首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of transpiration rate on B uptake by roots and translocation to shoots of table beet (Beta vulgaris L. cv. Red Ace) plants were studied under conditions of environmental control. Plants grown under high or low relative humidities (RH) had low or high rates of transpiration, respectively. Dry weights and B contents of shoots and roots were higher among plants grown at 80% RH and B concentrations of roots were lower compared to plants grown at 30% RH. Shoot B concentrations were not affected by RH. Rates of growth and B accumulation in shoots were closely correlated for plants grown in 30% or 80% RH. These parameters were not closely correlated in roots.

The rate of B uptake per g root dry weight was greater in plants having higher transpiration rates; whereas the rate of B translocation to shoots per g dry weight was independent of transpiration rate. Thus we propose that B translocation to shoots is controlled mechanistically by rates of dry matter accumulation during stages of rapid growth, i.e. a sink effect.  相似文献   


2.
Maize plants (Zea mays L. cv. Pioneer 3906) were grown in hydroponics with four different NaCl treatments (control, 50, 100, 150 mM NaCl). Nitrogen (N) was supplied as 2 mM Ca(NO3)2 in the fully concentrated nutrient solution. Plants of half of the pots were treated with additional 1 mM NH4NO3 2 d after start of the NaCl application. After 23 d, the maize plants were harvested and contents and concentrations of nitrate, reduced N as well as chloride were determined in shoots and roots. With increasing NaCl stress net nitrate uptake and net root‐to‐shoot translocation of total N decreased significantly. Under salt stress, decreased nitrate concentrations in shoots probably caused substrate limitation of nitrate reductase. However, the concentrations of reduced N in shoots were not affected by salt stress and no N deficiency was observed. Additional N application to the 100 and 150 mM NaCl treatments did not improve plant growth. A Cl?/NO antagonism was only weakly pronounced, probably because of the Cl? exclusion ability of maize. Thus, although net uptake and net translocation of total N were markedly decreased by NaCl application, the smaller maize plants nevertheless took up enough N to meet their demand pointing to other growth‐limiting factors than N nutrition.  相似文献   

3.
ABSTRACT

To characterize the effect of silicon (Si) on decreasing transpiration rate in maize (Zea mays L.) plants, the transpiration rate and conductance from both leaves and cuticula of maize plants were measured directly. Plants were grown in nutrient solutions with and without Si under both normal water conditions and drought stress [20% polyethylene glycol (PEG) concentration in nutrient solution] treatments. Silicon application of 2 mmol L?1 significantly decreased transpiration rate and conductance for both adaxial and abaxial leaf surface, but had no effect on transpiration rate and conductance from the cuticle. These results indicate that the role of Si in decreasing transpiration rate must be largely attributed to the reduction in transpiration rate from stomata rather than cuticula. Stomatal structure, element deposition, and stomatal density on both adaxial and abaxial leaf surfaces were observed with scanning electron microscopy (SEM) and a light microscope. Results showed that changes in neither stomatal morphology nor stomatal density could explain the role of Si in decreasing stomatal transpiration of maize plants. Silicon application with H4SiO4 significantly increased Si concentration in shoots and roots of maize plants. Silicon concentration in shoots of maize plants was higher than in roots, whether or not Si was applied. Silicon deposits in cell walls of the leaf epidermis were mostly in the form of polymerized SiO2.  相似文献   

