首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkyl hydroxytyrosyl ethers (methyl, ethyl, propyl, and butyl ethers) have been synthesized from hydroxytyrosol (HTy) in response to the increasing food industry demand of new lipophilic antioxidants. Having confirmed that these compounds reach portal blood partially unconjugated and thus are effectively absorbed, their potential antioxidant activity was evaluated in the human hepatocarcinoma cell line (HepG2). The effects of 0.5-10 μM alkyl hydroxytyrosyl ethers on HepG2 cell integrity and redox status were assessed as well as the protective effect against oxidative stress induced by tert-butylhydroperoxide (t-BOOH). Cell viability (Crystal violet) and cell proliferation (BrdU assay) were measured as markers of cell integrity, concentration of reduced glutathione (GSH), generation of reactive oxygen species (ROS), and activity of antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR) as markers of redox status and determination of malondialdehyde (MDA) as a marker of lipid peroxidation. Direct treatment of HepG2 with alkyl hydroxytyrosyl ethers induced slight changes in cellular intrinsic antioxidants status, reducing ROS generation and inducing changes in GPx and GR activities. Pretreatment of HepG2 cells with alkyl hydroxytyrosyl ethers counteracted cell damage induced by t-BOOH, partially after 2 h and completely after 20 h, by increasing GSH and decreasing ROS generation, MDA levels, and antioxidant enzyme (GPx and GR) activity. According to these results the alkyl hydroxytyrosyl ethers show clear protective effects against oxidative stress, related to their lipophilic nature, that are similar to or even higher than those of their precursor, HTy.  相似文献   

2.
The exposure of mammalian cells to UV light induces various deleterious responses. Some of the major harmful effects are DNA damage, cell membrane peroxidation, systemic immune suppression, and aging acceleration. Reactive oxygen species and free radicals are believed to be largely responsible for some of the deleterious effects of UV upon cells. Typical administration of antioxidants has recently proved to represent a successful strategy for protecting the cells against UV-mediated oxidative damage. The objective of this study was to investigate the inhibitory effect of phenolic acids (caffeic acid, ferulic acid, gallic acid, and protocatechuic acid) on oxidative damage in human erythrocytes and low-density lipoprotein (LDL) induced by UVB radiation. The results revealed that the thiobarbituric acids reactive substances induced by UVB were decreased from 2.78 to 0.12-0.89 nmol MDA/mg protein in erythrocyte ghost and from 0.72 to 0.14-0.43 nmol MDA/mg protein in LDL by the addition of phenolic acids (100 muM). Caffeic acid, ferulic acid, and gallic acid exhibited over 85 and 60% inhibitory effect toward UVB-induced oxidation in erythrocytes and LDL, respectively. Phenolic acids, especially gallic acid, could maintain the normal glutathione levels and glutathione peroxidase activity in hemolysate from erythrocytes that were exposed to UVB radiation in comparison with untreated control. The results indicate that the antioxidant activities of caffeic acid and ferulic acid play a potential role in protection against UVB oxidative damage to human erythrocytes and LDL.  相似文献   

3.
Epicatechin conjugates obtained from grape have shown antioxidant activity in various systems. However, how these conjugates exert their antioxidant benefits has not been widely studied. We assessed the activity of epicatechin and epicatechin conjugates on the erythrocyte membrane in the presence and absence of a peroxyl radical initiator, to increase our understanding of their mechanisms. Thus, we studied cell membrane fluidity by fluorescence anisotropy measurements, morphology of erythrocytes by scanning electron microscopy, and finally, red cell membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our data showed that incubation of red cells in the presence of epicatechin derivatives altered membrane fluidity and erythrocyte morphology but not the membrane protein pattern. The presence in the medium of the peroxyl radical initiator 2,2'-azobis(amidinopropane) dihydrochloride (AAPH) resulted in membrane disruptions at all levels analyzed, causing changes in membrane fluidity, cell morphology, and protein degradation. The presence of antioxidants avoided protein oxidation, indicating that the interaction of epicatechin conjugates with the lipid bilayer might reduce the accessibility of AAPH to membranes, which could explain in part the inhibitory ability of these compounds against hemolysis induced by peroxidative insult.  相似文献   

