首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Identifying cross‐scale patterns of ecological processes is imperative, especially in hierarchically structured riverine ecosystems. The role of abiotic factors in determining cross‐scale spatial structure of stream fish populations and communities is well studied, but less is known about how species traits drive cross‐scale patterns. We investigated the role of species traits for explaining autocorrelation of stream fish abundance at spatial scales ranging from local stream reaches to major basins. We calculated intraclass correlation coefficients (ICCs) representing abundance autocorrelation within species (N = 47) at each of five spatial scales. A hierarchical Bayesian regression then modelled ICCs against spatial scale with the resulting regression coefficients modelled as functions of species traits. Finally, we ordinated the scale‐by‐species ICC matrix to calculate an overall metric describing species whose abundances were autocorrelated along a gradient of large to small scales, and modelled this metric as a function of species traits. Abundances of most species were autocorrelated at smaller spatial scales. Maximum fecundity had a significant positive relationship with abundance patterns across spatial scales. Species habitat affinities and body forms were significantly associated with overall abundance patterns across spatial scales: populations of upland/lotic‐affiliated species adapted to streams with high flow correlated at small (≤10 km2) spatial scales. Lowland/lacustrine species with laterally compressed bodies showed little correlation across scales. The appropriate spatial scale for modelling abundance is determined not only by exogenous (e.g. environmental) factors, but also endogenous factors, like traits. Careful consideration of traits and life history will aid researchers in designing more effective and efficient surveys and analyses.  相似文献   

2.
Streams are under environmental pressures acting at different scales that influence the ecological organisation of their fish assemblages. However, the relative influence of the different scale‐related variables on assemblage composition and function is poorly understood. We evaluated the importance of local‐ and catchment‐scale environmental variables, as well as the spatial structure of the sampling sites, in shaping fish assemblages in Atlantic Forest streams. Local‐scale variables were those measured at the sampling sites, describing the local habitat conditions (e.g. depth, substrate type, altitude). Catchment‐scale variables were those integrating the upstream landscape of the sampling sites (e.g. catchment land use). Spatial distances were calculated from watercourse distance using principal coordinates of neighbour matrices. Altogether, 28 local and seven catchment variables were initially subjected to two processes of eliminating co‐linearity. Redundancy analysis was applied to the three matrices (spatial, local and catchment) to quantify the variance in the structure of the fish assemblages explained by each matrix. Local variables explained more variability in both taxonomic and functional assemblage structure, than catchment and spatial variables. Local variables also changed along the longitudinal gradient, which consequently influenced fish assemblage structure. This pattern was also influenced by anthropogenic alteration and non‐native species, which were more abundant in downstream sites. These results highlight the need to assess Atlantic Forest streams under different environmental scales, especially through the use of quantitative local‐scale metrics, and to consider the effects of longitudinal patterns in structuring fish assemblages when developing and implementing monitoring programmes, impact studies and conservation plans.  相似文献   

3.
Montaña CG, Winemiller KO. Local‐scale habitat influences morphological diversity of species assemblages of cichlid fishes in a tropical floodplain river.
Ecology of Freshwater Fish 2010: 19: 216–227. © 2010 John Wiley & Sons A/S Abstract – We examined the taxonomic and morphological diversity of cichlid fish assemblages in a floodplain river in Venezuela during the dry season at two spatial scales: macrohabitats (lagoons, main channels and creeks) and mesohabitats (leaf litter, sand banks, rocky shoals and woody debris). Nonmetric multidimensional scaling did not reveal differences for species assemblages among macro and mesohabitats. The first two axes from canonical correspondence analysis based on 19 species and six physical variables modelled >61% of the taxonomic variation in assemblages from rock shoals and woody debris, and 55% of variation in assemblages from sand banks and leaf litter. Principal components analysis based on 22 morphological variables yielded two dominant axes that explained >86% of variation in the cichlid assemblages. Morphological diversity was analysed to test the idea that assemblage structure is nonrandom, with structurally complex habitats supporting more species with more functional morphological diversity than simple habitats. Average and standard deviation (SD) of the morphological Euclidean distances of local assemblages among mesohabitats tended to decrease or be constant as the number of species increased. Regressions of the average nearest neighbour distance (NND) and SD of NND with species richness resulted in low and negative slopes of species assemblages among mesohabitats. These relationships suggest that when more species are added to a habitat patch, assemblage morphospace remains approximately constant, species average similarity increases and species dispersion in morphological space becomes more uniform. Results support that cichlids partition habitat at the local scale but not at the macrohabitat scale.  相似文献   

