首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
祁连山林草复合流域土壤温湿度时空变化特征   总被引:2,自引:0,他引:2  
利用祁连山森林生态站设在祁连山排露沟流域的青海云杉林和草地气象观测场土壤温湿度观测资料,采用对比分析及线性趋势等方法进行青海云杉林和草地2个不同下垫面土壤温湿度的时空特征分析。结果表明:(1)林草地土壤温度日变化表现为浅层(10 cm和20 cm土壤深度)土壤温度呈正弦曲线变化,深层(40、60、80 cm土壤深度)土壤温度约呈直线变化。土壤温度年变化表现为林地土壤温度7月底达到最高值,而后开始下降,翌年2月上旬达到最低值;草地土壤温度7月底达到最高值,而后开始下降,12月中旬达到最低值;林地封冻时长明显大于草地封冻时长。(2)林草地土壤湿度日变化不受太阳辐射的影响。林地不同土层土壤湿度年动态变化趋势均一致,呈现正弦曲线的变化规律;草地在土壤结冻后和未消融期间,土壤湿度较低且变化不明显;其他时间土壤湿度变化明显。(3)林地中,除40 cm深度外,其他深度土壤温湿度均保持在相对稳定的范围内,而且变化趋势基本一致。草地浅层土壤在土壤封冻前和解冻后,土壤温湿度变化趋势相反,封冻期间土壤温湿度亦保持在相对稳定的范围内,温度变化明显,湿度变化不明显;其他土层土壤温湿度总体变化趋势一致。  相似文献   

2.
青海湖芨芨草干草原浅层土壤温度和导温率的基本特征   总被引:2,自引:0,他引:2  
通过解析芨芨草(Achnatherum splendens)干草原原生植被生长季中期5、10、20、40、60和80cm 6个土层连续监测的土壤温度资料,探讨其生长季土壤温度和土壤导温率的基本特征。结果表明:芨芨草干草原表层(<20cm)土壤温度日变化明显,遵循正弦波动规律;20-40cm为正弦波动和线性振荡的过渡层,40cm以下无显著日变化。土壤温度日变化振幅(A)和相位(φ)随土壤深度(z)增加分别呈现几何级数衰减(A=4.60e-6.74z,R2=0.93)和线性延迟(φ=6.14z+7.67,R2=0.95)模式;表层土壤温度对脉冲式降水表现为渐变式响应并出现同温层;典型晴天下土壤导温率(κ)随土壤深度增加而指数升高(κ=2×10-7e4.21z,R2=0.92),34.7cm土层的土壤温度日变化与5.0cm反相,而土壤温度日变化恒温层为86.0-102.0cm土层。  相似文献   

3.
《土壤通报》2015,(5):1096-1102
为明确不同耕作下土壤水分动态变化及其利用效率,2010~2013年采用田间试验方法,研究了宽窄行深松25 cm(T1)和宽窄行深松35 cm(T2)和均匀垄(T3)三种耕作方式下土壤水分周年变化、动态变化以及水分利用效率。结果表明:土壤含水量周年变化可分为3个阶段,即"大幅度变化期"、"平稳期"和"小幅度变化期"。大幅度变化期出现在4月末至8月末,小幅度变化期和平稳期受温度和降雪量的影响,不同年份长短不一。三年0~100 cm土层平均土壤含水量T2和T1较T3高,T2比T1土壤含水量更高。土壤含水量随土壤深度的增加呈"先升后降的趋势",0~40 cm土壤含水量为"增加趋势"、40~60 cm土壤含水量为"维持较高",60~100 cm土壤含水量为"下降趋势"。宽窄行深松有利于保墒保苗,深松后T2比T1储水效果更好。T2和T1土壤水分利用效率分别较T3提高17.4%和6.6%,T2土壤水分利用效果最好。  相似文献   

