首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.
The reintroduction of beaver (Castor canadensis) into arid and semi‐arid rivers is receiving increasing management and conservation attention in recent years, yet very little is known about native versus non‐native fish occupancy in beaver pond habitats. Streams of the American Southwest support a highly endemic, highly endangered native fish fauna and abundant non‐native fishes, and here we investigated the hypothesis that beaver ponds in this region may lead to fish assemblages dominated by non‐native species that favour slower‐water habitat. We sampled fish assemblages within beaver ponds and within unimpounded lotic stream reaches in the mainstem and in tributaries of the free‐flowing upper Verde River, Arizona, USA. Non‐native fishes consistently outnumbered native species, and this dominance was greater in pond than in lotic assemblages. Few native species were recorded within ponds. Multivariate analysis indicated that fish assemblages in beaver ponds were distinct from those in lotic reaches, in both mainstem and tributary locations. Individual species driving this distinction included abundant non‐native green sunfish (Lepomis cyanellus) and western mosquitofish (Gambusia affinis) in pond sites, and native desert sucker (Catostomus clarkii) in lotic sites. Overall, this study provides the first evidence that, relative to unimpounded lotic habitat, beaver ponds in arid and semi‐arid rivers support abundant non‐native fishes; these ponds could thus serve as important non‐native source areas and negatively impact co‐occurring native fish populations.  相似文献   

3.
Non‐native fishes are frequently used to enhance aquaculture and fisheries; if introduced into the wider environment, then the majority will have negligible effects on native biodiversity. However, a minority will become invasive, causing adverse ecological effects, and so management actions may be needed to minimize their dispersal and impacts. These actions include eradication attempts from specific waters or well‐defined spatial areas, population control by suppression (e.g. through removal programmes) and containment of existing populations to prevent their further spread. These remedial actions have generally only been undertaken across large spatial areas in developed countries; experience suggests a fundamental constraint is a lack of selective removal methods that target the non‐native fish species only. For example, eradication methods tend to be limited to low technology, ‘scorched‐earth’ techniques (e.g. biocide chemicals) whose use is generally constrained to relatively small and enclosed water bodies. Risk management of non‐native fishes should ensure that actions taken are commensurate with the level of risk posed by that species in the environment; although pre‐introduction risk assessment schemes have been developed, there remains a lack of decision support tools for post‐introduction situations. Although this inhibits the management of non‐native fishes in the environment, control programmes such as those against common carp Cyprinus carpio in Australia and topmouth gudgeon Pseudorasbora parva in England and Wales suggest there is potential for invasions to be managed and controlled within large spatial areas, even if their eradication may not be feasible.  相似文献   

4.
Abstract Non‐native lake trout, Salvelinus namaycush (Walbaum), threaten native salmonid populations in the western United States. Effective management of lake trout requires understanding movements within connected lake and river systems. This study determined the seasonal movements of subadult lake trout in the Flathead River upstream of Flathead Lake, Montana, USA using radio telemetry. The spatiotemporal distribution of lake trout in the river was related to water temperature. Lake trout were detected in the river primarily during autumn, winter and spring, when water temperatures were cool. By contrast, fewer were detected when temperatures were warmest during summer and during high spring flows. Downriver movements to Flathead Lake occurred throughout autumn and winter when water temperature decreased below 5 °C, and in late spring as water temperature rose towards 15 °C and river discharge declined following spring runoff. Upriver movements occurred primarily in October, which coincided with migrations of prey fishes. These results suggest that lake trout are capable of moving throughout connected river and lake systems (up to 230 km) and that warm water temperatures function as an impediment to occupancy of the river during summer. Controlling source populations and maintaining natural water temperatures may be effective management strategies for reducing the spread of non‐native lake trout.  相似文献   

5.
  • 1. Biological invasion theory predicts that the introduction and establishment of non‐native species is positively correlated with propagule pressure. Releases of pet and aquarium fishes to inland waters has a long history; however, few studies have examined the demographic basis of their importation and incidence in the wild.
  • 2. For the 1500 grid squares (10×10 km) that make up England, data on human demographics (population density, numbers of pet shops, garden centres and fish farms), the numbers of non‐native freshwater fishes (from consented licences) imported in those grid squares (i.e. propagule pressure), and the reported incidences (in a national database) of non‐native fishes in the wild were used to examine spatial relationships between the occurrence of non‐native fishes and the demographic factors associated with propagule pressure, as well as to test whether the demographic factors are statistically reliable predictors of the incidence of non‐native fishes, and as such surrogate estimators of propagule pressure.
  • 3. Principal coordinates of neighbour matrices analyses, used to generate spatially explicit models, and confirmatory factor analysis revealed that spatial distributions of non‐native species in England were significantly related to human population density, garden centre density and fish farm density. Human population density and the number of fish imports were identified as the best predictors of propagule pressure.
  • 4. Human population density is an effective surrogate estimator of non‐native fish propagule pressure and can be used to predict likely areas of non‐native fish introductions. In conjunction with fish movements, where available, human population densities can be used to support biological invasion monitoring programmes across Europe (and perhaps globally) and to inform management decisions as regards the prioritization of areas for the control of non‐native fish introductions.
© Crown copyright 2010. Reproduced with the permission of her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