4.
Investigations on translocation of magnesium (28Mg) in sunflower plants. 1. The translocation and retranslocation of Mg respectively 28Mg in sunflower plants of different age have been investigated. The focus of this investigation was on the influence of the composition of the uptake solution and the age of plants on the uptake of Mg respectively 28Mg through the roots or through the leaves and on Mg translocation (distribution). 2. After sunflower plants were grown in Mg-deficient 1/2-Hoagland solution Mg in the plants were redistributed. The Mg in the roots, stems, cotyledons, primary and secondary leaves was retranslocated to the youngest leaves. 3. In isolated, secondary-rooted sunflower shoots grown in Mg-deficient solution, plant Mg was retranslocated into the new roots and into the youngest shoots. 4. The 28Mg-uptake from the 0,2 mM MgSO4 solution was usually higher than from the 1/10-Hoagland solution. The composition of the uptake solution had little influence on the distribution of 28Mg. Independent of the age plants had the highest 28Mg content in the young and the lowest in the old leaves. 5. Root uptake of 28Mg resulted in a more uniform distribution in the plant than leaf uptake. The old leaves had a higher 28Mg content by root uptake than by leaf uptake of 28Mg. This is probably influenced by transpiration, in combination with the xylem transport of 28Mg after root uptake, which differs from leaf uptake and translocation in basipetal direction. 6. With increased age of plants, the content of 28Mg/10 gr. fresh weight decreased and the difference in content between the parts of plant was higher. The decrease of Mg content in the oldest leaves was the highest. 7. The results showed that Mg was transportable in the phloem. The magnitude and the direction of Mg transport was determined as primarily through the assimilation stream, which is coupled with Mg transport in plants.  相似文献   

5.
Effect of abscisic acid in the root medium on Cl? translocation in soybeans under low and high salt conditions With soybeans of the varieties ?Lee”? and ?Jackson”? the effect of abscisic acid (ABA) applied to the root medium in different concentrations (10?4, 10?5 and 10?6M) on Cl? translocation was investigated. Under low salt conditions (0,5 mM NaCl) ABA, depending on its concentration, strongly decreased Cl? translocation to the shoot. At the highest ABA concentration, within 24 h the Cl? content of the shoots was reduced to about 40 % of the control, the Cl? accumulation within the roots was reduced about 25 %. However, the 10?5 and the 10?6M ABA treatment increased Cl? accumulation in the roots but decreased Cl? translocation to the shoot. Under high salt conditions (75 mM NaCI) ABA had no measureable effect on CI- translocation to the shoot. It was found that the genetic mechanism responsible for high CI- accumulation within the roots of ?Lee”? and high CI- translocation to the shoot of ?Jackson”? was not affected by ABA. ABA strongly inhibited transpiration. High ABA concentration in combination with low salt treatment decreased the transpiration rate up to 50 % of the control. ABA also inhibited transpiration under high salt conditions. This result is discussed considering the fact, that ABA added to the highly saline nutrient solution did not decrease the CI- translocation to the shoot. An investigation using 14C-ABA showed, the radioactive substance was taken up by the roots and translocated to the shoot independently from the salt treatment. The metabolism of the radioactive substance was different for roots and leaves. However, no difference could be observed by comparing the two soybeans varieties with or without salt treatment.  相似文献   

6.
Nitrogen nutrition and Al toxicity with young beech plants. II: Mineral contents of young beech plants in relation to the source of nitrogen and the Al content of the nutrient solution Young beech plants were grown in aerated nutrient solutions with different Al concentrations over a period of 14 weeks. Nitrogen was supplied in either NO3 or NH4-form. pH-changes of the solutions were either corrected to the initial pH of 4,0 after two days, or not corrected over a period of two weeks. The cation contents of the roots and shoots were greater if the nitrogen was supplied in NO3-form. Increasing Al concentrations in the nutrient solutions led to an increase in Al contents and a decrease in Ca- and Mg-contents in roots and shoots.  相似文献   

7.
Abstract

Until now, the real-time uptake and movement of manganese (Mn), an essential plant nutrient, has not been documented in plants. In this study, the real-time translocation of Mn in barley (Hordeum vulgare L. cv. Ehimehadaka no. 1) was visualized using the positron-emitting tracer 52Mn and a positron-emitting tracer imaging system (PETIS). PETIS allowed the non-destructive monitoring of Mn translocation in barley under various conditions. In all cases, 52Mn first accumulated in the discrimination center (DC) at the basal portion of the shoot, suggesting that this region may play an important role in Mn distribution in graminaceous plants. Manganese-deficient barley showed greater translocation of 52Mn from roots to shoots than did Mn-sufficient barley, demonstrating that Mn deficiency causes enhanced Mn uptake and loading into vascular bundles. In contrast, the translocation of 52Mn from roots to shoots was suppressed in Mn-excess barley. In these plants, the uptake of Mn may be suppressed or Mn may accumulate in the intercellular organelles of root cells, resulting in low rates of Mn translocation to shoots. In Mn-sufficient barley, the dark treatment did not suppress the translocation of 52Mn to the youngest leaf, suggesting that the translocation of Mn to the youngest leaf is independent of the transpiration stream. When 52Mn was supplied to the cut end of an expanded leaf, 52Mn was transported to the DC within 27 min and then retranslocated to roots and other leaves. Our results show that the translocation of Mn from the roots to the DC depends passively on water flow, but actively on the Mn transporter(s).  相似文献   

