共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解红富士苹果叶片蒸腾规律,并为气孔计法提供经验校正系数,采用气孔计法和离体枝条称重法,于2008~2009年在山东省泰安市潮泉镇上寨村(36°15′N,117°06′E),对红富士苹果叶片蒸腾作用进行了连续定位观测,比较了2种方法的不同,提出了采用气孔计法测定红富士苹果叶片蒸腾作用的校正系数。结果表明:气孔计法蒸腾强度测定值恒大于离体枝条称重法测定值,气孔计法测定值为称重法的1.03~4.00倍,平均为2.02倍,整个生长期校正系数为0.495。气孔计法测定的离体枝条(水分供应充足)叶片蒸腾速率是活体叶片蒸腾速率的1.07~3.44倍,平均为1.45倍。 相似文献
2.
Instantaneous measurements of photosynthesis are often implicitly or explicitly scaled to longer time frames to provide an understanding of plant performance in a given environment. For plants growing in a forest understory, results from photosynthetic light response curves in conjunction with diurnal light data are frequently extrapolated to daily photosynthesis (A(day)), ignoring dynamic photosynthetic responses to light. In this study, we evaluated the importance of two factors on A(day) estimates: dynamic physiological responses to photosynthetic photon flux density (PPFD); and time-resolution of the PPFD data used for modeling. We used a dynamic photosynthesis model to investigate how these factors interact with species-specific photosynthetic traits, forest type, and sky conditions to affect the accuracy of A(day) predictions. Increasing time-averaging of PPFD significantly increased the relative overestimation of A(day) similarly for all study species because of the nonlinear response of photosynthesis to PPFD (15% with 5-min PPFD means). Depending on the light environment characteristics and species-specific dynamic responses to PPFD, understory tree A(day) can be overestimated by 6-42% for the study species by ignoring these dynamics. Although these overestimates decrease under cloudy conditions where direct sunlight and consequently understory sunfleck radiation is reduced, they are still significant. Within a species, overestimation of A(day) as a result of ignoring dynamic responses was highly dependent on daily sunfleck PPFD and the frequency and irradiance of sunflecks. Overall, large overestimates of A(day) in understory trees may cause misleading inferences concerning species growth and competition in forest understories with < 2% full sunlight. We conclude that comparisons of A(day) among co-occurring understory species in deep shade will be enhanced by consideration of sunflecks by using high-resolution PPFD data and understanding the physiological responses to sunfleck variation. 相似文献
3.
Seven-year-old apple (Malus x domestica Borkh.) trees cv. 'Braeburn' on rootstock M.26 were flower-thinned to establish four crop loads, resulting in final mean fruit numbers per tree of 0, 100, 225 and 400. Mean fruit mass decreased by about 35% with each decrease in cropping density. Fruit from light-cropping trees had significantly advanced maturity as indicated by the harvest management criteria of background color and starch/iodine score, and other fruit quality characteristics such as soluble solids. Flesh firmness and dry matter also increased with decreasing crop load. Compared with fruiting trees, mean leaf photosynthetic rates of non-cropping trees were significantly lower (40%) between 75 days after full bloom (dafb) and fruit harvest, with a maximum reduction of almost 60% at 118 dafb. Photosynthetic activity decreased linearly with increasing concentration of leaf starch, but was positively and significantly related to stomatal conductance. Consequently, the accumulation of nonstructural carbohydrates in leaves of light-cropping or non-cropping trees may have led to end-product inhibition of photosynthesis. Increases in xanthophyll cycle carotenoids mediated non-radiative thermal energy dissipation in non-cropping trees, providing increased capacity for photoprotection but reducing photochemical efficiency. 相似文献
4.
We conducted thinning trials in a 5-year-old Eucalyptus globulus ssp. globulus Labill plantation near Warrenbayne, northeastern Victoria, Australia, where soil salinization and waterlogging are common, and assessed treatment effects on tree growth, water use and survival. Half-hectare plots were thinned from the original density of 1100 stems ha(-1) to densities of 800, 600 and 400 stems ha(-1), and stem diameter increment, leaf area index, transpiration, canopy interception and depth of tree water source monitored for 21 months. Two drought periods occurred during the study, rainfall was 30% below the long-term average and there was severe mortality in all three plots. Analysis of deuterium abundance in soil and xylem water indicated that the trees accessed water only from the top meter of the soil profile. Transpiration rates were higher in the most heavily thinned plot than in the least thinned plot, which underwent a reduction in basal area during the study. The most heavily thinned plot increased in basal area by 10% during the study. Edge trees had significantly greater diameters than trees from the middle of the plots. 相似文献
5.
