首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methane emitted from the livestock sector contributes to greenhouse gas (GHG) emissions. Understanding the effects of diet on enteric methane production can help refine GHG emission inventories and identify viable GHG reduction strategies. Our study focused on measuring methane and carbon dioxide emissions, total-tract digestibility, and ruminal fermentation in growing beef cattle fed a diet supplemented with various additives or ingredients. Two experiments, each designed as a 4 x 4 Latin square with 21-d periods, were conducted using 16 Holstein steers (initial BW 311.6 +/- 12.3 kg). In Exp. 1, treatments were control (no additive), monensin (Rumensin, Elanco Animal Health, Indianapolis, IN; 33 mg/kg DM), sunflower oil (400 g/d, approximately 5% of DMI), and proteolytic enzyme (Protex 6-L, Genencor Int., Inc., CA; 1 mL/kg DM). In Exp. 2, treatments were control (no additive), Procreatin-7 yeast (Prince Agri Products, Inc., Quincy, IL; 4 g/d), Levucell SC yeast (Lallemand, Inc., Rexdale, Ontario, Canada; 1 g/d), and fumaric acid (Bartek Ingredients Inc., Stoney Creek, Ontario, Canada; 80 g/d). The basal diet consisted of 75% barley silage, 19% steam-rolled barley grain, and 6% supplement (DM basis). Four large chambers (two animals per chamber) were equipped with lasers and infrared gas analyzers to measure methane and carbon dioxide, respectively, for 3 d each period. Total-tract digestibility was determined using chromic oxide. Approximately 6.5% of the GE consumed was lost in the form of methane emissions from animals fed the control diet. In Exp. 1, sunflower oil decreased methane emissions by 22% (P = 0.001) compared with the control, whereas monensin (P = 0.44) and enzyme had no effect (P = 0.82). However, oil decreased (P = 0.03) the total-tract digestibility of NDF by 20%. When CH(4) emissions were corrected for differences in energy intake, the loss of GE to methane was decreased by 21% (P = 0.002) using oil and by 9% (P = 0.09) using monensin. In Exp. 2, Procreatin-7 yeast (P = 0.72), Levucell SC yeast (P = 0.28), and fumaric acid (P = 0.21) had no effect on methane emissions, although emissions as a percentage of GE intake were 3% (non-significant, P = 0.39) less for steers fed Procreatin-7 yeast compared with the control. This study demonstrates that sunflower oil, ionophores, and possibly some yeast products can be used to decrease the GE lost as methane from cattle, but fiber digestibility is impaired with oil supplementation.  相似文献   

2.
Fourteen Holstein steers (446 +/- 4.4 kg of initial BW) with ruminal, duodenal, and ileal cannulas were used in a completely randomized design to evaluate effects of whole or ground canola seed (23.3% CP and 39.6% ether extract; DM basis) on intake, digestion, duodenal protein supply, and microbial efficiency in steers fed low-quality hay. Our hypothesis was that processing would be necessary to optimize canola use in diets based on low-quality forage. The basal diet consisted of ad libitum access to switchgrass hay (5.8% CP; DM basis) offered at 0700 daily. Treatments consisted of hay only (control), hay plus whole canola (8% of dietary DM), or hay plus ground canola (8% of dietary DM). Supplemental canola was provided based on the hay intake of the previous day. Steers were adapted to diets for 14 d followed by a 7-d collection period. Total DMI, OM intake, and OM digestibility were not affected (P > or = 0.31) by treatment. Similarly, no differences (P > or = 0.62) were observed for NDF or ADF total tract digestion. Bacterial OM at the duodenum increased (P = 0.01) with canola-containing diets compared with the control diet and increased (P = 0.08) in steers consuming ground canola compared with whole canola. Apparent and true ruminal CP digestibilities were increased (P = 0.01) with canola supplementation compared with the control diet. Canola supplementation decreased ruminal pH (P = 0.03) compared with the control diet. The molar proportion of acetate in the rumen tended (P = 0.10) to decrease with canola supplementation. The molar proportion of acetate in ruminal fluid decreased (P = 0.01), and the proportion of propionate increased (P = 0.01), with ground canola compared with whole canola. In situ disappearance rate of hay DM, NDF, and ADF were not altered by treatment (P > or = 0.32). In situ disappearance rate of canola DM, NDF, and ADF increased (P = 0.01) for ground canola compared with whole canola. Similarly, ground canola had greater (P = 0.01) soluble CP fraction and CP disappearance rate compared with whole canola. No treatment effects were observed for ruminal fill, fluid dilution rate, or microbial efficiency (P > or = 0.60). The results suggest that canola processing enhanced in situ degradation but had minimal effects on ruminal or total tract digestibility in low-quality, forage-based diets.  相似文献   

3.