8.
Abstract

Interactions of P and Zn in roots and shoots of maize were studied in greenhouse using three different type of Egyptian soils (one alluvial and two calcareous). No Zn deficiency symptoms were seen in maize. The concentration of Zn in shoots was reduced due to P application. Its concentration in roots was hardly influenced by added P. Added P increased its concentration in the shoots much more than in the roots. Added Zn increased its concentration in roots more than in shoots. These findings suggest that applied P had no effect on Zn absorption by the roots. The main effect was a physiological inhibition in the translocation of Zn from roots to shoots, probably due to the indirect effect on increasing salt concentration in the root medium added as CaH2PO4. This may have depolarized the xylem potential resulting in increasing the anion influx and decreasing that of the cation into the relatively less negatively charged xylem vessels. As the xylem potential appears to be in the stele at the interface between the xylem vessels and the pericycle cells. Results of the calcareous soils suggest that excess of CaCO3 influences P‐Zn relationship within the plant by decreasing the translocation of Zn and increasing that of P from roots to shoots.  相似文献   

9.
For better understanding of mechanisms responsible for differences in uptake and distribution of cadmium (Cd) and nickel (Ni) in different plant species, nutrient solution experiments were conducted with four plant species [bean (Phaseolus vulgaris L.), rice (Oryza saliva L.), curly kale (Brassica oleracea L.) and maize (Zea mays L.)]. The plants were grown in a complete nutrient solution with additional 0.125 and 0.50 μM Cd or 0.50 and 1.00 μM Ni. Large differences in Cd and Ni concentrations in shoot dry matter were found between plant species. Maize had the highest Cd concentration in the shoots, and bean the lowest. Contrary to Cd, the Ni concentrations were highest in the shoots of bean and the lowest in maize. A gradient of Cd concentrations occurred in bean and rice plants with the order roots > > stalk base >> shoots (stems/sheaths > leaves). A similar gradient of Ni concentrations was also found in maize and rice plants. In the xylem sap, the Cd and Ni concentrations were positively correlated with Cd and Ni concentrations in the shoot dry matter. In the roots of maize, about 60% of Cd could be extracted with Tris‐HCl buffer (pH 8.0), while in roots of other plant species this proportion was much lower. This higher extractability of Cd in the roots of maize is in accordance with the higher mobility as indicated by the higher translocation of Cd from roots to shoots and also the higher Cd concentrations in the xylem sap in maize than in the other plant species. Similarly, a higher proportion of Ni in the soluble fraction was found in the roots of bean compared with maize which is in agreement with the higher Ni accumulation in the shoots of bean. The results of gel‐filtration of the soluble extracts of the roots indicated that phytochelatins (PCs) were induced in the roots upon Cd but not Ni exposure. The higher Cd concentrations and proportions of Cd bound to PC complexes in the roots of maize compared with the other plant species suggest that PCs may be involved in the Cd trans‐location from roots to shoots.  相似文献   

10.
Effect of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago sativa L.) and oat (Avena sativa L.) on a sewage-sludge treated soil In pot experiments with a sewage sludge treated soil, the influence of two arbuscular mycorrhizal fungi (AMF) isolates of Glomus sp. (T6 and D13) on plant growth and on the uptake of heavy metals by alfalfa (Medicago sativa L.) and oat (Avena sativa L.) was investigated. Alfalfa showed an increase of biomass with mycorrhizal infection only to a small extent. In oat AMF inoculation increased the growth of both root and shoot by up to 70% and 55% respectively. Mycorrhization raised the P-content and -uptake in alfalfa, but not in oat, in both roots and shoots. Mycorrhizal alfalfa showed lower Zn-, Cd- and Ni-contents and uptake in roots and shoots. The root length was significantly decreased in mycorrhizal alfalfa plants (up to 38%). The translocation of heavy metals into the shoot of mycorrhizal alfalfa was slightly increased. Mycorrhizal infection of oat led to higher concentrations of Zn, Cd and Ni in the root but to less Zn in the shoot. The translocation of heavy metals to the oat shoot was clearely decreased by mycorrhizal colonisation. This may be based on the ability of fungal tissues to complex heavy metals at the cell walls, thus excluding metals from the shoot. This conclusion is supported by the enhanced root length (up to 78%) of mycorrhizal oat plants in this experiment. The mycorrhizal infection seemed to protect plants against heavy metal pollution in soils. It was obvious that different host plants reacted in different ways.  相似文献   