The three-dimensional (3-D) architecture of a peach tree (Prunus persica L. Batsch) growing in an orchard near Avignon, France, was digitized in April 1999 and again four weeks later in May 1999 to quantify increases in leaf area and crown volume as shoots developed. A 3-D model of radiation transfer was used to determine effects of changes in leaf area density and canopy volume on the spatial distribution of absorbed quantum irradiance (PAR(a)). Effects of changes in PAR(a) on leaf morphological and physiological properties were determined. Leaf mass per unit area (M(a)) and leaf nitrogen concentration per unit leaf area (N(a)) were both nonlinearly related to PAR(a), and there was a weak linear relationship between leaf nitrogen concentration per unit leaf mass (N(m)) and PAR(a). Photosynthetic capacity, defined as maximal rates of ribulose-1,5-bisphosphate carboxylase (Rubisco) carboxylation (V(cmax)) and electron transport (J(max)), was measured on leaf samples representing sunlit and shaded micro-environments at the same time that the tree crown was digitized. Both V(cmax) and J(max) were linearly related to N(a) during May, but not in April when the range of N(a) was low. Photosynthetic capacity per unit N(a) appeared to decline between April and May. Variability in leaf nitrogen partitioning between Rubisco carboxylation and electron transport was small, and the partitioning coefficients were unrelated to N(a). Spatial variability in photosynthetic capacity resulted from acclimation to varying PAR(a) as the crown developed, and acclimation was driven principally by changes in M(a) rather than the amount or partitioning of leaf nitrogen. 相似文献
6.
Experiments were conducted on 1-year-old western red cedar (Thuja plicata Donn.) seedlings to determine the response of illuminated foliage to reversible changes in total photosynthetic foliage area (L(A)). Reductions in L(A) were brought about by either shading the lower foliage or by reducing the ambient CO2 concentration (c(a)) of the air surrounding the lower part of the seedling. In the latter case, the vapor pressure was also changed so that transpiration rates (E) could be manipulated independently of photosynthetic rates (A). We hypothesized that following such treatments, short-term compensatory changes would occur in stomatal conductance (g(s)) and A of the remaining foliage. These changes would occur in response to hydraulic signals generated by changes in the water potential gradient rather than changes in the distribution of sources and sinks of carbon within the seedling. When a portion of the foliage was shaded, there was an immediate reduction in whole-seedling E and a concomitant increase in g(s), A and E in the remaining illuminated foliage. However, the intercellular CO2 concentration did not change. These compensatory effects were fully reversed after the shade was removed. When the lower foliage A was reduced to < 0 micromol m-2 s-1, by shading or lowering c(a), and E was either unchanged or increased (by adjusting the vapor pressure deficit), there was no significant increase in g(s) and A in the remaining foliage. We conclude that compensatory responses in illuminated foliage occur only when reductions in L(A) are accompanied by a reduction in whole-plant E. The relationship between the reduction in whole-seedling E and the increase in A is highly linear (r2 = 0.68) and confirms our hypothesis of the strong regulation of g(s) by hydraulic signals generated within the seedling. We suggest that the mechanism of the compensatory effects is a combination of both increased CO2 supply, resulting from increased g(s), and a response of the rate of carboxylation, possibly related to the activity of Rubisco. 相似文献
7.