4.
As an abundant ingredient in coffee, chlorogenic acid (CGA) is a well-known antioxidant. Although some works have dealt with its radical-scavenging property, the present work investigated the protective effects of CGA on the oxidation of DNA and on the hemolysis of human erythrocytes induced by 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) by means of chemical kinetics. The inhibition period (t(inh)) derived from the protective effect of CGA on erythrocyte and DNA was proportional to its concentration, t(inh) = (n/R(i))[CGA], where R(i) refers to the radical-initiation rate, and n indicates the number of radical-propagation chains terminated by CGA. It was found that the n of CGA to protect erythrocytes was 0.77, lower than that of vitamin E (2.0), but higher than that of vitamin C (0.19). Furthermore, CGA facilitated a mutual protective effect with VE and VC on AAPH-induced hemolysis by increasing n of VE and VC. CGA was also found to be a membrane-stabilizer to protect erythrocytes against hemin-induced hemolysis. Moreover, the n of CGA was only 0.41 in the process of protecting DNA. This fact revealed that CGA served as an efficient antioxidant to protect erythrocytes more than to protect DNA. Finally, the reaction between CGA and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS(+*)) or 2,2'-diphenyl-1-picrylhydrazyl (DPPH) revealed that CGA was able to trap radicals by reducing radicals more than by donating its hydrogen atoms to radicals.  相似文献   

5.
A chicken model for studying the effects of antioxidants in the diet on oxidative status was set up. Chickens fed a semi-synthetic diet low in antioxidants showed a remarkable decrease in erythrocyte stability toward H(2)O(2) or 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH), but increases in catalase activity in liver, carbonyls in insoluble muscle proteins, and enhanced lipid oxidation in heat-treated liver samples compared to that of conventionally fed chickens. Thus, this chicken model proved to be more susceptible to oxidative changes than conventionally fed chickens, reflecting a low antioxidative defense. Supplementing this low antioxidant diet with 10% apple/broccoli mixture counteracted these changes, except for activity of catalase in the liver and AAPH-induced lysis of erythrocytes. Supplementation with 10% sweet corn only reduced the carbonyl content in insoluble proteins. However, neither low antioxidant diet nor vegetable supplements affected selected antioxidative enzymes or oxidative stability of lipids in heat-treated muscle tissue.  相似文献   

6.
Milled oat groat pearlings, trichomes, flour, and bran were extracted with methanol and the fractions tested in vitro for antioxidant capacity against low-density lipoprotein (LDL) oxidation and R-phycoerythrin protein oxidation in the oxygen radical absorbance capacity (ORAC) assay. The oxidative reactions were generated by 2,2'-azobis(2-amidinopropane) HCl (AAPH) or Cu(2+) in the LDL assay and by AAPH or Cu(2+) + H(2)O(2) in the ORAC assay and calibrated against a Trolox standard to calculate Trolox equivalents (1 Trolox equivalent = 1 TE = activity of 1 micromol of Trolox). The antioxidant capacity of the oat fractions was generally consistent with a potency rank of pearlings (2.89-8.58 TE/g) > flour (1.00-3.54 TE/g) > trichome (1.74 TE/g) = bran (1.02-1.62 TE/g) in both LDL and ORAC assays regardless of the free radical generator employed. A portion of the oat antioxidant constituents may be heat labile as the greatest activity was found among non-steam-treated pearlings. The contribution of oat tocols from the fractions accounted for <5% of the measured antioxidant capacity. AAPH-initiated oxidation of LDL was inhibited by the oat fractions in a dose-dependent manner, although complete suppression was not achieved with the highest doses tested. In contrast, Cu(2+)-initiated oxidation of LDL stimulated peroxide formation with low oat concentrations but completely inhibited oxidation with higher doses. Thus, oats possess antioxidant capacity most of which is likely derived from polar phenolic compounds in the aleurone.  相似文献   

7.
The aim of this work was to examine the mechanisms involved in the in vivo antioxidant effects of epicatechin (EC), a major flavonoid in the human diet. The influence of EC in different oxidative biomarkers (reactive oxygen species (ROS) production, intracellular glutathione, activity of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD)) was studied in the model organism Caenorhabditis elegans . Under thermal stress condition, exposure of the worms (wild type N2 strains) to EC (200 μM) significantly reduced ROS levels (up to 28%) and enhanced the production of reduced glutathione (GSH). However, no significant changes were appreciated in the activities of GPx, CAT, and SOD, suggesting that further activation of these antioxidant enzymes was not required once the concentration of ROS in the EC-treated worms was restored to what could be considered physiological levels.  相似文献   