6.
7.
Water resource development and non‐native species have been cited as primary drivers associated with the decline of native fishes in dryland rivers. To explore this topic, long‐term trends in the fish community composition of the Bill Williams River basin were studied over a 30‐year period (Arizona, USA). We sampled 31 sites throughout the basin that were included in fish surveys by Arizona Game and Fish in 1994–97 and the Bureau of Land Management in 1979–80. We found that non‐native species have proliferated throughout the entire basin, with greater densities in the lower elevations. Native species have persisted throughout most of the major river segments, but have experienced significant declines in frequency of occurrence and abundance in areas also containing high abundances of non‐native species. Next, we assessed the short‐term response of the fish assemblage to an experimental flood event from the system's only dam (i.e. Alamo Dam). In response to the flood, we observed a short‐term reduction in the abundance of non‐native species in sites close to the dam, but the fish assemblage returned to its preflood composition within 8 days of the event, with the exception of small‐bodied fish, which sustained lower postflood densities. Our findings demonstrate the importance of natural flow regime on the balance of native and non‐native species at the basin scale within dryland rivers and highlight minimal effects on non‐native fishes in response to short duration flood releases below dams.  相似文献   

8.
Diet interactions between native and non‐native fishes may influence the establishment of native species within their historical range (i.e., reintroduction). Therefore, we illustrated the food web structure of and followed the transition of the federally endangered humpback chub Gila cypha into a novel food web following translocation and determined the potential for a non‐native species, rainbow trout Oncorhynchus mykiss, to influence translocation success. Humpback chub and rainbow trout used resources high in the food web and assimilated similar proportions of native fishes, suggesting non‐native rainbow trout may occupy an ecological role similar to humpback chub. Subsequently, humpback chub may be well suited to colonise tributaries because of their ability to consume resources high in the food web. Additionally, diet partitioning may occur between all members of the fish community as indicated by separation in trophic niche space and little trophic overlap; although all species, particularly bluehead sucker Catostomus discobolus, used a broad range of food resources. Rainbow trout stomach content analysis corroborated stable isotope analysis and suggested rainbow trout diet consisted of aquatic and terrestrial macroinvertebrates, while larger rainbow trout (>120 mm total length) consumed a greater proportion of fish (incidence of piscivory = 5.3%). Trophic interactions may reveal an underutilized niche space or biotic resistance to the establishment of translocated native fishes. Continued translocation of humpback chub into tributaries appears to be one option for conservation. However, successful establishment of humpback chub may depend on continued removal of non‐native trout, increasing availability of diet sources at higher trophic levels.  相似文献   

9.
Tributaries of the Colorado River Basin, historically home to a complex of endemic omnivores collectively referred to as the ‘three species’; flannelmouth sucker (Catostomus latipinnis), bluehead sucker (C. discobolus) and roundtail chub (Gila robusta), have experienced the establishment of numerous non‐native fish species. In this study, we examine the impacts of the trophic ecology of non‐native fishes on the ‘three species’ in the San Rafael River, Utah, USA. We employ a suite of abundance comparisons, stable isotope techniques and size‐at‐age back‐calculation analyses to compare food web structure and growth rates of the ‘three species’ in study areas with and without established populations of non‐native species. We found that the ‘three species’ are more abundant in areas with few non‐native fishes present, regardless of habitat complexity. Stable isotope analyses indicate non‐native fishes lengthen the food chain by 0.5 trophic positions. Further, the trophic niche spaces of the native fishes shift and are narrower in the presence of non‐native fishes, as several non‐native species’ trophic niche spaces overlap almost entirely with each of the ‘three species’ (bluehead sucker and flannelmouth sucker 100%, roundtail chub 98.5%) indicating strong potential for competition. However, the ‘three species’ demonstrated no evidence of reduced growth in the presence of these non‐native fishes. Collectively, these results suggest that while non‐native fishes alter the food web structure presenting novel sources of predation and competition, mechanisms other than competition are controlling the size‐structure of ‘three species’ populations in the San Rafael River.  相似文献   

