首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 413 毫秒
1.
木质素结构中含有丰富的羟基与芳香官能团,具备大分子阻燃成炭剂的结构要求且成本低廉,绿色无污染。焦磷酸哌嗪(PPAP)是一种氮-磷协同的新型环保阻燃剂,具有优异的阻燃性能。将木质素与焦磷酸哌嗪按质量比1∶1复配得到一种木质素和焦磷酸哌嗪复合膨胀型阻燃剂,并将其用于阻燃改性环氧树脂(EP)。采用锥形量热分析(CONE)、极限氧指数测试(LOI)、垂直燃烧试验(UL-94)对所制备的“(木质素+焦磷酸哌嗪)复合膨胀型阻燃剂+环氧树脂”阻燃材料的燃烧行为与阻燃性能进行探究。采用热质量分析(TGA)、力学性能测试分析了阻燃材料的热稳定性与力学性能。采用傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM),对环氧树脂复合材料燃烧后所得残炭层的化学结构、表面各元素的原子百分比、微观形貌进行分析表征。结果表明:木质素和焦磷酸哌嗪复合膨胀型阻燃剂(L+P)的引入提高了环氧树脂的阻燃性能与热稳定性。与纯环氧树脂相比,“质量分数20%的(木质素+焦磷酸哌嗪)复合膨胀型阻燃剂+环氧树脂”阻燃材料的极限氧指数由22.2%提高至27.5%,最大热释放速率、总烟释放量分别降低了60.11...  相似文献   

2.
为了提高马尾松胶合板的阻燃性能,以膨涨型聚氨酯防火涂料为研究对象,采用美国阿特拉斯(ATLAS)公司生产的HRR3热释放率系统和配合HC2氧指数测定仪、XSHF1防火涂料(小室法)等先进阻燃检测设备, 按照美国航空标准(FAA)测试试样,研究阻燃剂(成炭剂、脱水炭化催化剂、发泡剂)不同添加量对马尾松胶合板阻燃性能的影响。结果表明当阻燃剂按80%的比例加入时,马尾松胶合板的阻燃性能最好,试件的氧指数值显著增大,最高热释放率、2 min总热释放量和5 min内总热释放量显著降低。西北林学院学报22卷第6期黄晓东阻燃剂用量对马尾松胶合板阻燃性能影响研究  相似文献   

3.
为获得性能良好的阻燃型聚丙烯基木塑复合材料(WPC),从理论上估算WPC中木粉(WF)所含的羟基(—OH),以指导调整膨胀型阻燃剂(IFRs)中聚磷酸铵(APP)与季戊四醇(PER)的比例及用量,通过正交试验对其进行优化。利用前期试验得到的协效剂组MgO/EG/SiO_2(其组成为m(MgO)∶m(可膨胀石墨,EG)∶m(SiO_2)=1∶5∶5,配比为m(IFRs)∶m(MgO/EG/SiO_2)=1.00∶0.18)对优化后的APP/PER进行阻燃增效,进一步提高WPC的阻燃性能。结果表明,当m(APP)∶m(PER)=2.0∶0.6、IFRs的质量分数为25%时的IFRs1对WPC的阻燃效果最为显著。IFRs1及MgO/EG/SiO_2的同时加入可有效提高WPC的热稳定性,其残炭率提高至24.79%。WPC/IFRs1的热释放速率峰和总热释放量比WPC分别降低了33.9%和10.4%,WPC/IFRs1/MgO/EG/SiO_2的热释放速率峰和总热释放量比WPC分别降低了39.15%和15.99%。硅烷偶联剂KH550、钛酸酯偶联剂NDZ-201和铝酸酯偶联剂DL-411-DF处理均能提高WPC/IFRs1/MgO/EG/SiO_2的力学性能和阻燃性能,其中KH550的效果最好。  相似文献   

