首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two field experiments in which straw has been removed or incorporated for 17 yr (loamy sand) and 10 yr (sandy clay loam) were sampled to examine the effect of straw on the C and N contents in whole soil samples, macro-aggregate fractions and primary particle-size separates. The particle size composition of the aggregate fractions was determined. Aggregates were isolated by dry sieving. Straw incorporation increased the number of 1–20 mm aggregates in the loamy sand but no effect was noted in the sandy clay loam. Straw had no effect on the particle size composition of the various aggregate fractions. After correction for loose sand that accumulated in the aggregate fractions during dry sieving, macro-aggregates appeared to be enriched in clay and silt compared with whole soil samples. Because of the possible detachment of sand particles from the exterior surface of aggregates during sieving operations, it was inferred that the particle size composition of macro-aggregates is similar to that of the bulk soil. The organic matter contents of the aggregate fractions were closely correlated with their clay + silt contents. Differences in the organic matter content of clay isolated from whole soil samples and aggregate fractions were generally small. This was also true for the silt-size separates. In both soils, straw incorporation increased the organic matter content of nearly all clay and silt separates; for silt this was generally twice that observed for clay. The amounts of soil C, derived from straw, left in the loamy sand and sandy clay loam at the time of sampling were 4.4 and 4.5 t ha?1, corresponding to 12 and 21% of the straw C added. The C/N ratios of the straw-derived soil organic matter were 11 and 12 for the loamy sand and sandy clay loam, respectively.  相似文献   

2.
The spatial variability of soil aggregate stability and its relationship to runoff and soil erosion were examined in a catena of soils and vegetation in a semiarid environment at the Rambla Honda field site (Tabernas, Almería, SE Spain) to evaluate the validity of structural stability as a soil erosion indicator in sandy loam range soils. The influence of soil properties and topography on the variability of aggregate stability was also examined. Methods include: 1) aggregate stability assessment at 12 sites (3 repetitions per site) on the hillslope by two methods: a) aggregate size distribution by dry sieving b) water drop test; 2) soil organic carbon content; 3) particle size distribution determination; 4) terrain attributes derived from a digital elevation model (1-m resolution); 5) monitoring runoff and erosion for nearly 3 years in eight (10 × 2 m) plots distributed over the hillslope. Results: 41% of the average soil mass is formed by > 2-mm aggregates. However, wet aggregate stability is poor, with a mean (of a total of 1440 aggregates) of only 26 drop impacts necessary to break up a wet aggregate (pF = 1). Significant relationships were found in the number of water drops required for aggregate breakdown and runoff and erosion rates. However, no significant relationships between the mean weight diameter of aggregates under dry conditions and runoff or erosion rates were observed. The relationships of aggregates with other soil properties, hillslope position and proximity to plants are also analysed. The most significant correlation found was between the number of drop impacts and soil organic matter content. The stability of topsoil aggregates seems to be a valuable indicator of field-assessed runoff and inter-rill erosion of sandy loam range soils under semiarid conditions.  相似文献   

3.
Detachment of soil particles by the processes of splash from rainfall and shallow flow from surface runoff is influenced by soil cohesion, soil aggregate properties, and characteristics of this flow. We have evaluated relationships between rates of detachment, aggregate size, and tensile strength of the soil. Soil and water losses were determined in the laboratory from sieved air‐dry samples on three aggregate size ranges of two clay loam soils differing in particle‐size distribution and organic matter. Tensile strength was measured for each aggregate size range. The results showed that as clod size increased, detachment rates increased and interaggregate tensile strength decreased. Wash erosion increased as initial clod size increased despite a decrease in runoff. Final rates of loss by splash were greater from the largest clods than from the smaller clods. Finally, splashed material was larger in size than material washed off. The fact that the size of the splashed material was larger than washed‐off material shows that material in the wash suffered more impact by raindrops and thus was more likely to be fragmented.  相似文献   