We studied the effects of variation in shoot structure and needle morphology on the distributions of light and nitrogen within a Pacific silver fir (Abies amabilis (Dougl.) Forbes) canopy. Specifically, we investigated the role of morphological shade acclimation in the determination of resource use efficiency, which is claimed to be optimal when the distribution of nitrogen within the canopy is directly proportional to the distribution of intercepted photosynthetically active radiation (PAR). Shoots were collected from different heights in the crowns of trees representing four different size classes. A new method was developed to estimate seasonal light interceptance (SLI, intercepted PAR per unit needle area) of the shoots using a model for the directional distribution of above-canopy PAR, measurements of shoot silhouette area and canopy gap fraction in different directions. The ratio SLI/SLI(o), where the reference value SLI(o) represents the seasonal light interceptance of a spherical surface at the shoot location, was used to quantify the efficiency of light capture by a shoot. The ratio SLI/SLI(o) doubled from the top to the bottom of the canopy, mainly as a result of smaller internal shading in shade shoots than in sun shoots. Increased light-capturing efficiency of shade shoots implies that the difference in intercepted light by sun shoots versus shade shoots is much less than the decrease in available light from the upper to the lower canopy. For example, SLI of the five most sunlit shoots was only about 20 times greater than the SLI of the five most shaded shoots, whereas SLI(o) was 40 times greater for sun shoots than for shade shoots. Nitrogen content per unit needle area was about three times higher in sun needles than in shade needles. This variation, however, was not enough to produce proportionality between the amounts of nitrogen and intercepted PAR throughout the canopy. 相似文献
8.
We used 20-mm-long, Granier-type sensors to quantify the effects of tree size, azimuth and radial position in the xylem on the spatial variability in xylem sap flux in 64-year-old trees of Taxodium distichum L. Rich. growing in a flooded forest. This information was used to scale flux to the stand level to investigate variations in half-hourly and daily (24-hour) sums of sap flow, transpiration per unit of leaf area, and stand transpiration in relation to vapor pressure deficit (D) and photosynthetically active radiation (Q(o)). Measurements of xylem sap flux density (J(s)) indicated that: (1) J(s) in small diameter trees was 0.70 of that in medium and large diameter trees, but the relationship between stem diameter as a continuous variable and J(s) was not significant; (2) J(s) at 20-40 mm depth in the xylem was 0.40 of that at 0-20 mm depth; and (3) J(s) on the north side of trees was 0.64 of that in directions 120 degrees from the north. Daily transpiration was linearly related to daily daytime mean D, and reached a modest value of 1.3 mm day(-1), reflecting the low leaf area index (LAI = 2.2) of the stand. Because there was no soil water limitation, half-hourly water uptake was nearly linearly related to D at D < 0.6 kPa during both night and day, increasing to saturation during daytime at higher values of D. The positive effect of Q(o) on J(s) was significant, but relatively minor. Thus, a second-order polynomial with D explained 94% of the variation in J(s) and transpiration. An approximately 40% reduction in LAI by a hurricane resulted in decreases of about 18% in J(s) and stand transpiration, indicating partial stomatal compensation. 相似文献
9.
Foliage growth, mass- and area-based leaf nitrogen concentrations (Nm and N a) and specific leaf area (SLA) were surveyed during a complete vegetation cycle for two co-occurring savanna tree species: Crossopteryx febrifuga (Afzel. ex G. Don) Benth. and Cussonia arborea A. Rich. The study was conducted in the natural reserve of Lamto, Ivory Coast, on isolated and clumped trees. Leaf flush occurred before the beginning of the rainy season. Maximum leaf area index (LAI), computed on a projected canopy basis for individual trees, was similar (mean of about 4) for both species. Seasonal courses of the ratio of actual to maximum LAI were similar for individuals of the same species, but differed between species. For C. febrifuga, clumped trees reached their maximum LAI before isolated trees. The LAI of C. arborea trees did not differ between clumped and isolated individuals, but maximum LAI was reached about 2 months later than for C. febrifuga. Leaf fall was associated with decreasing soil water content for C. arborea. For C. febrifuga, leaf fall started before the end of the rainy period and was independent of changes in soil water content. These features lead to a partial niche separation in time for light resource acquisition between the two species. Although Nm, N a and SLA decreased with time, SLA and N a decreased later in the vegetation cycle for C. arborea than for C. febrifuga. For both species, N a decreased and SLA increased with decreasing leaf irradiance within the canopy, although effects of light on leaf characteristics did not differ between isolated and clumped trees. Given relationships between N a and photosynthetic capacities previously reported for these species, our results show that C. arborea exhibits higher photosynthetic capacity than C. febrifuga during most of the vegetation cycle and at all irradiances. 相似文献
10.