4.
通过对2010年7月至2011年6月一个年周期的土壤温湿度资料进行分析,得出柴达木盆地四个采样点的土壤温湿度的变化特征及相互关系,并初步探讨变化原因。结果表明:四采样点(格尔木、诺木洪、德令哈和大柴旦)土壤温度变化具有相似性,浅层土壤(10,30 cm)温湿度的日变化剧烈,深层(50,70,90 cm)变化相对平稳;四样点土壤温度在观测年内呈近似正弦曲线,在8月份达到年最高值,1月份达到年最低值。在2月至3月之间不同深度土壤温度基本相同;土壤湿度存在积累期和衰减期日循环变化,土壤水分每日收支状况基本保持动态平衡;不同采样点土壤湿度季节变化趋势基本一致但也存在着各自特殊性,季节振幅:大柴旦>德令哈>诺木洪,极值月份出现的时间略有差异。土壤温度与湿度之间相互影响,存在明显的相关关系。  相似文献   

5.
气候变暖导致高纬度多年冻土退化,引起多年冻土区冻融过程和土壤水热过程发生变化,土壤湿度变化对气候和生态系统产生重要影响。运用ERA-Interim再分析的土壤湿度数据,结合气象数据,采用数理统计方法,分析了1979—2017年东北多年冻土区土壤湿度的年际、季节和空间变化,土壤湿度变化的影响因子及土壤湿度变化所带来的影响。研究表明:年际变化上1979—2017年,东北多年冻土区7 cm和28 cm深度年均土壤湿度呈下降趋势,并且年平均土壤湿度在2008年达到最低;在季节变化上,不同深度土壤湿度在夏秋季节会达到一年中的最大值,7 cm和28 cm深度处土壤湿度呈现两个峰值(4月份、8月份),土壤湿度最大值出现在8月份;在空间变化上,东北多年冻土区中部土壤湿度在1979—2017年变化最大,且为土壤湿度下降明显区。在气候变暖和降水持续减少的背景下,土壤水分可能成为影响东北多年冻土区植被生长的主要因子,使东北多年冻土区植被生态系统发生变化,分析东北多年冻土区土壤湿度的时空变化对进一步理解该区生态系统变化和多年冻土碳反馈效应具有重要意义。  相似文献   

6.
在田间全膜双垄沟播膜下设置带状秸秆还田不同模式,研究玉米生育期内土壤耕层温度的变化规律。结果表明,在玉米非种植带将5 cm长秸秆按3 750 kg/hm2深翻15 cm与土壤混匀后,土壤温度日(8:00~20:00时)变化增温速度最快,逐日变化幅度最高,相应的0~25 cm土层温度振幅最大。不同秸秆还田方式玉米生育期0~15 cm土层温度日变化不同,苗期(5月13日)膜下秸秆还田0~15 cm土壤温度随着白天气温的升高快速增高,16:00时达最高峰,为26.8~28.9 ℃,持续2 h后迅速下降;拔节期(6月10)土壤温度在16:00时达到最高,随后缓慢下降。玉米生长后期不同处理0~15 cm土层温度没有差异。整个玉米生长期内,土壤温度的逐日变化表现出S型波动。各处理0~25 cm土层温度的振幅随着土壤深度增加和生育期延后而减小。  相似文献   

7.
高量秸秆不同深度还田对黑土有机质组成和酶活性的影响   总被引:15,自引:0,他引:15  
在田间耕作条件下黑土3个土层(0~20、20~40、40~60cm)添加4%和8%高量玉米秸秆于尼龙袋中原位培养近4年后,研究不同层次土壤秸秆转化与有机碳积累特征,以及腐殖质各组分和土壤酶活性的变化。结果表明,添加4%的秸秆量0~20、20~40和40~60cm土层有机碳分别增加31.8%、96.4%和171.1%,8%秸秆添加量分别增加了86.2%、193.5%和265.9%,增加秸秆还田深度有利于土壤有机碳的积累。0~20 cm土层在无秸秆还田情况下有机碳下降了29.3%,而20~40 cm土层仅下降了1.8%。土壤有机碳含量和酶活性均随秸秆添加量的增加而提高,腐殖质胡敏酸/富里酸(HA/FA)比值发生较大变化,改善了腐殖质品质。各处理腐殖酸碳(HS-C)和胡敏酸碳(HA-C)的大小为20~40 cm土层0~20 cm土层40~60 cm土层,而40~60 cm土层则更有利于富里酸碳(FA-C)的积累。土壤过氧化氢酶活性、脲酶和蔗糖酶活性分别与HA-C、FA-C含量呈极显著正相关、显著正相关。研究结果为深层秸秆还田促进土壤有机质的积累提供了理论依据。  相似文献   