8.
Solvent-extracted bamboo leaf extract (BLE) containing chlorogenic acid, caffeic acid, and luteolin 7-glucoside was evaluated in vitro for free radical scavenging and antioxidant activities using a battery of test methods. BLE exhibited a concentration-dependent scavenging activity of DPPH radical. BLE prolonged the lag phase and suppressed the rate of propagation of liposome peroxidation initiated by peroxyl radical induced by 2,2'-azobis(2-amidinopropane dihydrochloride (AAPH) at 37 degrees C. BLE also prevented human low-density lipoprotein oxidation, mediated by Cu(2+), which was monitored by the lower formation of conjugated diene and fluorescence and a reduced negative charge of apo-B protein. Finally, BLE protected supercoiled DNA strand against scission induced by AAPH-mediated peroxyl radical. Prooxidant activity of BLE was seen in a Cu(2+)-induced peroxidation of structured phosphatidylcholine liposome, indicating catalytic peroxidation due to a relatively high reducing power of BLE. It was concluded that the BLE has both antioxidant activity and prooxidant activity; the antioxidant activity was attributed to free radical scavenging activity, and the prooxidant activity, albeit minor, resulted from the reducing power of plant phenolics in the presence of transitional metal ions.  相似文献   

9.
Antioxidative activities of the extracts from Sargassum siliquastrum were determined using the inhibition of red blood cell (RBC) hemolysis induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) radicals, suppression of lipid peroxidation using rat brain homogenate, and scavenging activity of superoxide radicals. The dichloromethane fraction isolated from the methanol crude extract by differential solvent extractions exhibited the strongest antioxidant activity in both RBC hemolysis and lipid peroxidation assays. This fraction was further fractionated into four subfractions F1-F4 by silica gel column chromatography. F1 was found to be most effective in protecting RBC against AAPH radicals and in inhibiting lipid peroxidation. On the basis of thin-layer chromatography and UV and IR spectra analyses, all subfractions contained phenolic compounds. However, there was no correlation between the above antioxidant potency and total phenolic compounds estimated by using the Folin-Ciocalteau method.  相似文献   

10.
Both selenium and phycocyanin have been reported to show potent cancer chemopreventive activities. In this study, we investigated the in vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin (Se-PC) purified from selenium-enriched Spirulina platensis. The antioxidant activity of Se-PC was evaluated by using four different free radical scavenging assays, namely, the 2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) assay, 1,1-diphenyl-2-picryhydrazyl (DPPH) assay, superoxide anion scavenging assay, and erythrocyte hemolysis assay. The results indicated that Se-PC exhibited stronger antioxidant activity than phycocyanin by scavenging ABTS, DPPH, superoxide anion, and 2,2'-azobis-(2-amidinopropane)dihydrochloride free radicals. Se-PC also showed dose-dependent protective effects on erythrocytes against H 2O 2-induced oxidative DNA damage as evaluated by the Comet assay. Moreover, Se-PC was identified as a potent antiproliferative agent against human melanoma A375 cells and human breast adenocarcinoma MCF-7 cells. Induction of apoptosis in both A375 and MCF-7 cells by Se-PC was evidenced by accumulation of sub-G1 cell populations, DNA fragmentation, and nuclear condensation. Further investigation on intracellular mechanisms indicated that depletion of mitochondrial membrane potential (DeltaPsi m) was involved in Se-PC-induced cell apoptosis. Our findings suggest that Se-PC is a promising organic Se species with potential applications in cancer chemoprevention.  相似文献   

11.
We evaluated the imbalance of the oxidative status in zebra mussel (Dreissena polymorpha) specimens exposed for 96?h to environmentally relevant concentrations (0.1, 0.5, and 1???g/L) of the 2,2??,4,4??,5,6??-hexa BDE (BDE-154). The activities of three antioxidant enzymes, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and the phase II detoxifying enzyme glutathione S-transferase (GST), were measured in the cytosolic fraction from a pool of zebra mussels. Significant variations in the activity of each single enzyme were noticed at each treatment, indicating that exposure to BDE-154 was able to impair the oxidative status of treated bivalves through the increase of reactive oxygen species. In detail, SOD and GPx were significantly induced, while CAT and GST were depressed with respect to the baseline levels. These data have confirmed that the raise of oxidative stress is the main cause of the BDE-154-induced genetic damage observed in a previous study on the zebra mussel.  相似文献   