4.
在具有核-壳结构的共挤出木塑复合材料的壳层结构中添加硼酸锌(ZB)阻燃剂、聚酰胺-6(PA6)微纤维,制备具有核-壳结构的共挤出木粉-高密度聚乙烯复合材料,分别对材料的微观形貌、剖面密度、力学性能、耐水性能、阻燃性能进行测试,分析硼酸锌阻燃剂、聚酰胺-6微纤维对木塑复合材料性能的影响.结果表明:具有核-壳结构的木塑复合材料,弯曲强度、断裂应变、抗冲击强度与仅含核层结构的木塑复合材料相比,均有显著提升;加入硼酸锌阻燃剂的木塑复合材料,热释放速率峰值、总热释放量、烟释放速率、总产烟量均呈现出显著下降结果,点燃时间增加,并大幅降低了材料阻燃剂的总使用量.在具有核-壳结构的共挤出木塑复合材料的壳层结构中加入聚酰胺-6微纤维,能有效改善复合材料的弯曲模量、弯曲强度,对阻燃性能有积极影响.  相似文献   

5.
以三聚氰胺改性脲醛树脂(MUF)与聚乙酸乙烯酯树脂(PVAc)共混物作为成膜树脂,以磷酸脒基脲(GUP)、聚磷酸铵(APP)、三聚氰胺(MEL)和季戊四醇(PER)的组合物为膨胀阻燃体系,制备适用于木材的膨胀型水性阻燃涂料。以锥形量热仪法、傅里叶变换红外光谱法和热重分析法为评价手段,对膨胀型水性木材阻燃涂料涂覆的胶合板A、仅涂覆成膜树脂的胶合板M和素胶合板S的阻燃性能进行了对比分析。结果表明:胶合板A的热释放速率、总热释放、烟释放速率均比胶合板M、胶合板S的显著降低,但其残余物质量最高,并显著延长了点燃时间。在传统的膨胀型阻燃体系中引入GUP后,与APP在不同温度区间起到催化成炭作用,有利于提高涂料的阻燃性能。胶合板A的涂层受热辐射后炭化彻底,表明GUP-APP-MEL-PER是MUF-PVAc共混树脂的有效膨胀型阻燃体系。  相似文献   

6.
采用不含卤素的阻燃剂三聚氰胺(Mel)、甲基酸二甲酯(DMMP)、对通用191^#型不饱和聚酯树脂(UPR)、低含磷量反应型的不饱和聚酯树 (FRUPR)进行阻燃处理,讨论了阻燃剂的加入量对UPR氧指数的影响;氧指数实验,热重分析实验表明:三聚氰胺(Mel)的引入,可减少含磷阻燃剂的用量,提高含磷UPR体系的阻燃性。  相似文献   

7.
浸渍纸复合阻燃薄竹工艺的研究   总被引:1,自引:0,他引:1  
对浸渍纸复合阻燃薄竹工艺进行研究,分析了树脂含量、热压时间、热压压力、阻燃剂种类在不同工艺水平下对复合阻燃薄竹的氧指数及热释放率影响的主次程度与显著程度,探讨浸渍纸复合阻燃薄竹生产的最佳工艺参数。结果表明:阻燃剂种类、树脂含量对复合阻燃薄竹的阻燃性能有重要的影响,当阻燃剂种类为三聚氰胺树脂(MF)、含量为200%时,阻燃薄竹具有最好的阻燃效果,其热释放率为120-130 kW·min·m-2,氧指数为35%-37%。  相似文献   

8.
思茅松Pinus kesiya是云南的主要用材树种之一,主要用于制备胶合板。为了进一步改善思茅松胶合板的综合性能,提高其使用安全性,主要研究了思茅松单板的阻燃浸渍性,思茅松阻燃胶合板的力学性能和燃烧性能。研究结果表明:在阻燃剂质量分数为120 gkg-1,浸渍温度100 ℃的条件下,随着阻燃剂浸渍时间从1 h增加到5 h,思茅松单板的浸渍率依次增加;绝干单板的浸渍率要高于气干单板的浸渍率;并且4种不同阻燃剂(FR-A,FR-B,FR-C和FR-D)在相同的条件下其浸渍率各不相同,与阻燃剂的化学成分及其对木材的吸附性有关。另外,随着浸渍时间从1 h增加到5 h,单板阻燃剂浸渍率提高,胶合强度降低,氧指数和烟密度增加。当阻燃剂为FR-A时,胶合强度从0.97 MPa降低到0.73 MPa,氧指数从41.89%增加到64.88%,烟密度等级从1.20增加到10.95;而阻燃剂为FR?鄄B时,胶合强度从1.09 MPa降低到1.07 MPa,氧指数从42.35%增加到44.11%,烟密度等级从10.57增加到17.95。可见在胶合板中添加阻燃剂后会对板材的力学性能产生不利影响,但会改善板材的阻燃性;并且不同的阻燃剂对板材的力学性能和燃烧性能可产生不同的影响。此外,加入阻燃剂后,板材的发烟性提高,为了改善其发烟性,可进一步在胶合板中加入抑烟剂。利用阻燃剂来改善思茅松胶合板的阻燃性能是可行的,但阻燃剂的种类和配方尚需进一步进行研究和探索。表4参11  相似文献   