10.
Abstract– A few native and exotic fish species are caught frequently in Andean lakes and reservoirs of northwestern Patagonia. Puyen ( Galaxias maculatus ) prey on zooplankton and benthos. Percichthys trucha has a wide range of prey, mainly benthos, while P. colhuapiensis become piscivorous when grown. Pejerrey ( Odonthestes hatcheri ) is omnivorous and large size individuals can be piscivorous. A siluroid, Diplomystes viedmensis , preys on benthos, insects, and fishes. Introduced salmonids are potential piscivorous. The puyen is the major prey category among fishes. Salmonids and perchichtids seem to partially overlap their diets but predation on Diplomystes appears to be restricted to salmonids. Present abundance of puyen, pejerrey and Percichthys spp. does not indicate a strong salmonid effect. However, the low abundance of D. viedmensis does. We studied present predation relationships among native and introduced fishes and postulated possible effects upon native fish fauna.  相似文献   

11.
Competitive interactions with non‐native species can have negative impacts on the conservation of native species, resulting in chronic stress and reduced survival. Here, juvenile Atlantic salmon (Salmo salar) from two allopatric populations (Sebago and LaHave) that are being used for reintroduction into Lake Ontario were placed into semi‐natural stream tanks with four non‐native salmonid competitors that are established in Ontario streams: brown trout (S. trutta), rainbow trout (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Brown trout and rainbow trout reduced the survival and fitness‐related traits of Atlantic salmon, whereas Chinook salmon and coho salmon had no impact on these traits. These data support theories on ecological niche overlap and link differences in observed aggression levels with competitive outcomes. Measurements of circulating hormones indicated that the Atlantic salmon were not chronically stressed nor had a change in social status at the 10‐month time point in the semi‐natural stream tanks. Additionally, the Sebago population was better able to coexist with the non‐native salmonids than the LaHave population. Certain populations of Atlantic salmon may thus be more suitable for some environments of the juvenile stream phase for the reintroduction into Lake Ontario.  相似文献   

12.
Abstract – Introductions of large, non‐native, carnivorous fishes continue to occur worldwide and represent a substantial management concern to global biodiversity. One of the most recent non‐native fishes to successfully establish in North America is the northern snakehead (Channa argus), found in the lower Potomac River catchment. Dispersal of the northern snakehead throughout this system has been well documented since its original discovery in May 2004; however, little is known about the foraging habits of this species and its interactions with co‐occurring predators. Here, we quantify northern snakehead diet in comparison with the diets of naturalised largemouth bass (Micropterus salmoides), and native American eel (Anguilla rostrata) and yellow perch (Perca flavescens) collected from tidal freshwaters bordering Virginia and Maryland near Fort Belvoir, Virginia. Over 97% of northern snakehead gut contents were fishes, with fundulid and centrarchid species consumed most frequently. Dietary overlap was biologically significant only between northern snakehead and largemouth bass. Aquatic invertebrates were >10 times more common in native predator diets, reducing dietary overlap with northern snakehead. Ontogenic shifts in adult northern snakehead diet were also detected, which may be explained by optimal foraging rather than true prey specificity. Northern snakehead may be occupying a novel niche based on a piscivorous diet, therefore limiting competition with resident predators in the lower Potomac River. Further research into interactions between largemouth bass and northern snakehead is needed to inform management decisions and understand the ecological impacts of this non‐native species.  相似文献   

13.
Many species of salmonids have been stocked into waters outside of their native range. The invasiveness and impact of these species on native species varies depending on their biological traits, and on environmental conditions, such as climate. In Japan, rainbow trout and brown trout, both listed in 100 of the world's worst invasive alien species by the International Union for Conservation of Nature, occur as non-native species. The invasiveness of these two species is thought to be related to seasonal flooding, given flood waters can physically damage fry and prevent population establishment. Rainbow trout have successfully invaded waters in Hokkaido, northern Japan, where the likelihood of flooding is low between June and July, when their fry emerge, but successful invasions are rare in regions south of Hokkaido. Brown trout, however, have successfully invaded waters not only in Hokkaido, but also other regions. Since brown trout have a similar life history to the native white-spotted charr and masu salmon, with fry emerging before the flood season, they are more suited to the Japanese climate than Rainbow trout. Rainbow and brown trout interact with native species in various ways, but a common outcome of these interactions is the displacement of native charr species. Legal regulations of non-native salmonids should be based on understandings of the ecological traits of each invasive species and regional impacts on native species. Given the ongoing nature of climate change, the nature and extent of the effects of rainbow and brown trout on native species might also change.  相似文献   

