97% cross‐validated accuracy when classifying individual juveniles to their natal river, indicating our baseline was robust. When assigning adults caught over 3 years (2007–2009) in the recreational fishery in the Renews River estuary, it was determined that over 95% of the fish caught each year originated from Renews River. In contrast, harvested fish in Chance Cove during 2009 were disproportionately comprised of fish produced in Renews River, suggesting the potential for source‐sink population dynamics in Newfoundland. Taken as a whole, these results indicate limited population mixing in nearshore estuaries of this region, but also highlight the potential for some populations to subsidise the harvest by anglers in different areas.  相似文献   

7.
Large and long‐lived piscivorous brown trout, Salmo trutta, colloquially known as ferox trout, have been described from a number of oligotrophic lakes in Britain and Ireland. The “ferox” life history strategy is associated with accelerated growth following an ontogenetic switch to piscivory and extended longevity (up to 23 years in the UK). Thus, ferox trout often reach much larger sizes and older ages than sympatric lacustrine invertebrate‐feeding trout. Conventional models suggest that Strutta adopting this life history strategy grow slowly before a size threshold is reached, after which, this gape‐limited predator undergoes a diet switch to a highly nutritional prey source (fish) resulting in a measurable growth acceleration. This conventional model of ferox trout growth was tested by comparing growth trajectories and age structures of ferox trout and sympatric invertebrate‐feeding trout in multiple lake systems in Scotland. In two of the three lakes examined, fish displaying alternative life history strategies, but living in sympatry, exhibited distinctly different growth trajectories. In the third lake, a similar pattern of growth was observed between trophic groups. Piscivorous trout were significantly older than sympatric invertebrate‐feeding trout at all sites, but ultimate body size was greater in only two of three sites. This study demonstrates that there are multiple ontogenetic growth pathways to achieving piscivory in Strutta and that the adoption of a piscivorous diet may be a factor contributing to the extension of lifespan.  相似文献   

8.
We investigated juvenile brown trout migration and mortality in a headwater tributary of the Motueka River, New Zealand, by tracking 1000 young‐of‐the‐year passive integrated transponder (PIT) tagged fish over autumn to summer to (i) partition total loss into emigration and mortality and (ii) determine the influence of season and flow on emigration. Fish were tracked using mobile and fixed PIT tag readers. Of the 1000 fish tagged, 173 remained within the Rainy River; emigration contributed 60% and mortality 29% to loss. Only 11% of fish tagged in autumn were predicted to remain in the upper reaches of the stream by early summer, and this agreed with density data collected in a parallel study. We identified a two‐phase downstream migration pattern with early movement of large young‐of‐the‐year fish in autumn (mainly during floods). This was followed by another substantial period of movement in spring (during floods and lower flows) by fish that were initially smaller at the time of PIT tagging. The management implications for damming and fish screening in headwater tributaries are discussed.  相似文献   

9.
Hafnia alvei was isolated in Bulgaria from healthy noble crayfish, Astacus astacus (L.), and then from farmed diseased brown trout, Salmo trutta L., with signs of haemorrhagic septicaemia. The isolates were identified initially with conventional phenotyping and commercial Merlin Micronaut and API 20E rapid identification systems, followed by sequencing of the 16S rRNA gene. Hafnia alvei Bt1, Bt2 and Aa4 were of low virulence to rainbow trout and brown trout, although cytotoxicity was demonstrated by Bt1 and Bt2, but not by Aa4.  相似文献   

10.
Abstract  Rehabilitation trials involving riparian fencing and limited pool excavation were conducted on the River Piddle and Devil's Brook, Dorset, England, which had been degraded by intensive riparian grazing. In one trial, based on two short (94 and 99 m) treated sections and two control sections, brown trout, Salmo trutta L., numbers were monitored from 1994 (pre-treatment) to 2000. In a second trial from 1996 (pre-treatment) until 2000, trout numbers were monitored in 900 m and 1400 m treated sections. After rehabilitation, juvenile trout numbers increased in the two short sections (Trial 1) but fell in one of the long sections. Adult numbers also increased markedly in the two short-treated sections relative to the controls and they increased markedly in one of the long sections despite a reduction in juveniles. Marking of trout in the short sections showed that they selected the rehabilitated habitat in preference to the control habitat and that immigration was the main source of adult trout, as it must also have been in the 1400 m section. While the results indicate that improvements can be made to adult trout habitat, more research is required on the impact on juvenile production before the impact of such work on the true population can be established.  相似文献   