In the tropical canopy tree, Dryobalanops aromatica Gaertn. f., upper-canopy leaves (UL) develop under sunlit conditions but are subjected to self-shading within the crown as they age. In contrast, lower-canopy leaves (LL) are exposed to uniform dim light conditions throughout their life span. By comparing leaf morphology and physiology of UL and LL, variations in leaf characteristics were related to leaf age and self-shading. Mass-based chlorophyll (chl) concentration and the chlorophyll/nitrogen (chl/N) ratio were lower and the chl a/b ratio was higher in UL than in LL. In UL, the chl/N ratio gradually increased and the chl a/b ratio gradually decreased with leaf aging, whereas these ratios remained unchanged with leaf age in LL. The effective quantum yield of photosystem II (PSII) (DeltaF/F(m)') at a given irradiance remained unchanged with leaf age in LL, whereas DeltaF/F(m)' changed with leaf age in UL. These data indicate N reallocation within the leaves from carbon fixation components to light harvesting components and a dynamic regulation of photochemical processes of PSII in response to increased self-shading of UL. Despite the difference in light environment with leaf age between UL and LL, maximum photosynthetic rates and nitrogen-use efficiency decreased with leaf aging in both UL and LL. Constancy in the chl/N ratio with leaf age in LL indicated that the decrease in photosynthetic capacity was caused by effects other than shading, such as leaf aging. We conclude that N reallocation and acclimation of PSII to self-shading occurred even in mature leaves, whereas the change in photosynthetic capacity with leaf age was more conservative. 相似文献
11.
Botanical parameters (e.g., shoot and branch inclination, petiole length, leaf phyllotaxy, size and shape) that influence light interception and foliage clumping in dense two-year-old monoclonal poplar ( Populus spp.) coppice crops were analysed with a three-dimensional simulation model. Crop LAI varied from 1 to 2 for clone Ghoy and from 2.5 to 7.4 for clone Trichobel from May to September. Canopies were strongly clumped, with a clumping index (μ) about 0.5. Canopy light transmittance (τ) varied from 0.59 in May to 0.41 in September for clone Ghoy and from 0.42 to 0.08 for clone Trichobel, and was strongly associated with LAI. The overall effect of a simulated shift in botanical parameters was relatively small and resulted in limited changes in μ and τ by ± 0.05 and ±0.1, respectively. Petiole length had the most notable effect on μ and τ, while the other parameters were less effective. However, biomass cost analyses showed that actual petiole length optimised the efficiency of biomass investment into light capture. 相似文献
12.
An understanding of spatial variations in gas exchange parameters in relation to the light environment is crucial for modeling canopy photosynthesis. We measured vertical, horizontal and azimuthal (north and south) variations in photosynthetic capacity (i.e., the maximum rate of carboxylation: Vcmax), nitrogen content (N), leaf mass per area (LMA) and chlorophyll content (Chl) in relation to relative photosynthetic photon flux (rPPF) within a Fagus crenata Blume crown. The horizontal gradient of rPPF was similar in magnitude to the vertical gradient of rPPF from the upper to the lower crown. The rPPF in the north quadrant of the crown was slightly lower than in the south quadrant. Nitrogen content per area (Narea), LMA and Vcmax were strictly proportional to rPPF, irrespective of the vertical direction, horizontal direction and crown azimuth, whereas nitrogen content per dry mass, Chl per area and photosynthetic capacity per dry mass (Vm) were fairly constant. Statistical analyses separating vertical trends from horizontal and azimuthal trends indicated that, although horizontal and vertical light acclimation of leaf properties were similar, there were two significant azimuthal variations: (1) Vcmax was lower in north-facing leaves than in south-facing leaves for a given Narea, indicating low photosynthetic nitrogen-use efficiency (PNUE) of north-facing leaves; and (2) Vcmax was lower in north-facing leaves than in south-facing leaves for a given LMA, indicating low Vm of the north-facing leaves. With respect to the low PNUE of the north-facing leaves, there were no significant azimuthal variations in leaf CO2 conductance from the stomata to the carboxylation site. Biochemical analysis indicated that azimuthal variations in nitrogen allocation to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and in nitrogen allocation between carboxylation (Rubisco and other Calvin cycle enzymes) and light harvesting machinery (Chl pigment-protein complexes) were not the main contributor to the difference in PNUE between north- and south-facing leaves. Lower specific activity of Rubisco may be responsible for the low PNUE of the north-facing leaves. Anatomical analysis indicated that not only high leaf density, which is compatible with a greater fraction of non-photosynthetic tissue, but also thick photosynthetic tissue contributed to the low Vm in the north-facing leaves. These azimuthal variations may need to be considered when modeling canopy photosynthesis based on the Narea-Vcmax or LMA-Vcmax relationship. 相似文献
13.