4.
Climate change is resulting in rapid poleward shifts in the geographical distribution of many tropical fish species, but it is equally apparent that some fishes are failing to exhibit expected shifts in their geographical distribution. There is still little understanding of the species‐specific traits that may constrain or promote successful establishment of populations in temperate regions. We review the factors likely to affect population establishment, including larval supply, settlement and post‐settlement processes. In addition, we conduct meta‐analyses on existing and new data to examine relationships between species‐specific traits and vagrancy. We show that tropical vagrant species are more likely to originate from high‐latitude populations, while at the demographic level, tropical fish species with large body size, high swimming ability, large size at settlement and pelagic spawning behaviour are more likely to show successful settlement into temperate habitats. We also show that both habitat and food limitation at settlement and within juvenile stages may constrain tropical vagrant communities to those species with medium to low reliance on coral resources.  相似文献   

5.
Stream fish distributions are commonly linked to environmental disturbances affecting terrestrial landscapes. In Great Plains prairie streams, the independent and interactive effects of watershed impoundments and land cover changes remain poorly understood despite their prevalence and assumed contribution to declining stream fish diversity. We used structural equation models and fish community samples from third‐order streams in the Kansas River and Arkansas River basins of Kansas, USA to test the simultaneous effects of geographic location, terrestrial landscape alteration, watershed impoundments and local habitat on species richness for stream‐associated and impoundment‐associated habitat guilds. Watershed impoundment density increased from west to east in both basins, while per cent altered terrestrial landscape (urbanisation + row‐crop agriculture) averaged ~50% in the west, declined throughout the Flint Hills ecoregion and increased (Kansas River basin ~80%) or decreased (Arkansas River basin ~30%) to the east. Geographic location had the strongest effect on richness for both guilds across basins, supporting known zoogeography patterns. In addition to location, impoundment species richness was positively correlated with local habitat in both basins; whereas stream‐species richness was negatively correlated with landscape alterations (Kansas River basin) or landscape alterations and watershed impoundments (Arkansas River basin). These findings suggest that convergences in the relative proportions of impoundment and stream species (i.e., community structure) in the eastern extent of both basins are related to positive effects of increased habitat opportunities for impoundment species and negative effects caused by landscape alterations (Kansas River basin) or landscape alterations plus watershed impoundments (Arkansas River basin) for stream species.  相似文献   

6.
Abstract – In this study, we investigated how taxonomic and functional diversity of fish communities is influenced by forest cover and mesohabitat types in Neotropical lowland streams. We sampled fish fauna of 126 five‐metre‐long mesohabitats using an electrofishing unit in forested (n = 3) and deforested (n = 3) streams in the upper Paraná River basin, south‐eastern Brazil. According to velocity and depth, three mesohabitat types have been considered: riffles (shallow and fast‐flowing habitat), pools (deep and slow‐flowing habitat) and runs (intermediate depth and velocity). Seven functional traits and 27 trait categories related to ecological, behavioural and life‐history aspects of fish were considered. Our results indicate that forest cover and mesohabitat type influence fish communities in different ways. Whereas deforestation affects communities primarily through changes in diversity (functional and taxonomic), mesohabitat types determine changes in the functional composition. The increased diversity in deforested mesohabitats is driven by a decrease in species turnover among habitat patches within streams. This can be attributed to new feeding opportunities and microhabitat availabilities in deforested streams so favours the occurrence of species having a particular set of traits, indicating a strong habitat–trait relationship.  相似文献   