9.
为了研究出一种阻燃性能良好的阻燃刨花板,分析了3种不同胶黏剂和阻燃剂对刨花板物理力学性能和燃烧性能的影响。结果表明:不同的胶黏剂种类对刨花板的各项性能具有显著的影响,在添加阻燃剂后多数刨花板的物理力学性能下降,仅异氰酸酯胶黏剂(MDI)刨花板的弹性模量(MOE)显著提高(P=0.002)。在添加阻燃剂前酚醛树脂胶黏剂(PF)和MDI均具有良好的抑烟作用;添加阻燃剂后,PF的抑烟作用增强,但不利于提高板材的阻燃性能;而MDI的发烟量增加,却可以显著地提高板材的阻燃性能。添加阻燃剂后,脲醛树脂胶黏剂(UF)刨花板的烟密度等级和氧指数分别是空白刨花板的77.86%~103.64%和124.68%~153.21%;PF刨花板的烟密度等级和氧指数是空白刨花板的27.8%~87.53%和123.95%~142.6%;而MDI刨花板的烟密度等级和氧指数是空白刨花板的108.75%~203.04%和137.5%~163.24%。总之,PF具有优异的抑烟性能但阻燃性能一般,MDI具有很好的阻燃性能但会增加板材的发烟量,可进一步在研究阻燃剂与胶黏剂之间作用机制基础上开发出一种阻燃抑烟性能优良的阻燃剂或制备出阻燃性能优异的刨花板。图1表5参12  相似文献   

10.
利用氧指数测定仪和锥形量热仪,研究不同质量分数FRW阻燃剂浸渍杨木素板和饰面炭化杨木单板的阻燃性能。结果表明,质量分数8%以上FRW阻燃剂浸渍处理的炭化杨木单板阻燃性可达到日本标准JISD1322-77中规定的难燃一级品标准;随着FRW阻燃剂浸渍质量分数的增加,阻燃炭化杨木单板的热释放速率、总热释放量、烟比率和总烟释放量均呈降低趋势,说明阻燃炭化杨木单板具有较佳的阻燃和抑烟性能。  相似文献   

11.
用锥形量热仪(CONE)、热重分析(TGA)、极限氧指数(LOI)等研究手段分析了可膨胀石墨(EC)及其与聚磷酸铵(APP)复配对木粉—聚丙烯复合材料燃烧性能的影响.结果表明:随EG质量分数的增加,复合材料的热释放速率(HRR)、总热释放量(THR)、烟释放速率(RSR)和总烟释放量(TSR)均有显著降低,极限氧指数增...  相似文献   

12.
壳聚糖(CS)/聚磷酸铵(APP)层层自组装(LBL)是一种表面改性工艺,通过对竹束单元进行热处理,研究其对CS-TiO2/APP自组装重组竹(BS)的阻燃抑烟性能的影响及协同关系。采用不同热处理温度(160、180℃)和处理时间(2、3、4 h)对竹束单元进行水蒸气保护的热处理,首先对不同的竹束特性进行研究,优选竹束热处理工艺条件,然后在竹束表面进行CS-TiO2/APP自组装后制备重组竹,分析热处理对重组竹阻燃抑烟性能的影响及与LBL阻燃层的协同作用。结果表明,热处理后的竹束热稳定性提高,同时表面阻燃涂层增重率相比未热处理提高了27.0%,LBL后的极限氧指数较未热处理直接负载的提高了14.4%。综合不同热处理工艺下竹束的特性以及和负载LBL涂层的竹束阻燃效果,确定160℃下3 h为重组竹的热处理工艺条件。通过锥形量热测试,热处理后的BS(W-HT)重组竹较BS重组竹,燃烧热释放速率峰值pk-HRR降低了30.1%,产烟速率pk-SPR峰值降低了50.8%,热处理后的BS(W-HT)/CS-TiO2/APP重组竹与B...  相似文献   