11.
The quality of green tea is highly dependent on the concentration of free amino acids, whose profile is dominated by the unique amino acid theanine (N5‐ethyl‐glutamine). A high quality is associated with a high amino acid–to–catechin ratio, but previous results indicated that excessive chloride (Cl) supply is detrimental for amino acid accumulation. Several experiments were conducted to investigate the effect of chloride on growth and concentrations of free amino acids in young tea plants. Soil‐grown tea plants supplied with different levels of potassium (K) as K2SO4 or KCl exhibited increased concentrations of free amino acid in young shoots only when supplied with K2SO4, and the negative effect of KCl supply was mainly due to a reduced concentration of theanine. Concentrations of other nutrients in plant tissues were not influenced. The uptake of Cl and its interaction with nitrogen (N) uptake were further investigated in a second experiment, in which soil‐cultivated tea plants were supplied with varying amounts of Cl. Chloride application reduced yield of young shoots, and severity of leaf damage was related to the concentration of Cl in leaves. Nitrogen uptake was reduced by Cl addition. To verify whether the decrease of free amino acids was simply a result of inhibited NO assimilation, a third experiment was conducted, in which tea plants were NH ‐fed in the absence or presence (equivalent to the NH concentration) of Cl. Again, concentrations of theanine and total free amino acids in young shoots were reduced by Cl supply, but changes of the free–amino acid pool did not contribute to the maintenance of charge balance. However, concentration of theanine in roots, where it is synthesized, was not influenced by Cl. Total N concentrations of roots and mature leaves, uptake rate of NH , and activity of glutamine synthetase in fibrous roots and young leaves were all unaffected by Cl as well. It is suggested that translocation of theanine from root to shoot and its catabolism in young shoots might be influenced by Cl.  相似文献   

12.
Influence of VA-mycorrhiza on heavy metal uptake of oat (Avena sativa L.) from soils differing in heavy metal contamination The heavy metal uptake of mycorrhizal oat-plants (Avena sativa L.) was evaluated in pot experiments with two soils differing in heavy metal accumulation. The effect of the fungal isolates on the uptake of the immobile metals Zn and Cu differed between the two soils: In the soil “Kleinlinden” mycorrhizal colonization increased heavy metal uptake by up to 37%. In the highly contaminated soil “München”, mycorrhizal infection lead to a higher uptake (max. 59 %) in roots but to a reduced translocation to the aerial plant fractions. The higher uptake of Zn and Cu into the roots was related to the higher heavy metal concentrations in this soil. The Cd uptake showed no difference between the two soils, but was increased in the roots by VAM together with a lower translocation into the shoots. VAM-formation changed the root architecture by increasing the specific root length (m g?1 root dry matter) and the total root length (km per pot). This increased absorbing surface of the roots was a major, but not the only cause for the differences in heavy metal uptake.  相似文献   