本试验研究了日粮中不同中性洗涤纤维/非纤维性碳水化合物(NDF/NFC)水平对周岁后荷斯坦奶牛生产性能、营养物质消化率、瘤胃发酵特征及甲烷产量的影响,并在此基础上建立了甲烷排放预测模型,旨在获得我国生产模型下的甲烷排放规律和甲烷转化因子,为提高奶牛能量利用效率、建立国家或区域性温室气体排放清单和探索减排策略提供科学依据和支撑。将45头体况良好,平均为15月龄的荷斯坦后备奶牛随机分为3组,每组15头牛:低日粮NDF/NFC组(NDF/NFC=0.60)、中日粮NDF/NFC组(NDF/NFC=0.75)和高日粮NDF/NFC组(NDF/NFC=0.90),试验期为70 d,包括14 d的预饲期和56 d的正试期。结果表明:1)提高日粮NDF/NFC水平显著降低了奶牛的干物质采食量、有机物采食量、平均日增重、干物质和粗蛋白的表观消化率(P<0.05);2)提高日粮NDF/NFC水平显著增加了瘤胃内总挥发性脂肪酸产量、乙酸的相对含量和乙酸/丙酸比例(P<0.05),显著降低了丙酸的相对含量(P<0.05);3)随着日粮NDF/NFC水平的提高,瘤胃甲烷和甲烷能产量、甲烷/代谢体重、甲烷/干物质采食量、甲烷/有机物采食量、甲烷/中性洗涤纤维采食量显著提高(P<0.05)。甲烷转化因子也随着日粮NDF/NFC水平的增加而显著提高(P<0.05);4)基于体重、采食量、营养物质含量和NDF/NFC分别建立了甲烷预测模型,其中基于干物质采食量和中性洗涤纤维采食量建立的预测模型的决定系数最高(R2=0.77)。因此,提高日粮中NDF/NFC水平可显著降低周岁后荷斯坦奶牛的生产性能、营养物质消化率和瘤胃内丙酸的相对含量,可显著提高瘤胃甲烷产量和甲烷转化因子。  相似文献   

4.
Two studies were conducted to determine whether a bacterial direct-fed microbial (DFM) alone or with yeast could minimize the risk of acidosis and improve feed utilization in feedlot cattle receiving high-concentrate diets. Eight ruminally cannulated steers, previously adapted to a high-concentrate diet, were used in crossover designs to study the effects of DFM on feed intake, ruminal pH, ruminal fermentation, blood characteristics, site and extent of digestion, and microbial protein synthesis. Steers were provided ad libitum access to a diet containing steam-rolled barley, barley silage, and a protein-mineral supplement (87, 8, and 5% on a DM basis, respectively). In Exp. 1, treatments were control vs. the lactic-acid producing bacterium Enterococcus faecium EF212 (EF; 6 x 10(9) cfu/d). In Exp. 2, treatments were control vs EF (6 x 10(9) cfu/d) and yeast (Saccharomyces cerevisiae; 6 x 10(9) cfu/d). Supplementing feedlot cattle diets with EF in Exp. 1 increased (P < 0.05) propionate and (P < 0.05) decreased butyrate concentrations, decreased the nadir of ruminal pH (P < 0.05), enhanced the flow of feed N (P < 0.10) to the duodenum but reduced that of microbial N (P < 0.10), reduced (P < 0.10) intestinal digestion of NDF, and increased (P < 0.10) fecal coliform numbers. Other than the increase in propionate concentrations that signify an increase in energy precursors for growth, the other metabolic changes were generally considered to be undesirable. In Exp. 2, providing EF together with yeast abolished most of these undesirable effects. Combining EF with yeast increased the DM digestion of corn grain incubated in sacco, but there were no effects on altering the site or extent of nutrient digestion. The diets used in this study were highly fermentable, and the incidence of subclinical ruminal acidosis, defined as steers with ruminal pH below 5.5 for prolonged periods of time, was high. Supplementing the diet with EF, with or without yeast, had limited effects on reducing ruminal acidosis. It seems that cattle adapted to high-grain diets are able to maintain relatively high feed intake and high fiber digestion despite low ruminal pH. The Enterococcus faecium bacterium and yeast used in this study were of limited value for feedlot cattle already adapted to high-grain diets.  相似文献   

5.