11.
Abstract Rate of recapture (gill netting), habitat use, and diet of three strains of stocked brown trout, Salmo trutta L., were compared with resident brown trout in a Norwegian lake. The strains originated from an alpine lake, from a boreal lake, and from the native brown trout population in the lake. Overall recapture rate was 5–8% for all strains. The low recapture rate could be due to the relatively small size at stocking; mean fish length varied between 13.1 and 14.5 cm with strain and stocking method. Two years after release, the frequency of the different strains decreased from about 12% in the first year to stabilize at about 1%. The alpine strain showed the highest overall recapture rate, whereas the native strain was recaptured at an intermediate rate. The overall recapture rate of scatter-planted brown trout was higher than that of spot-planted brown trout. Immediately after being stocked, introduced fish ate less and had a less-varied diet than resident trout; however, stocked fish adopted a natural diet within the first summer. The distribution of trout between the pelagic and the upper epibenthic habitat was similar for both the resident and the stocked brown trout. Results indicate that the habitat use of stocked brown trout is adaptive and becomes similar to that of indigenous fish.  相似文献   

12.
Probiotic administration is associated with the enhancement of host resistance to environmental and nutritional stressors, improving survival and growth rates. This study was carried out to evaluate the effects of dietary supplementation of Bacillus subtilis and Bacillus cereus toyoi on growth performance, innate immune responses and gut morphology of two trout species feeding a commercial diet high in soybean meal. A commercial probiotic (4.2 × 109 CFU g?1 of additive) was supplemented to the experimental diets at 0% (control), 0.03% (P1; 6 × 103 CFU g?1 of diet) or 0.06% (P2; 1.5 × 106 CFU g?1 of diet) and fed to brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) for 9 and 20 weeks respectively. Rainbow trout showed significantly better growth performance than brown trout, regardless of the dietary treatment. No effect of dietary probiotic supplementation was detected on growth performance, body composition or innate immune parameters (plasma lysozyme, alternative complement and peroxidase activities). In both species, after 9 weeks, intestinal lamina propria and submucosa were widened, with increased presence of inflammatory cells, significantly higher in groups fed probiotics. This inflammatory process, with villi and enterocytes noticeably damaged compared with the control group, was more pronounced in brown trout. Under the current trial conditions, the B. subtilis + B. cereus toyoi had no positive impact in either trout species, on the contrary a harmful effect was observed.  相似文献   

13.
Abstract –  The interaction between brown trout ( Salmo trutta ; fork length (FL) range 255–390 mm) and inanga ( Galaxias maculatus ; FL range 55–115 mm) was tested during summer through autumn in an artificial stream consisting of a single run-riffle-pool sequence with a natural food supply. Each experimental trial lasted for 15 days, and consisted of two brown trout and 50 inanga collected fresh from a nearby stream, with each species given prior residence in four replicate tests, totalling eight trials in all. In addition, two control trials (each 10 days), with 50 inanga in each, were run. Brown trout almost exclusively occupied the pool, whereas inanga occupied all habitat types, although in different proportions, when tested with and without brown trout. The proportion of inanga in the pool was appreciably lower in the experimental trials with brown trout than in the control trials with no brown trout; prior residence had no significant effect on inanga habitat use. Mortality of inanga attributable to predation by brown trout ranged from 0 to 40% with a mean of 14.5 ± 4.7%. The results suggest that habitat use and survival of inanga populations in small streams can be adversely affected by brown trout.  相似文献   

14.
Abstract– Downstrcam displacement of salmonid fry due to flow increase, from 12–15 m3/s to >100 m3s, was documented in the river Suldalslåen, Western Norway. In May only fry of brown trout ( Sulmo trutta ) occurred in the drift, while from the beginning of June only newly emerged Atlantic salmon ( Sulmo sular ) were found. The maximum number of Atlantic salmon fry drifting during a single day was estimated to be 17 000 individual. Their density in the drift was higher during the night than during the day, and their appearance in the drift coincided with the predicted period of emergence. Total brown trout numbers in the drift were estimated to vary between 4000 and 16 000 per day. Fry displaced downstream from the lowermost part of the river were lost from the population. The total losses were estimated to be between 75 000 and 100 000 Atlantic salmon fry which represents between 5.6 and 11.1%) of juvenile mortality during the first year of life.  相似文献   

15.
A retrospective study was conducted using 250 clinical records of brown trout (Salmo trutta L.) with saprolegniosis by Saprolegnia parasitica, which had been collected from 8 rivers and 1 fish farm in the province of León (Spain). A geographic information system (GIS) was used to obtain skin lesion distribution patterns in males and females. Lesions in wild brown trout affected 15.31 ± 13.33% of the body surface, with a mean of 12.76 ± 6.56 lesions per fish. In addition, 51.23% of wild trout presented lesions with necrosis of the skin or fins. The pattern obtained when not distinguishing between sexes indicated that saprolegniosis lesions are mainly located above the lateral line and most frequently affect the dorsal cephalic region, the adipose fin, the peduncle and the caudal fin. However, differences were observed between males and females. Farmed trout presented a lower percentage of affected body surface (2.06 ± 4.36) and a lower number of lesions with and without necrosis because they received preventive treatment for saprolegniosis.  相似文献   