4.
In a pot culture study, saw dust, vermiculite, lignite, magnesium oxide, wheat straw, paddy shell, ground nut shell and farm yard manure (FYM) were incorporated in to wet sandy loam and clay soils at the rate of 30 g/kg. Relative changes in soil structure and moisture retention were evaluated at the end of 160 day incubation period. All the amendments except vermiculite, ground nut shell and FYM in sandy loam soil and except vermiculite, lignite, magnesium oxide in clay soil significantly increased MWD and aggregates > 1 mm. Structural index was significantly improved by all the amendments except vermiculite and FYM in sandy loam and vermiculite and magnesium oxide in clay soil. Moisture retention and release in clay soil in the wet range (0 to 0.33 bar) were considerably increased by soil amendments except magnesium oxide, vermiculite and lignite. Almost all the amendments significantly increased moisture retention in the wet range in sandy loam soil. However, moisture release at 50 mbar was reduced only by wheat straw in sandy loam soil.  相似文献   

5.
The critical state parameters of intact samples of a sandy loam (Eutric Cambisol) and a clay loam (Gleysol) were estimated in a constant cell volume triaxial apparatus. Samples were taken under wet and dry conditions. The parameters describing the clay loam were the more variable. This was true of both its initial condition and its response to deformation. Under dry conditions, the sandy loam was less sensitive to increasing stress but compacted more at low stress than the clay loam. Isotropic stress compacted the wet soils until the percentage saturation reached about 85–95% and axial loading caused little further compaction. The difference in strength between soils was greater for the wet samples, whereas the corresponding compactibility differences were greater under dry conditions. The sandy loam was stiffer than the clay loam and the shear modulus decreased exponentially with increasing specific volume before deformation. The rebound slope was about one-twentieth of the compression index for the dry soils and about one-third of the compression index for the wet soils. A simple model of recompression accounted for plastic deformation below the virgin compression line, where the critical state model usually assumes elasticity. The proposed model reproduced the main observed features of repeated isotropic loading.  相似文献   

6.
Naturally occurring wetting‐and‐drying cycles often enhance aggregation and give rise to a stable soil structure. In comparatively dry regions, such as large areas of Australia, organic‐matter (OM) contents in topsoils of arable land are usually small. Therefore, the effects of wetting and drying are almost solely reliant on the clay content. To investigate the relations between wetting‐and‐drying cycles, aggregation, clay content, and OM in the Australian environment, an experiment was set up to determine the relative influence of both clay content (23%, 31%, 34%, and 38%) and OM amendments of barley straw (equivalent to 3.1 t ha–1, 6.2 t ha–1, and 12.4 t ha–1) on the development of water‐stable aggregates in agricultural soil. The aggregate stability of each of the sixteen composite soils was determined after one, three, and six wet/dry cycles and subsequent fast and slow prewetting and was then compared to the aggregate stabilities of all other composite soils. While a single wet/dry cycle initiated soil structural evolution in all composite soils, enhancing macroaggregation, the incorporation of barley straw was most effective for the development of water‐stable aggregates in those soils with 34% and 38% clay. Repeated wetting‐and‐drying events revealed that soil aggregation is primarily based on the clay content of the soil, but that large straw additions also tend to enhance soil aggregation. Relative to untreated soil, straw additions equivalent to 3.1 t ha–1 and 12.4 t ha–1 increased soil aggregation by about 100% and 250%, respectively, after three wet/dry cycles and fast prewetting, but were of less influence with subsequent wet/dry cycles. Straw additions were even more effective in aggregating soil when combined with slow prewetting; after three wet/dry cycles, the mean weight diameters of aggregates were increased by 70% and 140% with the same OM additions and by 160% and 290% after six wet/dry cycles, compared to samples without organic amendments. We suggest that in arable soils poor in OM and with a field texture grade of clay loam or finer, the addition of straw, which is often available from preceding crops, may be useful for improving aggregation. For a satisfactory degree of aggregate stability and an improved soil structural form, we found that straw additions of at least 6.2 t ha–1 were required. However, rapid wetting of straw‐amended soil will disrupt newly formed aggregates, and straw has only a limited ability to sustain structural improvement.  相似文献   

7.
Abstract

Variations in the plant growth media were achieved by combining kaolinite clay (<lμm esd.), silt (2–50μm esd.) and sand (100–250 μm esd.) in various ratios. Peds of different sizes were separated from an Okolona clay soil and used as a growth media. A layer (3 cm thickness) of the sand, silt or clay and their combinations were intercalated between sandy loam soil material in a lucite coated cardboard carton. After 21 days the plants were harvested and analyzed for a number of growth parameters and related to the physical and micromorphology of the central control layer.