Four Holstein heifers (360 +/- 22 and 450 +/- 28 kg of BW in Exp. 1 and 2, respectively) fitted with ruminal trocars were used in 4 x 4 Latin square designs to evaluate the effects on ruminal microbial fermentation of the following: Exp. 1, no additive, alfalfa extract (30 g/d, AEX), a mixture of cinnamaldehyde (0.18 g/d) and eugenol (0.09 g/d; CIE1), and AEX and CIE1 in combination; and Exp. 2, no additive, anise oil (2 g/d), capsicum oil (1 g/d), and a mixture of cinnamaldehyde (0.6 g/d) and eugenol (0.3 g/d). Heifers were fed a 90:10 concentrate:barley straw diet (16% CP; 25% NDF) for ad libitum intake. Each period consisted of 15 d for adaptation and 6 d for sampling. On d 16 to 18, DM and water intakes were measured. On d 19 to 21 ruminal contents were sampled at 0, 3, 6, 9, and 12 h after feeding to determine ruminal pH and the concentrations of VFA, L-lactate, large peptides, small peptides plus AA (SPep+AA), and ammonia N. On d 20 and 21, samples of ruminal fluid were collected at 0 and 3 h after feeding to determine protozoal counts. In Exp. 1, CIE1 and AEX decreased (P < 0.05) total DMI, concentrate DMI, and water intake. The increase (P < 0.05) in SPep+AA and the decrease (P < 0.05) in ammonia N when supplementing CIE1 suggest that deamination was inhibited. Treatment AEX increased (P < 0.05) the acetate to propionate ratio, which is less efficient for beef production. Treatment CIE1 increased (P < 0.05) counts of holotrichs. Effects of AEX and CIE1 were not additive for many of the measured metabolites. In Exp. 2, treatments had no effect on ruminal pH, total VFA concentration, and butyrate proportion. The capsicum oil treatment increased (P < 0.05) DMI, water intake, and SPep+AA N concentration and decreased (P < 0.05) acetate proportion, branched-chain VFA concentration, and large peptide N concentration. The cinnamaldehyde (0.6 g/d) and eugenol (0.3 g/d) treatment decreased (P < 0.05) water intake, acetate proportion, branched-chain VFA, L-lactate, and ammonia N concentrations and increased (P < 0.05) propionate proportion and SPep+AA N concentration. The anise oil treatment decreased (P < 0.05) acetate to propionate ratio, branched-chain VFA and ammonia N concentrations, and protozoal counts. The results indicate that at the doses used a mixture of cinnamaldehyde and eugenol, anise oil, and capsicum oil may be useful as modifiers of rumen fermentation in beef production systems.  相似文献   

6.