7.
  • 1. One of the goals for Natura 2000, a key European Community programme of nature conservation, is to produce a network of protected areas. An analysis of the Natura 2000 marine sites proposed in the most recently agreed list for the Atlantic region (northern Portugal to Denmark, n=298) was used to characterize the network in terms of site areas and inter‐site distances. Sites were considered as part of the network when they included any of the marine Natura 2000 Annex I habitat types found in the Atlantic region (excluding lagoons).
  • 2. The median size of individual sites was 7.6 km2 with a median separation among neighbouring sites of 21 km (range 2–138 km).
  • 3. A connectivity analysis was used to identify the potential reliance of species on areas of habitat outside the proposed network. This analysis was based on the assumptions that: (a) species with low dispersal capacity will persist in sites when local reproductive effort sustains the resident population and (b) greater dispersal scale will link sites in the network, but implies a greater loss of recruits from the local population. For intermediate dispersal scales (2–20 km), at least half of the proposed sites are likely to be both too small and too isolated to support populations in the network. The conservation of intermediate dispersers in such sites may therefore be more dependent on habitat outside the network than is the case for other dispersal capabilities. Species with both dispersal scales above 20 km and low habitat specificity may have a metapopulation structure with exchange of dispersing individuals occurring among protected sites. Species with increasing degrees of habitat specificity will need dispersal scales greater than 20 km to avoid dependence on areas outside the proposed network.
  • 4. Most sections of the Atlantic region coastline contain proposed Nature 2000 sites. An analysis of site area and average isolation at the 1° latitude by 1° longitude scale indicated that relatively well designated sections (in terms of area and site spacing) of the coast were interspersed with less well designated sections. Analyses of overall habitat availability and population genetic studies are required to assess the significance of varying levels of protection at this scale.
Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract – Effects of environmental or landscape factors on species composition, species richness and complexity of fish assemblages were examined using our collections of fish from 65 sites on streams in 13 drainages across the midwestern United States. Effects of environmental factors were examined at three scales: broad geographic factors included drainage, latitude, and longitude; local terrestrial factors included features of the riparian zone adjacent to the collecting site as well as local climate and land use; within-stream aquatic factors related to structure and hydrology of the stream reach sampled. Each assemblage property was examined for its relationship to factors at each scale separately, and then for relative importance of all factors found to be significant in the separate analyses. Assemblage composition (summarized as sample scores on two axes of a detrended correspondence analysis) varied significantly as a function of factors at all three scales when each scale was considered separately. With simultaneous consideration of all scales, however, only broad geographic factors (particularly latitude) and local terrestrial factors explained significant variation in assemblage composition. Species richness (the number of species we captured) was explained by longitude and within-stream aquatic factors both when considered separately and together. Assemblage complexity (quantified as slope of relative abundance versus rank abundance) was only related to within-stream aquatic factors. Assemblage composition and emergent assemblage properties (richness and complexity), therefore, were explained by factors acting at different scales. The total variation explained for assemblage composition was much greater than that explained for emergent assemblage properties, suggesting that assemblage composition may vary more as a function of environmental and landscape factors than do species richness and complexity. NOTE  相似文献   