13.
Abstract

The relationship between internal phosphorus (P) concentration [P] and kinetics of phosphate (Pi) uptake was investigated in maize seedlings grown hydroponically at different Pi concentrations (0.1–1,000 µM) and in the phase of Pi deprivation (0–10 d). The results indicated when the internal [P] was higher than 85 µmol g?1 dw, apparent Km, Cmin, and Vmax were significantly (P<0.01) related to [P]s in shoots and roots; when the internal [P] was lower than 85 µmol g?1 dw, Km and Cmin were small and only Vmax was significantly related (P<0.01) to internal [P]s. Three equations were deduced from the linear regressions of the kinetic parameters and [P]s in shoots. Using these equations, the values of apparent Km, Cmin, and Vmax of Pi uptake of seedlings grown in different circumstances were calculated according to [P]s in shoots. In all the circumstances involved, for Km and Cmin, there was a parallel relationship between the values estimated by [P]s in shoots and by the Pi‐depletion technique; for Vmax, the values estimated by [P]s in shoots were consistent with those obtained from Pi‐depletion experiments except the period of supplying Pi to the Pi‐starved seedlings over several days. These results indicated it is possible to estimate the Pi‐uptake status according to shoot P concentrations in maize plants under experimental conditions, which might be helpful to estimate in‐season status of Pi uptake of maize plants in the field.  相似文献   

14.
Influence of chelating agents on calcium translocation in the shoots of higher plants Using 28-day-old plants and shoots of bush beans as well as isolated haulms of barley taken from the field 24-hour experiments were carried out to investigate how equimolar additions of the chelating agents Na2H2 EDTA (EDTA) or citric acid to the 45CaCl2 uptake solution (0.5–1.0 mM/l) influenced Ca-translocation in the shoot. The following results were obtained:
  • 1 If Ca2+ was taken up by the intact root system, equimolar additions of EDTA to the CaCl2-uptake solution reduced Ca-uptake, and therefore the translocation of Ca to and within the shoot was also lowered.
  • 2 Chelating agents favoured Ca-translocation in the shoots only when Ca-uptake as a chelate by the plasmalemma of the root cells was prevented using DNP or when the roots were by-passed by injecting chelates or by removing the roots themselves.
  • 3 Additions of MgCl2 (0.5 mM/l) or DNP (10?5-10?4 M/l) to the 45CaCl2 uptake solution (0.5 mM/l) of isolated shoots reduced the favourable effect of equimolar EDTA-levels on Ca-translocation because Mg2+ and DNP themselves increased Ca-translocation.
  • 4 From the effects of Mg2+ and DNP it was concluded that the favourable influence of chelating agents on Ca-translocation within the shoot can be explained on the one hand by the reduction in adsorption of Ca2+ on negatively charged cell walls of the xylem and on the other hand by the diminished accumulation and precipitation of Ca in the xylem-surrounding tissue.
  • 5 On the basis of the results obtained here, stem injections of chelating agents or treatments which influence the content of native chelating agents in the plants appear to be possible starting points for the improvement of Ca-translocation within the shoot.
  相似文献   

15.
Two plant species, tomato (Lycopersicon esculentum Mill.) and bitter gourd (Momordica charantia), were used for in‐depth studies on the dynamics of silicon (Si) uptake and translocation to the shoots and compartmentation of Si in the roots. The experiments were conducted under controlled environmental conditions in nutrient solutions, which were partly amended with 1 mM Si in the form of silicic acid. At harvest, xylem exudates were collected, and Si concentrations and biomass of roots and shoots were determined. Mass flow of Si was calculated based on the Si concentration of the nutrient solution and transpiration determined in a parallel experiment. Plant roots were subjected to a fractionated Si analysis, allowing attributing Si to different root compartments. Silicon concentrations in the roots compared to the shoots were higher in tomato but lower in bitter gourd. A more ready translocation from the roots to the shoots in bitter gourd was in agreement with Si concentrations in the xylem exudates which were higher than in the external solution. In tomato, the xylem‐sap Si concentration was lower than in the nutrient solution. Calculated Si mass flow to the root exceeded Si uptake in tomato, which was consistent with the measured accumulation of Si in the root water‐free space (WFS). In contrast, Si concentration in the root WFS was lower than in the nutrient solution in bitter gourd, reflecting the calculated Si depletion at the root surface based on the comparison of Si mass flow and Si uptake. Within the roots, more than 80% of the total Si was located in the cell wall and less than 10% in the cytoplasmic fractions in tomato. In bitter gourd, between 60% and 70% of the total root Si was attributed to the cell‐wall fraction whereas the proportion of the cytoplasmic fraction reached more than 30%. Our results clearly confirm that tomato belongs to the Si excluders and bitter gourd to the Si‐accumulator plant species for which high Si concentrations in the cytoplasmic root fraction appear to be characteristic.  相似文献   