Nine ruminally and duodenally cannulated (172 +/- 23 kg of initial BW; Exp. 1) and 16 intact (153 +/- 28 kg of initial BW; Exp. 2) crossbred nursing steer calves were used to evaluate the effects of creep feed supplementation and advancing season on intake, digestion, microbial efficiency, ruminal fermentation, and performance while grazing native rangeland. Treatments in both experiments were no supplement or supplement fed at 0.45% of BW (DM basis) daily. Supplement consisted of 55% wheat middlings, 38.67% soyhulls, 5% molasses, and 1.33% limestone. Three 15-d collection periods occurred in June, July, and August. In Exp. 1, ruminal evacuations were performed and masticate samples were collected for diet quality analysis on d 1. Duodenal and fecal samples were collected from cannulated calves on d 7 to 12 at 0, 4, 8, and 12 h after supplementation. Ruminal fluid was drawn on d 9 and used as the inoculate for in vitro digestibility. On d 11, ruminal fluid was collected, and the pH was recorded at -1, 1, 2, 4, 8, 12, and 24 h postsupplementation. In Exp. 1 and 2, milk intake was estimated using weigh-suckle-weigh on d 15. Steers in Exp. 2 were fitted with fecal bags on d 6 to 11 to estimate forage intake. In Exp. 1, supplementation had no effect (P = 0.22 to 0.99) on grazed diet or milk composition. Apparent total tract OM disappearance increased (P = 0.03), and apparent total tract N disappearance tended (P = 0.11) to increase in supplemented calves. Microbial efficiency was not affected (P = 0.50) by supplementation. There were no differences in ruminal pH (P = 0.40) or total VFA concentration (P = 0.21) between treatments, whereas ruminal NH3 concentration increased (P = 0.03) in supplemented compared with control calves. In Exp. 2, supplementation decreased (P = 0.02) forage OM intake (OMI; % of BW) and increased (P = 0.06) total OMI (% of BW). Supplementation had no effect on ADG (P = 0.94) or G:F (P = 0.35). Supplementation with a wheat middlings and soybean hull-based creep feed reduced forage OMI but improved total tract OM and N digestion and had minimal effects on ruminal fermentation or performance. Supplementation with a wheat middlings and soybean hulls-based creep feed might improve OM and N digestion, but might not produce significantly greater BW gains compared with no supplementation.  相似文献   

7.
Nine Angus x Gelbvieh heifers (average BW = 347 +/- 2.8 kg) with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of soybean oil or corn supplementation on intake, OM, NDF, and N digestibility. Beginning June 8, 1998, heifers continually grazed a 6.5-ha predominantly bromegrass pasture and received one of three treatments: no supplementation (Control); daily supplementation of cracked corn (Corn) at 0.345% of BW; or daily supplementation (0.3% of BW) of a supplement containing cracked corn, corn gluten meal, and soybean oil (12.5% of supplemental DM; Oil). Soybean oil replaced corn on a TDN basis and corn gluten meal was included to provide equal quantities of supplemental TDN and N. Three 23-d periods consisted of 14 d of adaptation followed by 9 d of sample collections. Treatment and sampling period effects were evaluated using orthogonal contrasts. Other than crude fat being greater (P = 0.01) for supplemented heifers, chemical and nutrient composition of masticate samples collected via ruminal evacuation did not differ (P = 0.23 to 0.56) among treatments. Masticate NDF and ADF increased quadratically (P < or = 0.003) and N decreased linearly (P = 0.0001) as the grazing season progressed. Supplementation did not influence (P = 0.37 to 0.83) forage OM intake, total and lower tract OM digestibility, ruminal and total tract NDF digestibility, or total ruminal VFA; however, supplemented heifers had lower ruminal molar proportions of acetate (P = 0.01), higher ruminal molar proportions of butyrate (P = 0.007), and greater quantities of OM digested in the rumen (P = 0.10) and total tract (P = 0.02). As the grazing season progressed, total tract OM and N and ruminal NH3 concentrations and NDF digestibility decreased quadratically (P < or = 0.04). Microbial N flow (P = 0.09) and efficiency (P = 0.04) and postruminal N disappearance (P = 0.02) were greater for Control heifers and declined linearly (P < or = 0.02) as the grazing season advanced. Depressed microbial N flow seemed to be more pronounced for Oil than for the Corn treatment. Although total digestible OM intake increased with supplementation, metabolizable protein supply was reduced in supplemented heifers. Therefore, feeding low levels of supplemental grain with or without soybean oil is an effective strategy to increase dietary energy for cattle grazing high-quality forages, but consideration should be given to reduced supply of metabolizable protein.  相似文献   

8.