12.
Oxidative stress is involved in the initiation and propagation of chronic intestinal pathologies. Bioactive peptides such as egg yolk-derived phosvitin phosphopeptides (PPP3) have been previously shown to reduce in vitro oxidative stress by up-regulating glutathione synthesis and antioxidant enzyme activities. Peptide and gene expression profile analysis of the PPP3 peptides can provide insight into structures involved in signal transduction mechanisms in the antioxidative stress response. The objectives of this research were to identify the PPP3 amino acid sequences before and after simulated gastrointestinal digestion and to assess the genes influenced by PPP3. Peptide sequences were analyzed using ESI Q-TOF-MS/MS, and the expression profile of 84 human oxidative stress and antioxidant defense genes were analyzed. Undigested PPP3 was composed of three main peptides: GTEPDAKTSSSSSSASSTATSSSSSSASSPNRKKPMDE (phosvitin-PV residues 4-41), NSKSSSSSSKSSSSSSRSRSSSKSSSSSSSSSSSSSSKSSSSR (PV residues 155-197), and EDDSSSSSSSSVLSKIWGRHEIYQ (PV residues 244-257) and their fragments. There was limited degradation of PPP3 after gastrointestinal digestion as deduced from the fragment sizes of digested PPP3, which ranged from 5 to 32 amino acids. These fragments were rich in contiguous serines and, in some cases, monoesterified with phosphate. Both undigested and digested PPP3 significantly reduced IL-8 secretion in H(2)O(2)-induced Caco-2 cells, indicating that antioxidative stress bioactivity is retained upon digestion. After PPP3 pretreatment, antioxidant genes associated with oxygen and reactive oxygen species (ROS) metabolism and cellular responses to chemical stimulus, oxidative stress, and ROS are up-regulated in the presence and absence of oxidative stress, thereby contributing to the prevention of intestinal oxidative stress and the promotion of gut health.  相似文献   

13.
The protein from the seeds of melinjo ( Gnetum gnemon ) was purified using a precipitation method and ion exchange chromatographic techniques to identify the potent antioxidant and free radical scavenging activities. Two antioxidant protein fractions were isolated from G. gnemon seed with molecular weights of approximately 30 kDa (Gg-AOPI) and 12 kDa (Gg-AOPII) by SDS-PAGE. The N-terminal amino acid sequence of Gg-AOPII is Gly-Asn-Gly-Lys-Ala-Thr-Val-Ala-Ile-Leu-Val-Lys-Glu-Lys-Val-Glu-Tyr-Gly-Glu-Glu, and the result of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis showed that they were distinct from each other; no protein in database matching was found to both Gg-AOPI and Gg-AOPII. The antioxidant or free radical scavenging activities of Gg-AOPs were investigated by employing in vitro assay systems including the inhibition of linoleic acid autoxidation, scavenging effect on α,α-diphenyl-β-picrylhydrazyl free radical (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), reducing power, chelating abilities of metal ions Cu(2+) and Fe(2+), and protections against hydroxyl radical-mediated DNA damages. The result showed that two protein fractions exhibited significant (p < 0.05) antioxidant activities against free radicals such as DPPH, ABTS, and superoxide anion and showed activities similar to those of glutathione (G-SH) and BHT in a linoleic acid emulsion assay system. Moreover, Gg-AOPI and Gg-AOPII also exhibited notable reducing power and strong chelating effect on Fe(2+) and protected hydroxyl radical induced oxidative DNA damage. The data obtained by the in vitro systems obviously established the antioxidant potency of Gg-AOPs.  相似文献   