16.
The effect of increasing aluminum (Al) concentrations on root nutrient contents along with the concurrent translocation to the shoot of C4 plants prompted this study. Two‐week‐old maize (Zea mays cv XL‐72.3) plants were therefore submitted for 20 days to Al concentrations ranging from 0 to 3.00 mM in a medium with low ionic strength were used as a test system. Aluminum concentrations in root tissues showed a 3‐fold increase between 0 and 3.00 mM Al treatment, and was not detected in the shoot. Root plasma membrane‐H+ ATPase activity decreased after the 0.33 mg L‐1 Al treatment, while membrane permeability increased up to 1.00 mM Al treatment. Root and shoot biomass decreased after the 0.33 mM Al treatment. All elements in the roots, except potassium (K), manganese (Mn), and zinc (Zn) were highest for plants treated with 0.33 mM Al. Potassium increased continuously between 0 and 3.00 mM Al treatments, and iron (Fe) decreased above 0.33 mM. Only a slight decrease in nitrogen (N) was observed. All the measured nutrients in shoots, except N, Mn, and Fe decreased above 0.33 mM, but calcium (Ca) and magnesium (Mg) had little variation as Al varied. Data indicated that maximum net uptake for mineral nutrients, except Mn, occurred up to 0.33 mM Al. Translocation of phosphorus (P), K, Mn, and Zn decreased above 0.33 mM Al, N, and Ca decreased when any Al was added, and no clear trend was observed for Mg and Fe. Between the 0 and the 3.00 mM Al treatments, electrolytic conductance did not increased significantly indicating that the observed inhibitions of translocation from roots to shoots were not directly related to increasing membrane degradation.  相似文献   

17.
铅锌矿区分离丛枝菌根真菌对万寿菊生长与吸镉的影响   总被引:3,自引:0,他引:3  
盆栽试验研究了土壤不同施Cd水平(0、20、50 mg kg-1)下,接种矿区污染土壤中丛枝菌根真菌对万寿菊根系侵染率、植株生物量及Cd吸收与分配的影响。结果表明:接种丛枝菌根真菌显著提高了Cd胁迫下万寿菊的根系侵染率和植株生物量;随着施Cd水平提高,各处理植株Cd浓度和Cd吸收量显著增加。各施Cd水平下万寿菊地上部Cd吸收量远远高于根系Cd吸收量,尤其在20 mg kg-1施Cd水平下,接种处理地上部Cd吸收量是根系的3.90倍,对照处理地上部Cd吸收量是根系的2.33倍;同一施Cd水平下接种处理地上部Cd吸收量要显著高于对照。总体上,试验条件下污染土壤中分离的丛枝菌根真菌促进了万寿菊对土壤中Cd的吸收,并增加了Cd向地上部分的运转,表现出植物提取的应用潜力。  相似文献   

18.
ABSTRACT

Chromium (Cr) is an environmental pollutant and its accumulation up to toxic levels in the soil and plants by applying irrigation with untreated industrial effluents has become a major problem throughout the world, especially in developing countries like India. Various inorganic as well as organic compounds are known for their ability to reduce mobilization of heavy metals in soils for plant uptake and leaching to ground water. The present study was undertaken under controlled glasshouse conditions to assess the effectiveness of farm yard manure (FYM) applications (equivalent to 0, 1, and 2% organic matter on w/w basis) to ameliorate Cr toxicity in spinach grown in two texturally different soils (silty loam and sandy) contaminated artificially with five levels of Cr (0, 1.25, 2.5, 5.0, and 10.0 mg Cr kg? 1 soil as K2Cr2O7). The diethylene triamine pentaacetic acid (DTPA)-extractable Cr in soil (before seeding and after harvest), Cr concentration, and its uptake by shoots and roots of spinach increased with increasing level of applied Cr. Roots accumulated more Cr than shoots, which depicts limited translocation of Cr from roots to shoots. A significant decrease was observed in dry matter yield (DMY) of shoots as well as roots by raising levels of applied Cr (0 to 10 mg Cr kg? 1 soil) in both soils, but the extent of the DMY decrease was higher in the sandy loam soil. Application of FYM showed mitigating effects on Cr toxicity. The DMY was higher in the presence of FYM, than its absence, at all rates of applied Cr in both soils. The FYM application caused decline in the DTPA-extractable Cr in soil, and concentration of Cr and its uptake by shoots and roots of spinach at a given level of applied Cr. The magnitude of Cr toxicity and its amelioration by FYM application was higher in sandy soil compared to silty loam soil. The results of this study indicated that FYM application to the soil could be used as an effective measure for reducing Cr toxicity to crop plants in Cr-contaminated soils irrigated by untreated industrial effluents.  相似文献   