Germination and emergence of sorghum seed were delayed in the finer aggregates. An increase in aggregate size increased the root elongation. An examination of thin sections showed that most of the roots in the finer aggregates were grown in interpedal regions whereas in the larger aggregates roots were found in both the intrapedal as well as interpedal regions.

An increase in clay content of the central layer reduced the root growth. Silt also reduced root growth but not to the extent of the clay. Maximum root growth and penetration occurred in the mixture containing about 50 percent sand. Better root growth was observed in a sandy to sandy loam texture than clay to clay loam texture.  相似文献   

8.
Development of a fine tilth in Vertisols increases infiltration, plant-available water and ease of cultivation and produces a fine seed bed. The tilth-mellowing properties of a strongly self-mulching Vertisol from Zimbabwe were investigated by applying different types of wetting to a worked soil and examining macromorphological features, size, density, strength and friability of the resulting clods/aggregates, developed through successive wet/dry cycles. Wetting regimes were chosen to simulate likely field conditions and included rapid flood-, slow and fast capillary-, simulated rainfall- and vapour-wetting. Tilth development was compared to that of field soils. All wetting treatments in the liquid phase resulted in decreases in aggregate density. Fast capillary wetting rapidly reduced size and strength of aggregates to below that of field soils whereas slow capillary wetting similarly rapidly decreased size but reduced strength more slowly. Flood wetting caused little change in size but aggregates showed a small decrease in strength. Rainfall wetting resulted in changes intermediate between these extremes. There was a significant linear relationship between strength and porosity of aggregates! For rainfall- and flood-wetting, friabilities were at a maximum after one wet/dry cycle but subsequently decreased. Vapour wet/dry cycles reduced strength but not density of worked soils, implying changes in internal microstructure without measurable porosity change. Hypotheses to explain these changes are put forward.  相似文献   

9.
Soil microaggregates contain particles of different sizes, which may affect their potential to store organic carbon (OC). A variety of methods can be used to isolate microaggregates from the larger soil structures, among which wet sieving approaches are widely employed. We developed a novel dry crushing method that isolates microaggregates along failure planes due to mechanical stresses rather than hydraulic pressures and compared the mechanical stability, OC contents and microbial community composition between dry-crushed and wet-sieved samples with contrasting clay contents. Dry-crushed samples exhibited a higher stability and bacterial diversity compared to wet-sieved samples. As a result, the dry-crushed microaggregates had different size distributions when analysed dry and after wetting. In the dry state, dry-crushed microaggregates were larger and contained more sand-sized primary particles within the aggregate structures. The wetting of dry-crushed aggregates caused a disintegration of larger microaggregates and sand-sized primary particles into smaller microaggregates that contained finer particles. In the soils with lower clay contents, the diameter of dry-crushed microaggregates was 40 μm larger due to more sand-sized primary particles remaining within the aggregates. Depending on how much volume in microaggregates is occupied by large primary particles, the OC concentration increased in the soil with higher clay content. Wet-sieved size fractions also showed a similar pattern of OC distribution, whereas more primary particles were observed outside of aggregates. Wet sieving approaches disperse the soil into OC-rich aggregates and might be preferable if OC dynamics are investigated. Differences in bacterial community composition in dependence on clay content were more pronounced in dry-crushed microaggregates. If intact aggregate architectures are of interest for the isolation of soil structural units, the presented dry crushing method might provide an advantageous alternative that also better preserves bacterial diversity.  相似文献   