16.
Abstract – Cold water temperatures are widely supposed to reduce the food intake of stream salmonids. Although cold temperatures have been documented to reduce swimming ability, digestion and gastric evacuation rates, little is known about how temperature influences the ability of fish to capture prey. We examined the effects of water temperature on the prey capture probability of drift‐feeding juvenile brown trout (Salmo trutta) in a laboratory stream. Temperatures ranged between 5.7 °C and 14 °C. We found significant effects of water temperature on prey capture probability and capture manoeuvre time. The mean capture probability dropped from 96% at 14 °C to 53% at 5.7 °C. At 8 °C and higher temperatures, foraging performances did not differ much among treatments. We suggest that reduced swimming ability could be one of the most important mechanisms for the observed pattern of reduced prey capture probability at cold water temperatures, but prey detection limitations and predator avoidance may play a role. Our results will be of use for bioenergetics‐based drift‐foraging models, which to date have not incorporated a temperature‐dependent prey capture function.  相似文献   

17.
Gustafsson P, Bergman E, Greenberg LA. Functional response and size‐dependent foraging on aquatic and terrestrial prey by brown trout (Salmo trutta L.).Ecology of Freshwater Fish 2010: 19: 170–177. © 2010 John Wiley & Sons A/S Abstract – Terrestrial invertebrate subsidies are believed to be important energy sources for drift‐feeding salmonids. Despite this, size‐specific use of and efficiency in procuring this resource have not been studied to any great extent. Therefore, we measured the functional responses of three size classes of wild brown trout Salmo trutta (0+, 1+ and ≥2+) when fed either benthic‐ (Gammarus sp.) or surface‐drifting prey (Musca domestica) in laboratory experiments. To test for size‐specific prey preferences, both benthic and surface prey were presented simultaneously by presenting the fish with a constant density of benthic prey and a variable density of surface prey. The results showed that the functional response of 0+ trout differed significantly from the larger size classes, with 0+ fish having the lowest capture rates. Capture rates did not differ significantly between prey types. In experiments when both prey items were presented simultaneously, capture rate differed significantly between size classes, with larger trout having higher capture rates than smaller trout. However, capture rates within each size class did not change with prey density or prey composition. The two‐prey experiments also showed that 1+ trout ate significantly more surface‐drifting prey than 0+ trout. In contrast, there was no difference between 0+ and ≥2+ trout. Analyses of the vertical position of the fish in the water column corroborated size‐specific foraging results: larger trout remained in the upper part of the water column between attacks on surface prey more often than smaller trout, which tended to seek refuge at the bottom between attacks. These size‐specific differences in foraging and vertical position suggest that larger trout may be able to use surface‐drifting prey to a greater extent than smaller conspecifics.  相似文献   

18.
Abstract –  Downstream movement of a wild population of brown trout was examined in a small Danish stream in relation to morphological and physiological smolt status from March to May. Downstream movement was monitored in a Wolf-type trap covering all possible passage routes in the stream. Trout caught in the trap were classified as parr, pre-smolt or smolt based on morphological criteria and compared with trout randomly caught by electrofishing upstream of the trap. Representative gill samples from trap-caught and electrofished trout were analysed for gill Na+, K+-ATPase activity and used as a measure of physiological smolt status. Only a few parr occurred in the trap. Few pre-smolts occurred in the trap evenly in March and early April. In late April, pre-smolt movement peaked. By comparison, the main downstream movement of smolts occurred in distinct peaks through late March and April. The majority of fish caught in the trap were judged as pre-smolts or smolts based on morphological criteria's and they were characterised by relatively high gill Na+, K+-ATPase activity compared with trout judged as parr. Trout caught by electrofishing upstream the trap, were classified as parr, pre-smolts and smolts early in the season (March). During and after the main smolt-run in April the distribution of the remaining trout in the brook became skewed in favour of pre-smolt and parr. The study suggests that smolting trout initiate downstream movement once having reached a certain physiological smolt condition (judged by increased gill Na+, K+-ATPase activity).  相似文献   

19.
20.
The recruitment of anadromous brown trout smolt from a small Baltic stream, frequently exposed to summer drought, was quantified for 9 years, and the effect from drought on smolt number and age composition analysed. Drought was quantified by, (a) a newly developed index quantifying the severity of summer drought (Drought Severity Index—DSI—based on amount of precipitation, monthly mean temperature and number of hours with sun), and (b) the amount of precipitation. Both DSI and precipitation were measured 1 or 2 years prior to emigration. We found highly significant (negative) relations between DSI (1 year before emigration) and both the total number of smolt, and the number of age 1 smolt. In addition, precipitation was (positively) related to total number of smolt, but DSI proved to be a stronger predictor compared to precipitation. In addition to drought, our results support a negative influence from older parr on the survival of age 0 trout. Our results indicate that recruitment of brown trout smolt from streams, regularly affected by summer drought, may be predicted approx. 6 months before the actual emigration the following spring. This offers an opportunity for managers to adapt protective measures in accordance with local and temporal changes in recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号