The objective of this study was to evaluate the effects of physically effective NDF (peNDF) in goat diets containing alfalfa hay as the sole forage source on feed intake, chewing activity, ruminal fermentation, and nutrient digestibility. Four rumen-fistulated goats were fed different proportions of chopped and ground alfalfa hay in a 4 × 4 Latin square design. Diets were chemically similar but varied in peNDF content: low, moderate low, moderate high, and high. Dietary peNDF content was determined using the Penn State Particle Separator with 2 sieves (8 and 19 mm) or 3 sieves (1.18, 8, and 19 mm). The dietary peNDF content ranged from 1.9 to 11.7% using the 2 sieves and from 15.2 to 20.0% using the 3 sieves. Increasing forage particle length increased intake of peNDF, but decreased DMI linearly (P = 0.05). Ruminating and total chewing time (min/d) were increased linearly (P = 0.001 and 0.007, respectively) with increased dietary peNDF, resulting in a linear reduction (P < 0.001) in the duration of time that ruminal pH was less than 5.8 (10.9, 9.0, 1.2, and 0.3 h/d, respectively). Increasing dietary peNDF tended to increase the molar proportion of propionate linearly (P = 0.08) and decrease the molar proportion of butyrate (P = 0.09), but did not affect total VFA concentration. Increasing dietary peNDF linearly decreased the apparent digestibility of OM, NDF, and ADF in the total tract (P = 0.009, 0.003, and 0.008, respectively). This study demonstrated that increasing the dietary peNDF contained in alfalfa hay forage stimulated chewing activity and improved ruminal pH status, but reduced nutrient intake and efficiency of feed use.  相似文献   

9.
The individual and combined effects of 3-nitrooxypropanol (3-NOP) and canola oil (OIL) supplementation on enteric methane (CH4) and hydrogen (H2) emissions, rumen fermentation and biohydrogenation, and total tract nutrient digestibility were investigated in beef cattle. Eight beef heifers (mean body weight ± SD, 732 ± 43 kg) with ruminal fistulas were used in a replicated 4 × 4 Latin square with a 2 (with and without 3-NOP) × 2 (with and without OIL) arrangement of treatments and 28-d periods (13 d adaption and 15 d measurements). The four treatments were: control (no 3-NOP, no OIL), 3-NOP (200 mg/kg dry matter [DM]), OIL (50 g/kg DM), and 3-NOP (200 mg/kg DM) plus OIL (50 g/kg DM). Animals were fed restrictively (7.6 kg DM/d) a basal diet of 900 g/kg DM barley silage and 100 g/kg DM supplement. 3-NOP and OIL decreased (P < 0.01) CH4 yield (g/kg DM intake) by 31.6% and 27.4%, respectively, with no 3-NOP × OIL interaction (P = 0.85). Feeding 3-NOP plus OIL decreased CH4 yield by 51% compared with control. There was a 3-NOP × OIL interaction (P = 0.02) for H2 yield (g/kg DM intake); the increase in H2 yield (P < 0.01) due to 3-NOP was less when it was combined with OIL. There were 3-NOP × OIL interactions for molar percentages of acetate and propionate (P < 0.01); individually, 3-NOP and OIL decreased acetate and increased propionate percentages with no further effect when supplemented together. 3-NOP slightly increased crude protein (P = 0.02) and starch (P = 0.01) digestibilities, while OIL decreased the digestibilities of DM (P < 0.01) and neutral detergent fiber (P < 0.01) with no interactions (P = 0.15 and 0.10, respectively). 3-NOP and OIL increased (P = 0.04 and P < 0.01, respectively) saturated fatty acid concentration in rumen fluid, with no interaction effect. Interactions for ruminal trans-monounsaturated fatty acids (t-MUFA) concentration and percentage were observed (P = 0.02 and P < 0.01); 3-NOP had no effect on t-MUFA concentration and percentage, while OIL increased the concentration (P < 0.01) and percentage (P < 0.01) of t-MUFA but to a lesser extent when combined with 3-NOP. In conclusion, the CH4-mitigating effects of 3-NOP and OIL were independent and incremental. Supplementing ruminant diets with a combination of 3-NOP and OIL may help mitigate CH4 emissions, but the decrease in total tract digestibility due to OIL may decrease animal performance and needs further investigation.  相似文献   

10.