10.
The influence of soil amendment with fulvic + humic acid (FH) fractions, obtained from manure or peat, upon the shape, size and numerical density of aggregates in a sandy loam and a clay soil was examined using micromorphological techniques and image analysis. The effect of the FH fraction from manure (FHM) was to produce larger aggregates from the smaller ones, while the FH from peat (FHP) gave rise to a higher numerical density of smaller aggregates. Although the type of structural change was similar in the two soil types, the extent of change per g of FH was greater in the clay soil. Aggregate shape varied with treatment and soil type, but both kinds of organic matter produced vughs and a narrowing of the planes in the two soils which can be considered as signs of structural improvement.  相似文献   

11.
The influence of electrolyte concentration (EC) and sodium adsorption ratio (SAR) on the tensile strength and aggregate stability via flocculation and dispersion behaviour of an Alfisol varying in organic carbon content due to different cropping systems was assessed using a split-split plot experiment involving eight soils, three levels of EC and seven levels of SAR.

Generally, at a given SAR value, mean weight diameter (MWD) increased with organic matter status of the soil in the following order: virgin pasture>wheat>wheat-fallow. As MWD decreased, the amount of dispersible clay increased at a given SAR indicating that more surfaces exposed due to slaking of aggregates led to more clay dispersion. Statistical analysis of changes in tensile strength with various factors showed that an increase in organic matter decreased the magnitude of changes in strength induced by sodicity because organic matter tends to increase aggregate stability (higher MWD). While individual soils had significant relationships between the tensile strength of the aggregates and the amount of spontaneously dispersible clay, this relationship was poor when the results of all soils were pooled together. The amounts of dispersible clay from dry aggregates were higher than from wet aggregates and dispersive breakdown of the aggregates of sodic soils occured irrespective of the mode of wetting. The most important factor in determining the soil strength was the amount of clay dispersed during wet-sieving analysis followed by MWD.  相似文献   


12.
An experiment was conducted to determine the effect of four tillage systems (moldboard plow, chisel plow, Paraplow and no-till) on soil aggregate shear strength and bulk density. Two soils, a Canisteo clay loam (fine-loamy, mixed (calcareous), mesic, Typic Haplaquoll) and a Haig silt loam (fine, montmorillonitic, mesic, Typic Argiaquoll) were used in this study. Soil samples were collected from the 0.075–0.15-m-depth increment in 1983 and the 0.075–0.15- and 0.225–0.30-m-depth increments in 1985. Shear strength of soil aggregates 0.02–0.03 m in diameter was measured by a fall-cone penetrometer and bulk density of the same aggregates was measured by gamma-ray attenuation. Aggregates were tested at soil water matric potentials (ψm) of −0.2, −1.1 and −4.0 kPa in 1983 and at ψm of −0.2, −1.1, −4.0 and −7.9 kPa in 1985. Tillage for the 1983 growing season was conducted under very wet conditions, whereas tillage for the 1985 growing season was conducted under much drier conditions. Samples collected in 1983 showed little tillage effect on shear strength or bulk density. In 1985, tillage had an effect on shear strength and bulk density for the Haig soil, but not for the Canisteo soil. Much of the tillage effect on soil aggregate shear strength could be explained by tillage-induced changes in the aggregate bulk density. As bulk density decreased, soil aggregate shear strength decreased.Sampling depth had no effect on soil aggregate shear strength or bulk density. Matric potential had an effect on soil aggregate shear strength and bulk density. As matric potential decreased, both shear strength and bulk density increased.  相似文献   

13.
Aggregates of a fine textured (61% clay, 33% silt) soil with a high coefficient of linear expansion (20%) were exposed to successive wet/dry cycles in their natural state and after mechanical reworking. In both cases aggregate size decreased; the reworked sample initially consisted of larger aggregates, but their size fell more rapidly, and after four cycles both the reworked and natural aggregates had a similar size distribution. A model was developed which successfully predicts the proportion of aggregates in each size grade at the n th cycle from that present at the outset. The rate of decrease in aggregates size declined with aggregate size and on both reworked and natural samples the dispersion ratio was low (≤5%).  相似文献   