9.
10.
  • 1. The imminent damming of the Odelouca River, an intermittent Mediterranean river situated in the south‐west Algarve region of Portugal with valuable stands of riparian vegetation, has called for the compulsory implementation of compensatory measures.
  • 2. In order to assess the primary environmental and human factors that drive change in the benthic macroinvertebrate assemblages of the Odelouca, and the spatial scale at which they occur, 30 sites were sampled for benthic macroinvertebrates and extensively surveyed using River Habitat Survey (RHS) in spring 2005.
  • 3. A hierarchical cluster analysis of selected physical and RHS variables clearly indicated gradients of habitat quality (instream and riparian corridor) along both main channel and tributaries. Analysis of macroinvertebrate metrics by parametric and non‐parametric ANOVA showed the derived clusters of groups to be biologically distinct.
  • 4. From a total of 64 variables, divided into two explanatory variable groups (environmental or pressure) over three spatial scales (habitat, reach and basin), just 20, predominantly environmental, variables were retained for subsequent analyses.
  • 5. Partial canonical correspondence analyses of the selected environmental and pressure variables over the defined spatial scales showed that environmental variables contributed most significantly over all of the spatial scales and that pressure variables related to land‐use only contributed significantly at the level of the river basin.
  • 6. Variables recorded by RHS contribute successfully to the detection of habitat quality gradients in a Mediterranean river system and the strongest drivers of macroinvertebrate change are primarily, but not exclusively, environmental factors occurring at middle and higher spatial scales.
  • 7. Compensatory measures must therefore be implemented across a range of spatial scales, taking into account abiotic and biotic processes characteristic of disturbance‐driven Mediterranean systems that contribute to habitat heterogeneity and quality and confer functional and trophic diversity to the macroinvertebrate assemblages.
Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The ecosystem size/trophic structure hypothesis predicts that the shape of body size distributions will change with ecosystem size because of increases in the relative importance of large, predatory, species. I test the hypothesis by examining the statistical moments, as measures of shape, of species body size distributions of North American freshwater fish assemblages in lakes. Species lists, coupled with dietary and body size information, are used to document the patterns. Body size distributions in small lakes are unimodal and right‐skewed, but distributions become more symmetrical and bimodal in large ecosystems. In small lakes, body sizes are generally small and fish trophic levels low, but size and trophic level increase up to lake volumes of about 0.001 km3, and change little in larger lakes. Adding trophic level to the analysis greatly improves the variance explained by the body size–lake size relation. The conclusions of Griffiths (2012, Global Ecology & Biogeography 21: 383‐392), that postglacial recolonisation and evolutionary change are important determinants of body size distributions at regional and larger scales, are combined with those of this study. Mean body size in local assemblages of lake‐dwelling species is larger than in regional and continental ones. Overall, body size distributions are affected by processes operating at a variety of spatial and temporal scales, with the type, size and duration of the ecosystem probably playing a central role by influencing the proportions of vagile and predatory species, the species which dominate the large size mode.  相似文献   

13.
14.
Salmon from different locations in a watershed can have different life histories. It is often unclear to what extent this variation is a response to the current environmental conditions an individual experiences as opposed to local‐scale genetic adaptation or the environment experienced early in development. We used a mark–recapture transplant experiment in the Shasta River, CA, to test whether life‐history traits of juvenile Chinook salmon Oncorhynchus tshawytscha varied among locations, and whether individuals could adopt a new life history upon encountering new habitat type. The Shasta River, a Klamath River tributary, has two Chinook salmon spawning and juvenile rearing areas, a lower basin canyon (river km 0–12) and upper basin spring complex (river km 40–56), characterised by dramatically different in‐stream habitats. In 2012 and 2013, we created three experimental groups: (i) fish caught, tagged and released in the upper basin; (ii) fish caught at the river mouth (confluence with the Klamath River, river km 0), tagged and released in the upper basin; and (iii) fish caught at the river mouth, tagged and released in the lower basin. Fish released in the upper basin outmigrated later and at a larger size than those released in the lower basin. The traits of fish transplanted to the upper basin were similar to fish originating in the upper basin. Chinook salmon juvenile life‐history traits reflected habitat conditions fish experienced rather than those where they originated, indicating that habitat modification or transportation to new habitats can rapidly alter the life‐history composition of populations.  相似文献   