14.
Three wheat antioxidant fractions were investigated for their potential effects on oxygen diffusion-concentration products in liposomes prepared with egg yolk phosphatidycholine (yolk PC) and rat liver PC (liver PC), using the electron spin resonance (ESR) oximetry method with 2,2'-azobis(2-aminopropane) dihydrochloride (AAPH) and 2,2'-azobis(2,4-dimethylvaleronitrile) (AMVN) as radical generators. Both water-soluble wheat antioxidant (WWA) and the second lipophilic antioxidant (LWA2) fractions were able to inhibit oxygen diffusion-concentration product induced by either AAPH or AMVN. The first lipophilic wheat antioxidant (LWA1) fraction only showed antioxidant activity in yolk PC liposomes with AAPH as the radical initiator but had pro-oxidant activity under other testing conditions. Both liposome composition and radical initiator altered the antioxidative properties of WWA, LWA1, and LWA2. WWA also showed the strongest DPPH(*) scavenging capacity on a per grain weight basis. HPLC analysis showed that WWA had a much higher level of total phenolic acids, which may partially explain their antioxidant properties. In addition, wheat antioxidants significantly down-regulated the mRNA of HMG-CoA reductase, the key enzyme for cholesterol biosynthesis, and up-regulated the mRNA of cholesterol 7alpha-hydroxylase (CYP7A1), the key enzyme for cholesterol metabolism, in primary rat hepatocytes. These data indicated the potential of wheat antioxidants in reducing the risk of atherosclerosis through multimechanisms.  相似文献   

15.
Ginsenoside, the major active component in Panax ginseng, which has been used in traditional Chinese medicine, contains a series of derivatives of the triterpene dammarane being attached by some sugar moieties. To clarify the relationship between the structure of ginsenoside and its properties, 11 individual ginsenosides, along with the central structures of ginsenoside, protopanaxadiol and protopanaxatriol, are used in 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) induced hemolysis of human erythrocytes, a good experimental model to research free radical induced membrane damage and to evaluate the antioxidative or prooxidative activities of various antioxidants conveniently. It is found that the central structures of ginsenosides, either protopanaxadiol or protopanaxatriol, play a prooxidative role in AAPH-induced hemolysis of erythrocytes. As to the individual ginsenoside, if there are no sugar moieties attached to the 20-position of the triterpene dammarane, the ginsenoside acts as a prooxidant, that is, Rg3, Rh2, and Rg2. A glucose attached to the 6-position instead of the 20-position sugar moieties can make the ginsenoside an antioxidant, that is, Rh1. The antioxidants among ginsenosides follow two different mechanisms that can be expressed mathematically by the Boltzmann equation, that is, Rc and Rb1, and a polynomial equation, that is, Re, Rd, R1, Rg1, Rb3, and Rh1. The orders of antioxidative ability are Rc > Rb1 and Re > Rd > R1 > Rg1 > Rb3 > Rh1, respectively.  相似文献   

16.
Previously, we have found phosphopeptides (PPPs) from hen egg yolk phosvitin possess a potent antioxidative activity against oxidative stress in human intestinal epithelial cells, Caco-2. However, their biological activity at the cellular level has not yet fully understood. The objective of this study is to evaluate the regulation of glutathione (GSH) biosynthesis-associated and antioxidant enzymes against oxidative stress in Caco-2 cells using an in vitro model. Treatment of 1 mM H2O2-induced Caco-2 cells with PPPs increased cellular GSH levels, concomitant with a significant increase in gamma-glutamylcysteine synthetase (gamma-GCS) activity and the expression of gamma-GCS heavy subunit mRNA. Furthermore, intracellular glutathione reductase, glutathione S-transferase, and catalase activities were elevated by PPPs. In addition, PPPs with high content of phosphorus showed higher induction of these enzyme activities than PPPs without phosphorus. These data indicate that oligophosphopeptides from hen egg yolk phosvitin can up-regulate cellular GSH biosynthesis-associated enzymes activity and antioxidative activities, which play key roles against tissue oxidative stress in the human intestinal epithelial cells.  相似文献   

17.
Plant-derived polyphenols may exert beneficial effects on atherosclerosis and cardiovascular diseases, in part, because of their antioxidant properties. In this study we compared the effects of unbound (free) and lipoprotein-associated red wine components on in vitro antioxidant protection of human low-density lipoprotein (LDL). Preincubation of LDL (1 mg protein/mL) with 0-2.5% (v/v) red wine for 3 h at 37 degrees C followed by gel filtration to remove unbound red wine components resulted in a dose-dependent, up to 4-fold increase in LDL-associated antioxidant capacity (measured as Trolox equivalents). Similar results were obtained with high-density lipoprotein (HDL) and bovine serum albumin (BSA). Furthermore, LDL was subjected to oxidation by copper and aqueous peroxyl radicals (2,2'-azobis[2-amidinopropane] dihydrochloride, AAPH). Under both types of oxidative stress, LDL-associated and free red wine components significantly decreased oxidation of the lipoprotein's protein moiety (assessed by tryptophan fluorescence) and lipid moiety (assessed by thiobarbituric acid-reactive substances and conjugated dienes). Similar protective effects of red wine components were observed against HDL oxidation. In contrast, red wine exerted a pro-oxidant effect on copper-induced oxidation of BSA tryptophan residues, while protecting them from AAPH-induced oxidation. Ascorbate strongly enhanced the protective effect of red wine against copper-induced LDL oxidation, and had an additive effect against AAPH-induced oxidation. Our data indicate that red wine components bind to LDL and HDL and protect these lipoproteins from metal ion-dependent and -independent protein and lipid oxidation.  相似文献   