14.
15.
The invasion of non‐indigenous freshwater fish species is one of the most important threats to aquatic biodiversity. Similar to other Mediterranean countries, Greece is considered a hot spot for freshwater biodiversity, with many range‐restricted endemics of high conservation concern. The aim of this study was to undertake a risk screening assessment to evaluate the invasive potential of non‐native, translocated and traded aquarium fishes in Greece by applying the Fish Invasiveness Screening Kit (FISK). In total, 73 freshwater fish species were evaluated by two assessors. FISK was able to discriminate reliably between invasive and non‐invasive species with a threshold of 15.25. Based on mean scores, 30 species were classified as ‘high risk’, of which 17 as ‘moderately high risk’, six as ‘high risk’ and seven as ‘very high risk’. There was a high coincidence rate for the species categorisation between the two assessors, but significant differences in certainty. The results suggest that FISK is a useful tool for assessing risks posed by non‐native, translocated and traded aquarium fish species in Greece.  相似文献   

16.
  1. The eradication of invasive species is a management strategy implemented to eliminate adverse impacts of invaders on native species communities. After eradications, follow‐up studies are done to confirm eradication of the invasive species and the short‐term recovery of the native species, but long‐term monitoring to confirm full population recovery and stability is often not completed.
  2. In this study, long‐term monitoring of native fishes was carried out over 5 years after the eradication of an invasive fish from the Rondegat River, South Africa. Forty‐six sites distributed along four river sections were sampled for presence/absence using underwater cameras and snorkel surveys. Density data were collected by snorkel surveys.
  3. Using multi‐season occupancy models, the annual probability of colonization and local extinction of the native fishes and annual rate of change in occupancy along the river were estimated. Changes in native fish densities across time and across the control and treatment sections were analysed using Kruskal–Wallis analysis, followed by Dunn's post‐hoc test.
  4. Probability of colonization and local extinction differed for each native fish species and may have been affected by extrinsic factors, such as rainfall, and intrinsic density‐dependent factors, hypothesized from the density data. The occupancy rates of change revealed that the two Near Threatened fish species have reached an occupancy dynamic equilibrium but the Endangered fish has not, suggesting that other conservation efforts may be needed.
  5. Long‐term monitoring of native fishes after an eradication programme has confirmed the successful removal of the invader and the recovery and stability of the community. However, successful eradication was not sufficient for full recovery of all species; additional conservation management strategies are needed to secure the population stability and persistence of endangered fishes. We recommend that eradication programmes, regardless of locality, should employ long‐term monitoring to ensure full recovery of a native fish community.
  相似文献   

17.
18.
19.
The consequences of introducing Cichla cf. monoculus Spix & Agassiz, Astronotus ocellatus (Agassiz) and Pygocentrus nattereri Kner into lakes in the River Doce basin, Brazil, on richness, diversity and efficiency of aquatic macrophytes as natural refugia to native fishes was investigated. Samples were taken from lakes with and without alien fishes in areas with and without aquatic macrophytes. The presence of alien fishes reduced richness and diversity of the native fish community. The refugia function, which could be attributed to the clustering of aquatic macrophytes, does not exist in these lakes probably because the alien fishes exploit such habitats for reproduction. Since introductions threaten the native fish diversity of the region, studies on regional dispersion and factors that minimise the spread of alien fishes are needed.  相似文献   

20.
In an attempt to restore the connectivity of fragmented river habitats, a variety of passage facilities have been installed at river barriers. Despite the cost of building these structures, there has been no quantitative evaluation of their overall success at restoring fish passage. We reviewed articles from 1960 to 2011, extracted data from 65 papers on fish passage efficiency, size and species of fish, and fishway characteristics to determine the best predictors of fishway efficiency. Because data were scarce for fishes other than salmonids (order Salmoniformes), we combined data for all non‐salmonids for our analysis. On average, downstream passage efficiency was 68.5%, slightly higher than upstream passage efficiency of 41.7%, and neither differed across the geographical regions of study. Salmonids were more successful than non‐salmonids in passing upstream (61.7 vs. 21.1%) and downstream (74.6 vs. 39.6%) through fish passage facilities. Passage efficiency differed significantly between types of fishways; pool and weir, pool and slot and natural fishways had the highest efficiencies, whereas Denil and fish locks/elevators had the lowest. Upstream passage efficiency decreased significantly with fishway slope, but increased with fishway length, and water velocity. An information‐theoretic analysis indicated that the best predictors of fish passage efficiency were order of fish (i.e. salmonids > non‐salmonids), type of fishway and length of fishway. Overall, the low efficiency of passage facilities indicated that most need to be improved to sufficiently mitigate habitat fragmentation for the complete fish community across a range of environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号