Nine ruminally cannulated cows fed different energy sources were used to evaluate an avian-derived polyclonal antibody preparation (PAP-MV) against the specific ruminal bacteria Streptococcus bovis, Fusobacterium necrophorum, Clostridium aminophilum, Peptostreptococcus anaerobius, and Clostridium sticklandii and monensin (MON) on ruminal fermentation patterns and in vivo digestibility. The experimental design was three 3 × 3 Latin squares distinguished by the main energy source in the diet [dry-ground corn grain (CG), high-moisture corn silage (HMCS), or citrus pulp (CiPu)]. Inside each Latin square, animals received one of the feed additives per period [none (CON), MON, or PAP-MV]. Dry matter intake and ruminal fermentation variables such as pH, total short-chain fatty acids (tSCFA), which included acetate, propionate, and butyrate, as well as lactic acid and NH(3)-N concentration were analyzed in this trial. Total tract DM apparent digestibility and its fractions were estimated using chromic oxide as an external marker. Each experimental period lasted 21 d. Ruminal fluid sampling was carried out on the last day of the period at 0, 2, 4, 6, 8, 10, and 12 h after the morning meal. Ruminal pH was higher (P = 0.006) 4 h postfeeding in MON and PAP-MV groups when compared with CON. Acetate:propionate ratio was greater in PAP-MV compared with MON across sampling times. Polyclonal antibodies did not alter (P > 0.05) tSCFA, molar proportion of acetate and butyrate, or lactic acid and NH(3)-N concentration. Ruminal pH was higher (P = 0.01), 4 h postfeeding in CiPu diets compared with CG and HMCS. There was no interaction between feed additive and energy source (P > 0.05) for any of the digestibility coefficients analyzed. Starch digestibility was less (P = 0.008) in PAP-MV when compared with CON and MON. In relation to energy sources, NDF digestibility was greater (P = 0.007) in CG and CiPu vs. the HMCS diet. The digestibility of ADF was greater (P = 0.002) in CiPu diets followed by CG and HMCS. Feeding PAP-MV or monensin altered ruminal fermentation patterns and digestive function in cows; however, those changes were independent of the main energy source of the diet.  相似文献   

11.
The objective of this study was to evaluate the effects of substituting wheat dried distillers grains with solubles (DDGS) for barley grain and barley silage on intake, digestibility, and ruminal fermentation in feedlot beef cattle. Eight ruminally cannulated Angus heifers (initial BW 455 ± 10.8 kg) were assigned to a replicated 4 × 4 Latin square design with 4 treatments: control, low (25%), medium (30%), and high (35%) wheat DDGS (DM basis). The diets consisted of barley silage, barley concentrate, and wheat DDGS in ratios of 15:85:0 (CON), 10:65:25 (25DDGS), 5:65:30 (30DDGS), and 0:65:35 (35DDGS; DM basis), respectively. The diets were formulated such that wheat DDGS was substituted for both barley grain and barley silage to evaluate whether wheat DDGS can be fed as a source of both energy (grain) and fiber in feedlot finishing diets. Intakes (kg/d) of DM and OM were not different, whereas those of CP, NDF, ADF, and ether extract (EE) were greater (P < 0.01) and intake of starch was less (P < 0.01) for the 25DDGS compared with the CON diet. The digestibilities of CP, NDF, ADF, and EE in the total digestive tract were greater (P < 0.05) for 25DDGS vs. CON. Ruminal pH and total VFA concentrations were not different (P > 0.15) between 25DDGS and CON diets. Replacing barley silage with increasing amounts of wheat DDGS (i.e., from 25DDGS to 35DDGS) linearly reduced (P < 0.05) intakes of DM and other nutrients without altering (P=0.40) CP intake. In contrast, digestibilities of DM and other nutrients in the total digestive tract linearly increased (P < 0.05) with increasing wheat DDGS except for that of EE. Additionally, with increasing amounts of wheat DDGS, mean ruminal pH tended (P=0.10) to linearly decrease, and ruminal pH status decreased with longer (P=0.04) duration of pH <5.5 and <5.2, and greater (P=0.01) curve area under pH <5.8 and <5.5 without altering (P > 0.19) ruminal VFA and NH(3)-N concentrations. Results indicated that wheat DDGS can be effectively used to replace both barley grain and silage at a moderate amount to meet energy and fiber requirements of finishing cattle. However, when silage content of the diet is low (<10%), wheat DDGS is not an effective fiber source, so replacing forage fiber with wheat DDGS in finishing diets decreases overall ruminal pH status even though the rapidly fermentable starch content of the diet is considerably reduced.  相似文献   

12.