18.
Although there is evidence for a positive involvement of the antioxidant defense system in plant response to salt stress, there is poor information regarding the influence of mycorrhizal symbiosis on enzymatic and nonenzymatic antioxidant defense in wheat under saline conditions. The present article focuses on the contribution of mycorrhizae to antioxidant defense in salt‐stressed wheat plants. Two wheat (Triticum aestivum L.) cultivars, Sids 1 and Giza 168, were grown under nonsaline or two saline conditions (4.7 and 9.4 dS m–1) with and without arbuscular mycorrhizal fungi (AMF) inoculation. Salt stress considerably decreased root colonization and plant productivity, particularly in Giza 168. Interestingly, mycorrhizal colonization alleviated the adverse effect of salt stress and significantly enhanced plant productivity, especially in Sids 1. The concentration of glycinebetaine, the activities of antioxidative enzymes (superoxide dismutase, peroxidase, catalase, and glutathione reductase) and the concentrations of antioxidant molecules (glutathione and ascorbate) were increased under saline conditions; these increases were more significant in salt‐stressed mycorrhizal plants, especially in Sids 1. Salt stress induced oxidative damage through increased lipid peroxidation, electrolyte leakage, and hydrogen peroxide concentration, particularly in Giza 168. Mycorrhizal colonization altered plant physiology and significantly reduced oxidative damage. Elimination of reactive oxygen species (ROS) can be one of the mechanisms how AMF improve wheat adaptation to saline soils and increase its productivity.  相似文献   

19.
4-(3,4-Dihydroxybenzoyloxymethyl)phenyl-O-β-d-glucopyranoside (DBPG), a polyphenolic glycoside, isolated from Origanum vulgare has shown 1,1-diphenyl-2-picrylhydrazyl (DPPH(?))-scavenging capacity in previous work. This study demonstrated that DBPG exhibits antioxidant activity by a series of DPPH(?), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS(?+)), and superoxide anion radical (O(2)(?-)) radical-scavenging assays. The inhibition of lipid peroxidation (LP) by DBPG exceeded that by l-ascorbic acid (AA) in a liposome model system. Adding DBPG to mouse liver and brain tissue inhibited the formation of thiobarbituric acid reactive substances (TBARS) to a greater extent than did trolox. In the oxygen stress test, BNLCL2 and HaCaT cells pretreated with DBPG showed increased activities of glutathione peroxidase (GPx), perhaps as a result of reduction of the production of reactive oxygen species (ROS). These findings proved that DBPG had antioxidant activities and a cytoprotective effect in hepatocytes and keratinocytes, suggesting that DBPG may be a useful food and cosmetic additive.  相似文献   

20.
Several studies have implicated the potent antioxidant properties of lycopene. However, most of the studies used only the (all-E)-isomer. (Z)-Isomers of lycopene were found in substantial amounts in processed foods and in human tissues. In the present study, we investigated in vitro the antioxidant activity of (5Z)-, (9Z)-, and (13Z)-lycopene compared to the (all-E)-isomer. Additionally, prolycopene, the (7Z,9Z,7'Z,9'Z)-isomer found in tangerine tomatoes, was analyzed. No significant differences were found between the isomers in ferric reducing antioxidant power assay and in bleaching the radical cation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), both based on ET mechanisms. In contrast, scavenging activity against peroxyl radicals generated by thermal degradation of 2,2'-azobis(2-amidinopropane) (AAPH) was higher in the (Z)-isomers. (5Z)-Lycopene was most antioxidant in scavenging lipid peroxyl radicals, evaluated by analyzing the inhibition of MbFe(III) lipid peroxidation of linoleic acid in mildly acidic conditions (pH 5.8) in a micellar environment, modeling a possible antioxidant action in the gastric compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号