13.
以木粉和聚丙烯为主要原料,填充改性炭黑(M-CB)和可膨胀石墨(EG)制备阻燃抗静电木粉-聚丙烯木塑复 合材料,并进行力学性能、表面电阻率、氧指数及燃烧性能、热失重行为、阻燃性能测试。结果表明:加入15 g EG、10 g M-CB 后,木塑复合材料的拉伸强度、弯曲强度和冲击强度分别增加了2.0%、5.2% 和15.6%,电阻率下降到了 108 ;与空白样相比,复合材料的起始分解温度从255.0 ℃上升到了272.5 ℃,木粉最高分解温度由349.2 ℃下降 到了287.5 ℃,聚丙烯的最高分解温度由448.1 ℃上升到了477.9 ℃,在800 ℃下的残炭率由9.9% 上升到了 33.5%;点燃时间从3 s 增加到了14 s,在500 s 时总热释放量下降了56.5%,残炭率提高了5 倍,表现出显著的阻燃 与抗静电性能。   相似文献   

14.
目的公共场所和住宅起火后易引燃木质材料,迅速燃烧,火势蔓延,并产生大量有毒烟气,导致人员伤亡。为了进一步提高公共场所消防安全水平,以及降低火灾危险性,需对木材进行阻燃处理。本研究用植酸与三聚氰胺处理木材,研究改性材阻燃性能,旨在为木材阻燃提供新思路,丰富木材阻燃体系。方法使用两步浸渍法在青杨内部浸入植酸?三聚氰胺阻燃剂,研究改性木材的增重、增容、热解与燃烧性能;分析改性材燃烧后的残炭形貌,探讨植酸三聚氰胺复配阻燃剂应用于木材的阻燃机理。结果与对照组相比,15%植酸与5%三聚氰胺复合处理组(PM2)的热释放速率峰值和总热释放量分别降低了91.24%和79.05%,热释放抑制效果较好;与对照组相比,PM2组显示出更好的抑烟性能,烟释放速率减少了52.94%。与P15%组相比,PM2组的一氧化碳平均产率减小了51.29%,具有明显的减毒作用。PM2组的残炭量显著提高,较P15%组提升了69.58%,与对照组相比增加了278.4%。结论植酸?三聚氰胺阻燃体系能够进入木材,植酸与三聚氰胺复配处理能减少阻燃木材燃烧的热释放速率、总热释放量、总烟释放量与CO产率。植酸能催化木材脱水和炭化反应,使热解反应在较低温度发生,促使木材产生较多残炭。三聚氰胺能减缓木材热解速率,植酸与三聚氰胺协同作用可促使木材生成更多残炭。   相似文献   

15.
:以三聚氰胺改性脲醛树脂(MUF)与聚乙酸乙烯酯树脂(PVAc)共混物作为成膜树脂,以磷酸脒基脲(GUP)、聚磷酸铵(APP)、三聚氰胺(MEL)和季戊四醇(PER)的组合物为膨胀阻燃体系,制备适用于木材的膨胀型水性阻燃涂料。以锥形量热仪法、傅里叶变换红外光谱法和热重分析法为评价手段,对膨胀型水性木材阻燃涂料涂覆的胶合板A、仅涂覆成膜树脂的胶合板M和素胶合板S的阻燃性能进行了对比分析。结果表明:胶合板A的热释放速率、总热释放、烟释放速率均比胶合板M、胶合板S的显著降低,但其残余物质量最高,并显著延长了点燃时间。在传统的膨胀型阻燃体系中引入GUP后,与APP在不同温度区间起到催化成炭作用,有利于提高涂料的阻燃性能。胶合板A的涂层受热辐射后炭化彻底,表明GUP-APP-MEL-PER是MUF-PVAc共混树脂的有效膨胀型阻燃体系。   相似文献   