We studied the responses to light and nutrient availability of the two Afromontane conifers Juniperus procera Hochst. ex Endl., reputedly a shade-intolerant species, and Afrocarpus gracilior Polger C.N. Page, a shade-tolerant species. The species behaved similarly in response to light and nutrient availability. Both species showed positive growth rates at photon fluxes of 0.6-0.8 mol m(-2) day(-1). Maximum relative growth rates of 0.15 week(-1) were attained at an irradiance of 8 mol m(-2) day(-1) in the high-nutrient supply treatment. The growth response to high-nutrient supply was achieved by an increase in leaf area ratio rather than by an increase in net assimilation rate. In a 10-week growth experiment, both species displayed an increase in stem extension rate in response to a low red/far-red ratio (0.09) at low irradiance, and A. gracilior also responded by increasing its specific leaf area. Similiar findings were observed in a short-term experiment in which internodes were laterally irradiated. 相似文献
14.
Plant growth, biomass allocation, carbon isotope composition (δ 13C), and water use efficiency (WUE) of 31 cultivars of apple ( Malus domestica Borkh.) grown under two water regimes were measured. Drought-stressed plants showed significant declines in tree height,
trunk diameter, biomass production, and total leaf area, the extent to which depended upon cultivar. Also, gas exchange rates,
instantaneous and long-term efficiencies (WUE I and WUE L, respectively), and values for δ 13C differed among cultivars and watering regimes. Variations in WUE I were mainly due to changes in stomatal conductance ( g
s) under drought condition. ‘Qinguan’ and ‘Golden Delicious’ had greater trunk diameter, tree height, and had higher biomass
production and WUE L under drought stress, implying that they are more suitable for arid and semi-arid regions. Moreover, WUE L was significantly and positively correlated with δ 13C under two watering regimes, which suggests a potential for evaluating water use efficiency of Malus by measuring carbon isotope composition. 相似文献
15.
To gain insight into the function of photosynthesis and respiration as processes operating within a global ecosystem, we measured gas exchange of mature black spruce (Picea mariana (Mill.) B.S.P.) trees at three organizational scales: individual shoots, whole branches and a forest canopy. A biochemical model was fitted to these data, and physiological parameters were extracted. Pronounced seasonal variation in the estimated model parameters was found at all three organizational scales, highlighting the need to make physiological measurements throughout the year. For example, it took over 100 days for physiological activity to increase from zero during the springtime thaw to its yearly maximum. Good agreement was found between parameter values estimated for the different organizational scales, suggesting that, in the case of aerodynamically rough, largely mono-specific forest canopies, physiological parameters can be estimated from eddy covariance flux measurements. The small differences between photosynthetic parameters estimated at the different scales suggest that the overall spatial organization of photosynthetic capacity is nearly optimized for carbon uptake at each scale. 相似文献
16.