14.
Primary particle size distribution (PSD) of eroded sediment can be used to estimate potential nutrient losses from soil and pollution hazards to the environment. We studied eroded sediment PSDs from three saturated soils, packed in trays (20 × 40 × 4 cm), that had undergone either minimal aggregate slaking (MAS) or severe aggregate slaking (SAS) prior to a 60 mm simulated rainstorm (kinetic energy, 15.9 kJ m−3; droplet diameter, 2.97 mm) and collected runoff at regular intervals. The degree of aggregate slaking was controlled by the rate at which soils were wetted to saturation. The PSDs of eroded materials and of parent soils were determined using a laser particle size analyser. For each soil, PSD frequency curves of eroded sediments and parent soils were generally of a similar shape but most eroded sediments had larger clay contents than their parent soils. In the SAS treatment, cumulative clay enrichment in the eroded materials was inversely related to the parent soil clay content, these being 28.5, 26.6 and 22.8% richer in clay than their parent soils for the loam, sandy clay and clay, respectively. Generally, total clay loss was greater from soils with SAS than from those with MAS because of erosion rates; however, clay enrichment of sediments, compared with parent soil clay contents, was mostly greater in samples with MAS. Greater clay enrichment took place during the early seal development stage in the loam, but could not readily be associated with specific stages of seal development for the clay. In the sandy clay, the relation between seal development and clay enrichment in the eroded material depended on the initial degree of aggregate slaking. The observed large preferential loss of clay by erosion in cultivated soils re-emphasizes the need to employ erosion control measures.  相似文献   

15.
Soils with biological crusts that consist of fungal hyphae, bacteria and other small organisms usually resist erosion. However, the processes by which soil organisms stabilise air-dry aggregates against wind erosion are not well understood. We used saprotrophic fungi to examine some of these processes in a sandy clay loam (Hypercalcic Calcarosol). Soil aggregates, wetted with distilled water or glucose solution, were inoculated with one of six fungi, and incubated in darkness at 24 °C for 7 d in petri dishes under sterile conditions. Abrasion resistance (taken as resistance to wind erosion), tensile strength of soil, hot-water extractable carbohydrates (HWEC), dispersion index, pH, and hyphal length density (HLD) were each measured across all treatments. In all treatments, stability (abrasion resistance) and tensile strength, were positively related to HLD. Such relationships have not been reported elsewhere. All fungi enlarged the aggregates of the soil by cross-linkage and entanglement of particles, but with different processes, or different intensity of the processes, between species (for the same amount of substrate). The skins seen in scanning electron micrographs of stabilised soil were probably extracellular polysaccharides also produced by the fungi. We propose that the ductile failure of disks of soil, particularly those inoculated with Mucor sp., under tensile stress was due to movement of enmeshed particles, whereas the brittle failure of disks of soil inoculated with the other fungal species was due to metabolites or dispersed clay on the surface of the hyphae which limited deformation.  相似文献   

16.
土壤原始颗粒对不同破碎机制下团聚体稳定性的影响   总被引:1,自引:1,他引:0  
土壤团聚体是土壤结构的基本单元,其稳定性是描述土壤抵抗外力破坏作用的重要指标.目前常用的团聚体测定方法很少考虑到土壤原始颗粒对其不同破碎机制下稳定性的影响.以两种不同质地团聚体特征差异明显的壤质砂土和砂质黏壤土为研究对象,对土壤全样进行快速湿润(FW)、预湿润后震荡(WS)以及慢速湿润(SW)三种处理方式预处理以研究团...  相似文献   