8.
施用有机肥对蔬菜生长和土壤磷素累积的影响   总被引:4,自引:0,他引:4  
为了明确长期施用有机肥对蔬菜生长、土壤速效磷累积淋溶规律的影响,以番茄、结球甘蓝和芹菜为研究对象,于2011年开始进行田间小区轮作栽培试验,设置不施肥(CK)、肥料用量52.5 t·km~(-2)(CM1)、肥料用量105 t·km-2(CM2)、肥料用量210 t·km~(-2)(CM3)4个处理,对蔬菜产量、土壤剖面速效磷累积和分布进行监测和分析。结果表明,随施肥量增加,蔬菜增产不明显,植株磷素吸收量呈增加趋势。随土层深度增加,土壤速效磷含量下降,二者呈显著负相关。表土层(0~30 cm)和心土层(30~60cm),土壤速效磷含量表现为:CM3CM2CM1CK;60~90 cm土层,土壤速效磷整体不高。0~90cm土壤剖面速效磷累积量随有机肥用量增加呈直线和指数形式增加,肥料投入量的"双速率转折点"为100.4~118.5 t·hm~(-2)。随种植年限延长,30~60 cm土壤速效磷含量呈直线形式增加,且随施肥量增加,土壤速效磷淋溶速率加快;60~90 cm土壤速效磷表现出与30~60 cm土壤类似的规律。因此,加强有机肥在蔬菜生产中的合理利用对于减少磷素在土壤中的累积和淋溶、降低环境污染风险具有重要意义。  相似文献   

9.
夏玉米生长盛期农田土壤CO2排放的研究   总被引:10,自引:0,他引:10       下载免费PDF全文
对华北平原典型农田夏玉米生长盛期土壤排放CO_2的试验结果表明,秸秆覆盖增加土壤C的排放,比未覆盖秸秆约增加10%。土壤CO_2排放通量的日变化为单峰型,峰值出现在12:00~16:00,变化区间为109~170μg/m~2·s(秸秆覆盖)和97~128μg/m~2·s(未覆盖)。土壤CO_2排放与温度(5cm地温)有显著相关关系,但与土壤湿度关系较复杂。夏玉米生长盛期土壤CO_2排放通量高于初期和后期,8月2日土壤CO_2排放通量为9月15日的1.42倍(秸秆覆盖)和1.32倍(未覆盖),土壤CO_2排放的日进程为6:00~18:00排放量占全天总排放量的63.5%(秸秆覆盖)和57.9%(未覆盖)。  相似文献   

10.
中国年均地温的估算方法研究   总被引:2,自引:0,他引:2  
年均地温是土壤重要的物理性质,对区域农业生产有着重要意义。对中国1981—2010年间895个气象站的地面气候资料进行整理,按全国一级标准耕作制度分区分析。结果表明:各区5~40 cm内各深度年均地温均高于相应气象站点的年均气温。同一分区内,各气象站点5~40 cm年均地温随深度增加未表现出相同的变化规律;不同深度的年均地气温差平均值在5~20 cm深度范围内变化≤0.1℃,在20~40 cm深度范围变化较大,个别分区达0.4℃。各分区之间比较,5~40 cm年均地气温差平均值存在地域差异性:自北向南,年均地气温差平均值表现为先减小后增加的变化规律;自东向西,纬度接近的分区年均地气温差平均值逐渐增大;不同分区年均地气温差平均值的变化较大,20 cm深度为1.4~3.9℃,40 cm深度为1.1~4.3℃。利用回归方程法和年均地气温差平均值法,在各标准耕作制度一级区分别建立年均地温估算公式,回归方程法的准确性高于年均地气温差平均值法,但青藏高原区和内蒙古高原及长城沿线区的估算公式未达到很好的估算效果。对各分区5、10、15、20和40 cm年均地温观测数据完整的262个气象站的数据进行分析表明,5~40 cm深度范围内,多数分区年均地温每5 cm变化量的均值≤0.1℃,20~40 cm深度的变化量更小。对于单一估算点,其40 cm和50 cm年均地温的最大差距≤0.4℃,所以,在中国土壤系统分类中,可以考虑用40 cm的地温代替50 cm的地温。  相似文献   