To investigate the extent to which the energy balance of a globally important ecosystem is controlled by biological and environmental processes, measurements of water vapor flux were made on individual black spruce (Picea mariana [Mill.] B.S.P.) shoots, branches, and a whole canopy at the BOREAS Southern Study Area Old Black Spruce (SSA OBS) site. These measurements were used to estimate stomatal, branch boundary layer and canopy boundary layer conductances to water vapor. On a projected needle area basis, stomatal conductances varied between 14 and 92 mmol m(-2) s(-1), and total branch conductance varied seasonally between zero and about 35 mmol m(-2) s(-1). On a ground area basis, total canopy conductance varied between 24 and 105 mmol m(-2) s(-1). Total canopy conductance was partitioned into aerodynamic and physiological components by using shoot-scale measurements scaled by leaf area index. Good agreement was found with an independent estimate of aerodynamic conductance measured when the canopy was wet. Compared with most coniferous forests, the canopy was relatively uncoupled from the atmosphere, and at the ecosystem scale, the control of water vapor flux was approximately equally divided between physiological and abiotic conductances. Two widely used steady-state models of stomatal conductance were parameterized from the shoot and branch measurements. Parameters varied considerably throughout the growing season. A time-constant term was added to these static models to construct dynamic models of stomatal conductance under naturally varying environmental conditions. The dynamic versions of the models outperformed the static versions in explaining stomatal response to rapidly changing environmental conditions. The length of the time-constant term, derived using the dynamic models, suggested that stomata were slow to respond to changing environmental conditions, and that the speed of the response was strongly temperature-dependent. 相似文献
17.
Early growth and physiology of longleaf pine ( Pinus palustris Mill.) seedlings were studied in response to light, water and nitrogen under greenhouse conditions. The experiment was conducted with 1-year-old seedlings grown in 11.3 l pots. The experimental design was a split-plot factorial with two levels (low and high) of each of the factors, replicated in three blocks. The four factorial combinations of water and nitrogen were randomly applied to 15 pots (sub-plots) in each of the light treatment (main plot). Data were collected on survival, root collar diameter (RCD), and height on a monthly basis. Biomass (shoot, root and needle), leaf area index, specific needle area, and needle nutrient (N, P, K, Ca, and Mg) concentrations were determined following final harvest after 16 months. Physiological data (net photosynthesis and transpiration) were collected monthly from March to July during the second growing season. Height and RCD were significantly influenced by nitrogen and water and by the interaction between them with no apparent effect of light. Seedlings grew 93% taller in the high nitrogen and well watered (HNWW) treatment compared to the low nitrogen and water stressed (LNWS) treatment. Similarly, a significant increase (78%) in RCD was observed for seedlings in the HNWW treatment over the LNWS treatment. Light, along with water and nitrogen, played an important role in seedling biomass growth, especially when water was not limiting. Biomass partitioning (as measured by root:shoot ratio) was affected only by nitrogen and water. Nutrient stress had a greater influence on carbon allocation (69% increase in root:shoot ratio) than water stress (19% increase). Net photosynthesis (Pnet) was significantly higher for seedlings in the high resource than in the low resource treatments with significant light×water and nitrogen×water interactions. Transpiration rate was higher (75%) under the WW treatment compared to the WS treatment. Longleaf pine seedlings grown under the LNWW treatment had the lowest foliar nitrogen (0.71%) whereas seedlings in the HNWS treatment had the highest (1.46%). Increasing the availability of light (through larger canopy openings or controlling midstory density) and soil nitrogen (through fertilization) may not result in greater Pnet and improved seedling growth unless soil water is not limiting. 相似文献
19.
Relative to closed-canopy tropical forests, tree seedlings planted in open grown areas are exposed to higher light intensity, air temperatures, vapor pressure deficit, and greater seasonal fluxes of plant available water than mature tropical forests. The species-specific adaptive capacity to respond to variable precipitation and seasonality in open grown conditions, therefore, is likely to affect species performance in large-scale reforestation efforts. In the present study, we compared the photosynthetic characteristics of eight tropical tree species within and between seasons at two study sites with contrasting dry season intensities. All species except Pseudosamanea guachapele reduced leaf physiological function between the wet and dry seasons. The contrasting severity of seasonal drought stress at the study sites constrained growth rates and photosynthetic characteristics differently. Variation of photosynthetic characteristics at the species level was high, particularly in the dry season. Faster growing species at the less seasonal site, Terminalia amazonia, Inga punctata, Colubrina glandulosa, and Acacia mangium, exhibited a greater adaptive capacity than the other species to down-regulate leaf photosynthesis between seasons. As the dry season was more severe at the more seasonal site, most species strongly reduced physiological function regardless of relative growth rates, except two species ( Tectona grandis and P. guachapele) with widespread distributions and relatively high drought tolerance. Our results underscore the need to consider seasonal drought tolerance when selecting tree species for specific reforestation sites. 相似文献
20.
Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences. 相似文献
|