16.
以无纺纸作为基底材料,通过在聚氯乙烯糊树脂中添加无机阻燃剂与阻燃型增塑剂的方法,制备出无纺纸基/聚氯乙烯壁纸,并研究其阻燃性、热稳定性、消烟性和力学性能。结果表明,无机阻燃剂2ZnO?3B2 O3?3.5H2 O可提高无纺纸基/聚氯乙烯壁纸的阻燃性和热稳定性,增塑剂磷酸三甲苯酯可辅助提高材料的阻燃效果;以无纺纸为基材,以2ZnO?3B2 O3?3.5H2 O为无机阻燃剂,以磷酸三甲苯酯为增塑剂,可制备出具有高阻燃性、高消烟性和高力学性能的无纺纸基/聚氯乙烯壁纸;材料在阻燃改性后的极限氧指数可达32.5,比改性前提高了51.2%;最大烟密度为11.8%,比改性前降低了21.9%;横、纵向湿抗张强度分别达到1.20和1.23 kN?m-1,比改性前提高了6.2%和7.0%。改性后的材料满足国家标准GB 8624-2012中B1级材料的阻燃要求。研究结果可为制备阻燃型的无纺纸基/聚氯乙烯壁纸开辟一条有效的途径。  相似文献   

17.
在纤维板生产过程中添加无机阻燃剂,能显著提高其阻燃性能,这对于人身安全至关重要。通过使用氢氧化铝与硼酸锌复配改性中密度纤维板来研究其阻燃性能,对制备的阻燃纤维板进行热重/差示扫描量热以及锥形量热分析。结果表明,无机复配阻燃剂可以显著提高纤维板的热稳定性(残余物量达45%)和烟释放量(降低60%),均显著高于氢氧化铝或硼酸锌单独处理时的阻燃纤维板。利用无机阻燃剂自身不同的阻燃机制,发挥协同效应,可以实现高性能阻燃剂的配制和阻燃纤维板的制造。  相似文献   

18.
采用注塑法制备竹粉/PP发泡复合材料,并对不同添加量硅烷偶联剂KH570复合材料的流变及力学性能进行了研究。频率扫描结果显示,所有复合材料均表现出剪切变稀行为;经过KH570改性的复合材料,其储能模量、损耗模量及复数黏度与未改性时的相比,总体呈现下降趋势,流变性能改善。剪切速率扫描结果表明,所有复合材料均表现出典型的非牛顿假塑性流体行为;随着KH570用量的增加,非牛顿指数增大,体系表观黏度对剪切速率的依赖性减小;同时材料的力学性能先提高后降低,添加2%KH570时,复合材料的力学性能最佳,与未改性的复合材料相比,比弯曲、比拉伸和比冲击强度提高了6.1%-23.8%。  相似文献   

19.
纳米SiO2 -APP 对木塑复合材料界面特性及力学性能的影响   总被引:1,自引:0,他引:1  
用聚磷酸铵(APP)与阻燃协效剂纳米二氧化硅(SiO2 )制备了阻燃型木塑复合材料,并利用FTIR、SEM 和力学 性能测试仪,探讨纳米SiO2 的添加量(2%、4%、6%)和APP 的添加量(8%、10%、12%)对木塑复合材料的界面性 能和力学性能的影响。结果表明:1)当纳米SiO2 添加量为2% ~6%、APP 添加量为8% ~10%时,两者可以均匀地 分布在木塑复合材料的孔隙中,并且纳米SiO2 可以与木质纤维形成Si—O—C 结合,改善复合材料的界面性能;但 是,APP 添加量增加至12%时,纳米SiO2 和APP 之间会发生团聚,降低了复合材料的性能。2)当纳米SiO2 添加量 为2% ~6%、APP 添加量为8% ~10%时,木塑复合材料的拉伸强度和弯曲强度均比未添加纳米SiO2 、APP 的有所 增加,拉伸断裂伸长率基本保持不变,冲击强度降低。通过双因素方差分析可知,纳米SiO2 、APP 的添加量以及两 者之间的交互作用对拉伸性能、弯曲性能无显著影响,但APP 的添加量以及两者之间的交互作用对冲击强度有显 著影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号