15.
16.
Wood in streams functions as fish habitat, but relationships between fish abundance (or size) and large wood in streams are not consistent. One possible reason for variable relationships between fish and wood in streams is that the association of fish with wood habitat may depend on ecological context such as large‐scale geomorphology. We studied the relationship between salmonid assemblages and large wood jams (LWJ) in four settings that differed geomorphically at the scale of the stream corridor along a tributary to Lake Superior in old‐growth conifer–hardwood forest in northern Michigan. The focal fish species of this study were brook trout (Salvelinus fontinalis), which were wild in the stream. Relocation efforts for coaster brook trout (an adfluvial life history variant of brook trout) were ongoing in the study stream. We measured fish abundance and length in pairs of pools of similar size and substrate, but varying in the presence of LWJ; this allowed us to evaluate associations of fish simply with the presence of LWJ rather than with other channel or flow‐shaping functions of LWJ. The length of Oncorhynchus spp. and young introduced brook trout was not strongly correlated with LWJ presence; however, the presence of LWJ in pools was positively correlated with larger wild brook trout. We also found that the correspondence of LWJ with the abundance of salmonids appears to be moderated by the presence of alternative habitat in this relatively natural, old‐growth forest stream.  相似文献   

17.
Characterization of food web structure may provide key insights into ecological function, community or population dynamics and evolutionary forces in aquatic ecosystems. We measured stable isotope ratios of 23 fish species from the Rio Cuareim, a fifth‐order tributary of the Rio Uruguay basin, a major drainage of subtropical South America. Our goals were to (i) describe the food web structure, (ii) compare trophic segregation at trophic guild and taxonomic scales and (iii) estimate the relative importance of basal resources supporting fish biomass. Although community‐level isotopic overlap was high, trophic guilds and taxonomic groups can be clearly differentiated using stable isotope ratios. Omnivore and herbivore guilds display a broader δ13C range than insectivore or piscivore guilds. The food chain consists of approximately three trophic levels, and most fishes are supported by algal carbon. Understanding food web structure may be important for future conservation programs in subtropical river systems by identifying top predators, taxa that may occupy unique trophic roles and taxa that directly engage basal resources.  相似文献   

18.
19.
  • 1. The coralligenous habitat was studied at the large Mediterranean scale, by applying a standardized, non‐destructive photo‐sampling protocol, developed in the framework of the CIGESMED project.
  • 2. The results provided evidence to support the following statements: (a) the assemblage pattern is not homogeneously distributed across the four Mediterranean ecoregions studied (biotic gradients hypothesis); and (b) the assemblage pattern does not change significantly when the information is aggregated to higher taxonomic levels (taxonomic sufficiency hypothesis).
  • 3. Surrogate taxonomic categories higher than species, such as genus and family, can be used to reveal the multivariate pattern of the coralligenous assemblages.
  • 4. Although preliminary at the pan‐Mediterranean scale, these outcomes set the scene for future comparisons as more data sets become available but also for comparisons between taxonomic and functional patterns.
  相似文献   

20.
Species distribution models are commonly used to determine a species’ probability of occurrence but have not been used to examine the effect of environmental habitat suitability on fish condition, which is considered to be an integrated measure of physiological status. Here, we test for a relationship between oceanographic habitat suitability and the body condition of kingfish (Seriola lalandi) from eastern Australia. We (a) test whether individuals sampled from areas of high‐quality habitat were in better condition than individuals sampled from areas of low‐quality habitat, and (b) assess whether the condition of kingfish responded to oceanographic habitat suitability predicted at varying time‐before‐capture periods. Kingfish habitat was modelled as a function of sea surface temperature, sea‐level anomaly and eddy kinetic energy in a generalized additive modelling framework. Model predictions were made over one‐ to six‐week time‐before‐capture periods and compared to field‐derived kingfish condition data measured using bioelectrical impedance analysis. Oceanographic habitat suitability was significantly correlated with kingfish condition at time‐before‐capture periods ranging from one to four weeks and became increasingly correlated at shorter lead‐times. Our results highlight that (a) fish condition can respond sensitively to environmental variability and this response can be detected using oceanographic habitat suitability models, and (b) climate change may drive extensions in species range limits through spatial shifts in oceanographic habitat quality that allow individuals to persist beyond historical range boundaries without their body condition being compromised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号