Two trials were conducted to characterize the differences in utilization of dry-rolled and steam-flaked corn in a growing-finishing diet for feedlot cattle supplemented with and without ionophores. Ionophore treatments were: 1) no ionophore, 2) 33 mg/kg monensin sodium plus 11 mg/kg tylosin and 3) 33 mg/kg lasalocid sodium. In trial 1, treatment effects on feedlot performance were evaluated in a 239-d growing-finishing trial involving 180 crossbred steers (approximately 25% Brahman with the remainder represented by Hereford, Angus, Shorthorn and Charolais breeds in various proportions) with an average initial weight of 153 kg. In trial 2, treatment effects on characteristics of digestion were evaluated using six steers of similar breeding and background to those used in trial 1, with cannulas in the rumen and proximal duodenum. There were no interactions between corn processing and ionophore supplementation (P greater than .20). Average daily gain was not affected by steam-flaking as opposed to dry-rolling, however, feed intake was decreased 5.4% and feed conversion was improved 6.8% (P less than .01). Steam-flaking increased the estimated net energy value of the diet 7.7% and 8.5% for maintenance and gain, respectively (P less than .01). Steam-flaking increased the digestibility of starch 6.6% (P less than .01). Steam-flaking increased ruminal molar concentrations of propionate and decreased acetate:propionate ratio and estimated methane production (P less than .10). Both monensin-tylosin and lasalocid resulted in reduced feed intake (12.3 and 6.5%, respectively, P less than .01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The objectives of this study were to evaluate the influence of supplemental whole flaxseed level on intake and site and extent of digestion in beef cattle consuming native grass hay. Nine Angus heifers (303 +/- 6.7 kg of BW) fitted with ruminal and duodenal cannulas were used in a triplicated 3 x 3 Latin square. Cattle were given ad libitum access to chopped native grass hay (9.6% CP and 77.5% NDF, OM basis). All animals were randomly allotted to 1 of 3 experimental treatments of hay plus no supplement (control); 0.91 kg/d whole flaxseed (23.0% CP, 36.3% NDF, and 25.5% total fatty acid, OM basis); or 1.82 kg/d whole flaxseed on a DM basis. Supplemental flaxseed tended to decrease (linear, P = 0.06) forage OM intake. However, total OM intake did not differ (P = 0.29) with increasing levels of flaxseed. Total duodenal OM flow increased (linear, P = 0.05) with additional flaxseed in the diet, and no differences (P = 0.29) were observed for microbial OM flow. True ruminal OM disappearance was not affected (P = 0.14) by supplemental flaxseed. Apparent lower tract OM digestibility increased (linear, P = 0.01) with level of whole flaxseed. Apparent total tract OM digestibility was not different (P = 0.41) among treatments. Nitrogen intake increased (linear, P < 0.001) with supplemental flaxseed. In addition, total duodenal N flow tended (P = 0.08) to increase with additional dietary flaxseed. However, true ruminal N digestibility did not differ (P = 0.11) across treatment. Supplemental whole flaxseed did not influence ruminal (P = 0.13) or total tract (P = 0.23) NDF digestibility. Ruminal molar proportion of propionate responded quadratically (P < 0.001) with increasing levels of whole flaxseed. An increase in the duodenal supply of 18:3n-3 (P < 0.001), total unsaturated fatty acids (P < 0.001), and total fatty acids (P < 0.001) was observed with additional dietary whole flaxseed. Apparent postruminal 18:3n-3 disappearance tended to decrease (P = 0.07) as intake of flaxseed increased. Overall, the inclusion of 1.82 kg/d of flaxseed does not appear to negatively influence nutrient digestibility of a forage-based diet and therefore can be used as an effective supplement to increase intestinal supply of key fatty acids important to human health.  相似文献   

14.