11.
[目的]研究包气带水分时空动态变化特征,为"四水转化"系统动态循环研究提供依据。[方法]利用土壤水分运动学中势能的观点,研究包气带水分、包气带水势随时间和深度的变化特征。[结果]季节不同,土壤水势整体分布差异明显。6—8月土壤水势最高,局部地段甚至达到饱和,12月至翌年3月土壤水势最低。地面0—50cm深度土壤含水量受季节影响非常大,土壤水势激烈变化;50cm深度以下土壤含水量基本不受季节交替影响,50—140cm土壤水势相对稳定;140cm以下只受重力势作用。[结论]降雨、灌溉、蒸发、地下水埋深等因素均能引起土壤剖面土壤水势分布发生变化,从而实现入渗型、蒸发型、蒸发—入渗型、下渗—上渗型、下渗—上渗—入渗型等土壤水分运动状态的相互转化。  相似文献   

12.
通过建立径流小区对黄土高原水蚀风蚀交错区3种典型植被措施下水量平衡进行定位观测研究,分析3种植被措施对土壤水分的季节变化与水分利用效率的影响。结果表明,整个生长季节内3种植被措施下土壤表层5cm温度显著低于空气温度;土壤表层0-6cm水分季节性波动受到降雨的强烈影响。3种植被措施对剖面土壤水分季节变化产生显著影响,5-7月份为土壤水分消耗期,8-10月份为土壤水分补偿期。土壤垂直剖面含水量从表层到深层表现为先增加后减小再增加的趋势。3种植被措施对相同地形部位土壤水分所造成的差异不同,同一植被的土壤水分在不同地形部位也有差异。坡耕地(当年种植绿豆)径流系数为0.238,显著高于撂荒地与苜蓿地。3种植被措施下生物产量、水分利用效率均达到显著差异水平(p<0.05)。紫花苜蓿水分利用效率分别是绿豆、绿豆籽粒水分利用效率的1.9倍和8.3倍。坡耕地退耕还草或者建设人工植被等措施增强了对径流的拦蓄作用,具有较好的水土保持效应,同时提高了植物水分利用效率。  相似文献   

13.
2012年4-8月,采用LI-8100开路式土壤碳通量测量系统对重庆缙云山4种典型林分(常绿阔叶林、竹林、针阔混交林和针叶林)的土壤呼吸速率进行测定,并同步测定5和10 cm土壤温度、湿度及pH值,分析4种林分土壤呼吸变化特征及其与环境因子的关系.结果表明:1)4种典型林分土壤呼吸日变化规律不同,5月、7月针阔混交林和针叶林土壤呼吸速率日波动幅度大于常绿阔叶林和竹林;2)各林分土壤呼吸速率均表现出4-7月升高而7-8月降低的月变化规律;3)土壤呼吸速率与5 cm、10 cm土壤温度均呈指数关系,常绿阔叶林的温度敏感性(5 cmQ10=2.054,10cm Q10=2.117)大于其他3种林分;4)常绿阔叶林土壤呼吸速率与土壤湿度无显著相关性,而对其他林分呈二次相关关系;5)常绿阔叶林的土壤呼吸与5 cm、10 cm土壤pH值显著相关,竹林的土壤呼吸仅与5 cm土壤pH值显著相关,其他林分未表现出显著相关关系.  相似文献   