17.
TILTH MELLOWING     
Effects of weathering action, mainly wetting and drying cycles, on the strength of the clods produced by tillage are studied. Experiments were carried out on sandy loam soils at two sites in South Australia, and on silt loam and clay soils at Wye College, England. It is found that tillage increases the amplitude of soil water content fluctuations. These bigger soil water content fluctuations resulted in a decrease in the clod strength and this in turn modified the size distribution of the clods produced by tillage in the South Australian soils. The decrease in clod strength, as measured by the drop shatter test, was followed by an increase in the proportion of the smaller aggregate size fraction produced by a second implement pass. It is suggested that, for soils in which the increase in the soil water content fluctuations after the first tillage implement pass decreases clod strength, a further implement pass should be delayed for several days. By doing this, the soil can be tilled with minimum energy and cost to produce a good seed bed.  相似文献   

18.
Current concern for soil quality has stimulated research on soil biological and chemical properties. In contrast, the mechanical behaviour of soil is somewhat neglected. We have examined the effects on soil mechanical properties of more than 100 years of contrasting fertilization employing three treatments from the Askov long‐term experiment: UNF (unfertilized), NPK (mineral fertilized) and AM (animal manured). We have measured tensile strength of aggregates when air‐dry and when adjusted to ?10, ?30 and ?100 kPa pressure potential. Four aggregate size classes were investigated (1–2, 2–4, 4–8 and 8–16 mm diameter). Soil fragmentation was characterized in the field using a drop‐shatter test. Bulk soil strength was determined in the field using a shear vane and a torsional shear box. Soil texture, pH, cation exchange capacity and microbial biomass were measured. The unfertilized soil has little soil organic matter and microbial biomass and is dense. Its aggregates were strong when dry and weak when wet. In contrast, the manured soil had strong aggregates when wet and rather weak ones when dry. The NPK soil generally had intermediate properties. The differences between the soils when dry seem to be related to differences in dispersible clay content, whereas the differences when wet are related to differences in the amount of organic binding and bonding material. The optimal water content for tillage as well as the tolerable range in water content was largest in the manured soil and smallest in the unfertilized soil. Our results indicate that soil mechanical properties should be measured over a range of water regimes to determine the effects of various long‐term fertilization treatments.  相似文献   

19.
Soil compaction has deleterious effects on soil physical properties, which can affect plant growth, but some soils are inherently resilient, whereby they may recover following removal of the stress. We explored aspects of soil physical resilience in a field‐based experiment. We subjected three soils of different texture, sown with winter wheat or remaining fallow, to a compaction event. We then monitored soil strength, as a key soil physical property, over the following 16 months. We were also interested in the associated interactions with crop growth and the microbial community. Compaction had a considerable and sustained effect in a sandy loam and a sandy clay loam soil, resulting in an increase in strength and decreased crop yields. By contrast compaction had little effect on a clay soil, perhaps due initially to the buoyancy effect of pore water pressure. Fallow clay soil did have a legacy of the compaction event at depth, however, suggesting that it was the actions of the crop, and rooting in particular, that maintained smaller strengths in the cropped clay soil rather than other physical processes. Compaction generally did not affect microbial communities, presumably because they occupy pores smaller than those affected by compaction. That the clay soil was able to supply the growing crop with sufficient water whilst remaining weak enough for root penetration was a key finding. The clay soil was therefore deemed to be much more resilient to the compaction stress than the sandy loam and sandy clay loam soils.  相似文献   

20.
Three arid soils (clay loam (CL), sandy clay (SC), and sandy loam (SL)) were amended with pecan waste products (ground pecan shells (PSHs), ground pecan husks (PHUs), and ground pecan shell biochar (PSB)), at a rate of 45 Mg/ha, packed inside cylindrical rings and kept in a humid chamber for 4 weeks. Measurements taken included volumetric moisture content as the soil dried out for 7 days, wet aggregate stability (WAS), permanganate oxidizable carbon (POXC), nitrate-nitrogen, extractable phosphorus (Olsen-P), and water-extractable potassium (K). Significant effects of soil texture, soil amendment, and their interaction were observed for all measurements. Generally, the amendments led to significant improvement in Olsen-P, K, POXC, and WAS, while amendments’ impacts on soils of different textures varied. Short-term moisture retention was dependent on soil texture, with PHU and PSB treatments having higher soil moisture retention in SL and CL soils but not in SC soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号