19.
For better understanding of mechanisms responsible for genotypic differences in uptake and translocation of cadmium (Cd) in different plant species, two maize (Zea mays L.) inbred lines (B37 and F2) and a bean (Phaseolus vulgaris L.) cultivar (Saxa) were grown in a complete nutrient solution with additional 0.5 μM Cd and 250 μM buthionine sulfoximine (BSO), an inhibitor of PC synthesis, alone or in combination. The maize line B37 had a much higher Cd content in shoots (116.2 mg Cd kg?1 dry wt.) than F2 (32.7 mg Cd kg?1 dry wt.) and bean (1.83 in leaves, and 2.85 mg Cd kg?1 dry wt. in stems), whereas in roots the Cd content was much higher in bean (602.6 mg Cd kg?1 dry wt.) than in maize (427.1 mg Cd kg?1 dry wt. in B37, and 428.2 mg Cd kg?1 dry wt. in F2). Application of BSO markedly decreased Cd contents in roots of bean and maize lines, and also Cd contents in shoots and stem basis of both maize lines, while Cd contents in leaves, stems and stem basis of bean were not reduced by BSO. In root extracts (Tris-HCl buffer, pH 8.0) the proportion of Cd in the soluble fraction was much lower in bean (29.6%) than in the maize lines B37 (58.6%) and F2 (60.1%). Compared with the whole root tissue, Cd contents in the stele of the roots were much lower, especially in bean, and decreased by BSO in both maize lines, but not in bean. Gel-chromatography of root extracts strongly suggested that in the soluble fraction about 80% of the Cd was present as Cd-phytochelatin (PC) complexes in B37, whereas in F2 this Cd fraction accounted for about 50%, and in bean only for a few percent in the soluble fraction, Our results suggest that Cd-PC complexes constitute a mobile form in plants. The lower proportion of Cd in the soluble fraction as well as lower PC production in roots of bean compared to maize lines may be the main reasons for the very low Cd translocation from roots to shoots in bean plants.  相似文献   

20.
Arbuscular mycorrhizal fungi (AMF) alter heavy metal acquisition by higher plants and may alter plant response to soil-contaminating heavy metals. Two communities comprised of Glomus intraradices and G. spurcum were investigated for their influence on copper (Cu) and zinc (Zn) resistance of Sorghum bicolor. One community was isolated from a Cu- and Zn-contaminated soil (AMF-C) and one consisted of isolates from non-contaminated soil (AMF-NC). Non-mycorrhizal (NM) sorghum plants were also included. The two community ecotypes differed in their capacity to protect sorghum from Cu and Zn toxicity and exhibited differential metal uptake into hyphae and altered heavy metal uptake by roots and translocation to plant shoots. AMF-C reduced Cu acquisition under elevated Cu conditions, but increased Cu uptake and translocation by sorghum under normal Cu conditions, patterns not exhibited by AMF-NC or NM plants. Hyphae of both fungal ecotypes accumulated high concentrations of Cu under Cu exposure. AMF-C exhibited elevated hyphal Zn accumulation and stimulated Zn uptake and translocation in sorghum plants compared to AMF-NC and NM plants. Differences in metal resistance between fungal treatments and between mycorrhizal and non-mycorrhizal plants were not related to differences in nutrient relations. The enhanced Cu resistance of sorghum and altered patterns of Cu and Zn translocation to shoots facilitated by AMF isolated from the metal-contaminated soil highlight the potential for metal-adapted AMF to increase the phytoremediation potential of mycotrophic plants on metal-contaminated environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号