14.
对青海湖湖东克土沙区的土壤水分变化特征及其与降雨之间的关系进行了分析,结果表明:固定沙丘土壤水分随深度的变化较小,采取措施(人工植被+麦草方格沙障)的流动沙丘在不同深度上的变异最大;从0—80cm平均水平看,土壤含水量为固定沙丘>流动沙丘>采取措施的流动沙丘;三种沙丘土壤水分与降雨的时间变化都基本一致,可以分为冻结滞水期(12月—翌年3月)、水分补偿期(4—7月)和失水期(8—11月)三个阶段,土壤含水量以夏秋季最高;降水对0—80cm的土壤水分都有影响,对上层土壤的影响更显著,采取措施的流动沙丘主要影响深度为60cm,固定沙丘为20cm;在流动沙丘上种植人工植被以及布设麦草方格沙障,可以抑制表层土壤水分蒸发,提高表层土壤含水量,在植被恢复前能够有效减少风蚀,对于植物初期生长具有积极意义。  相似文献   

15.
西峰黄土高原麦田土壤水分的垂直分布   总被引:14,自引:3,他引:14  
张洪芬  王劲松  黄斌 《土壤通报》2006,37(6):1081-1085
利用西峰1989~2005年冬小麦生长期的土壤水分含量,分析了麦田土壤水分的旬月变化特征、垂直分布特征和土壤水分含量与降水量的关系,以及冬小麦生长期土壤总含水量与冬小麦产量间的关系。结果表明:西峰土壤水分含量具有明显的时间变化特征,8~11月与次年3~7月的实测土壤水分变化先增加再减少;垂直变化明显,0~40 cm为多变层,40~110为缓变层,110~200 cm为稳定层;垂直分布有明显的规律性,表现为旱季深层水分有向上传输的延迟,雨季水分有向下渗透的延迟;其年际变化振荡比较明显,呈多波动年际变化,冬小麦千粒重与生长期内土壤平均含水量呈正相关,相关系数为0.75,达到α=0.01置信度相关水平。  相似文献   

16.
黄土高原地区土壤水分动态特征:一是土壤墒情恢复时间,由南向北和由东向西逐渐提高,高原北部和西部,接近与农作物生长同步,对提高降雨利用率有利;土壤失墒主要分布在两个时期:第一个时期在9—12月份,日平均失水0.64mm,失水量在平均值以上,为丰水失水期,第二个时期在3—7月份,日平均减少0.5—2.34mm,失水量在年平均值以下,为亏缺失水期。冬季蒸发量较少,地区之间有所不同,南部塬区为微弱蒸发,北部丘陵区为缓慢蒸发,西部地区为基本稳定期。二是剖面水分分布分为速变层、活跃层、次活跃层和相对稳定层四个部分。黄  相似文献   

17.
陕北黄土区阳坡微地形土壤水分特征研究   总被引:2,自引:2,他引:2  
采用定点动态监测的方法对陕西省吴起县合沟流域内的阳坡微地形土壤含水量进行了对比研究。结果表明:(1)微地形土壤水分的季节变化滞后于降雨的季节变化,其对土壤含水量的影响旱季大于雨季;(2)在0—180 cm土层中,随着土层深度的增加,微地形土壤含水量呈增加的趋势,变异系数减小;(3)微地形不同土层的土壤含水量具有差异,在0—20 cm土层,所有微地形土壤含水量均大于对照坡面,土壤含水量呈现:缓台>塌陷>切沟>陡坎>浅沟;20—80 cm土层土壤含水量则表现为:切沟>缓台>塌陷>陡坎>浅沟>坡面;80—180 cm土层中,土壤含水量最大的是缓台,坡面、浅沟、切沟土壤含水量相差不多,陡坎土壤含水量比坡面略小,塌陷土壤含水量最小。  相似文献   

18.
科尔沁地区不同类型沙地土壤水分的时空异质性   总被引:3,自引:0,他引:3  
应用半干旱区科尔沁沙地2006-2010年5-9月份土壤水分定点观测资料,研究农田、沙质草地和固定沙丘土壤水分的时空变异性。结果表明:2006年5月-2010年9月,(1)农田、沙质草地和固定沙丘土壤水分都在7月份最高;农田7月份土壤水分与5、6月份的差异显著,沙质草地7月份的与8、9月份的差异显著,而固定沙丘7月份的与生长季其他月份的都有显著差异;(2)3个样地土壤水分随年份有逐渐增加的趋势;(3)农田、沙质草地和固定沙丘0-160cm平均土壤含水量分别为20.69%,7.63%,3.61%,农田土壤水分明显高于沙质草地和固定沙丘,而且3种样地间土壤水分差异显著;(4)3个样地土壤水分随土层厚度增加呈"先增加后减少,最后又增加"的趋势;农田0-20cm土壤水分与20-40cm,40-60cm,120-140cm及140-160cm的差异显著;沙质草地0-20cm土壤水分除与140-160cm有显著差异外,与其他土层均无显著差异;固定沙丘土壤水分只有100-120cm与140-160cm的差异显著;(5)研究区降雨的季节分配极不均匀,主要集中在4-10月的生长季,占全年降雨量的92.58%;0~5mm降雨占全年降雨事件的73.29%,但其降雨量只占全年降雨量的25.1%;降雨间隔期以0~10d为主,占全年无降雨期的37.6%;0~10d降雨间隔期出现的频数最高,占全年间隔期频数的86.9%;(6)当土壤水分较高时,其变异性会随着土壤水分的增加而减小,而当土壤水分较低时,其变异性随土壤水分的增加而增加。  相似文献   

19.
采用树木环割法,于2009-11—2010-03,利用Li-8100土壤呼吸自动观测系统,观测研究了位于河南省济源市的华北山区南部低丘山地40a生刺槐林土壤微生物呼吸速率(Rh)的时间变化特征及其与土壤温度和湿度的关系。结果表明:(1)在非主要生长季,Rh日变化不明显,但呈现出明显的日际变化特征;Rh平均值为0.426μmol.m-2.s-1。(2)林地5cm深处土壤温度与Rh之间存在显著的指数相关关系(P〈0.01),且Rh随5cm深处土壤温度的升高而增大,表示二者关系的参数Q10值是1.86,说明非主要生长季Rh对温度的变化十分敏感;Rh与土壤含水量呈显著的线性相关关系(P〈0.01),且Rh与5cm深处的土壤温度和土壤体积含水量均有很好的复相关关系(P〈0.01)。比较偏相关系数表明,影响Rh的主要土壤物理因子是土壤水分。  相似文献   

20.
土壤水分是季节性干旱区农业生产的限制因子,研究紫色土坡耕地土壤水分变化特征有助于解决坡耕地的生态水文型干旱问题。以金沙江下游季节性干旱区紫色土坡耕地为研究对象,使用PR2/6土壤剖面水分测定仪在雨季对5°、10°、15°、20°、25°、30°坡面10、20、30、40、60、100 cm土层的土壤体积含水量进行连续监测,分析紫色土剖面含水量变化特征。结果表明:坡耕地土壤水分随时间的变化特征可分为四个阶段:6月初至6月底为土壤水分恢复期,7月初至8月中旬为土壤水分快速补充期,8月中旬至8月底为土壤水分消耗期,9月初至9月底为土壤水分回升期。土体剖面含水量自上而下呈现逐渐增加的趋势,且各层含水量都具有显著的差异性和相关性。6个监测点最大含水量均出现在100 cm处,为19.67% ~ 33.82%,最小含水量大多出现在20 cm处,为3.07% ~ 11.71%。土壤含水量变异系数自上而下逐渐降低,10 cm处土壤含水量变异系数最大,为8.67% ~ 56.28%,100 cm处最小,为0.68% ~ 14.76%;土壤含水量随着坡度的增加总体上呈减小趋势,在0 ~ 60 cm土层,10°监测点的土壤含水量最高,为12.20% ~ 20.40%,在0 ~ 100 cm土层,25°监测点的土壤含水量较低,为4.28% ~ 19.22%。降雨和坡度对土壤含水量均有显著影响,二者对土壤含水量的影响随土层深度的增加而减弱。研究结果对紫色土坡面水资源高效利用及提高农业生产力具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号