A sheep digestion trial and two feedlot trials with cattle were conducted to study effects of an ionophore, salinomycin, on nutrient digestibility, ruminal metabolism and cattle performance. In trial 1, addition of salinomycin at 5.5, 11 or 22 ppm to 60% concentrate diets fed to ruminal-cannulated rams had no effect (P greater than .05) on apparent digestibility of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF) or starch in comparison with control diets. Apparent nitrogen (N) digestibility was increased (P less than .05) in animals fed salinomycin. Salinomycin did not affect total volatile fatty acid (VFA) concentrations in the rumen, but resulted in a linear (P less than .05) increase in molar proportion of propionate and a linear (P less than .05) decrease in molar proportions of acetate and butyrate and in acetate:propionate ratios. Shifts in VFA proportions were fully expressed within 4 d after salinomycin was added to the diet. In trial 2, salinomycin was added at 5.5, 11, 22 or 33 ppm to 85% concentrate diets fed to finishing steers. Salinomycin level had a quadratic effect (P less than .05) on daily weight gain and resulted in a quadratic (P less than .05) decrease in feed intake with a resultant average improvement of 10.3% in feed efficiency. Salinomycin (5.5, 11, 16.5 or 22 ppm) and monensin (22 ppm) were added to 90% concentrate diets in trial 3 and produced increased rates of gain without affecting feed intake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Two experiments were conducted to determine effects of oleamide on feed intake and ruminal fatty acids when the oleamide was introduced in the feed vs through a ruminal fistula (Exp. 1) or the oleamide was fed for an extended (9-wk) length of time (Exp. 2). In Exp. 1, four nonlactating Holstein cows, each fitted with a ruminal cannula, were fed four diets in a 4 x 4 Latin square design. Each period lasted 2 wk. Diets consisted of 48% corn silage and 52% concentrate on a DM basis. One diet contained no added fat (control) and a second diet contained 4.2% oleic acid. The remaining two diets were designed to expose cows to 4.2% amide (as oleamide) either through the feed (AF) or by administering oleamide into the rumen (AR) each day through the ruminal cannula. The AF diet reduced DMI similarly to results reported previously for lactating dairy cows and sheep. Intake of the oleic acid diet was intermediate between the control and AF diets. Dry matter intake was reduced by AR similarly to the AF diet. The acetate:propionate ratio in samples of ruminal contents was reduced by oleic acid but not by AF or AR. In Exp. 2, 12 steers were divided into three equal groups of two Angus and two Simmental x Angus crosses, and each group was assigned a diet containing either no added fat (control), 4% oleamide, or 4% high-oleic canola oil. All steers had ad libitum access to feed and water. Dry matter intake by steers fed the canola oil diet was not different from that by steers fed the control diet when averaged over the first 3 wk, the last 3 wk, or over the entire 9-wk study. Oleamide reduced DMI 4 kg/d over the first 3 wk of the study. However, DMI of the oleamide diet consistently increased over the 9-wk study, resulting in wk 7 to 9 DMI that was not different from that of steers fed the control diet. These results show that the reduction in feed intake when oleamide is added to cattle rations can be attributed more to physiological responses than to an undesirable unique taste or odor of the oleamide. In finishing beef steers, the decreased intake induced by oleamide was most severe during the first 1 or 2 wk of feeding but gradually lessened over time until it nearly returned to normal by wk 9.  相似文献   

16.
Methane emissions from feedlot cattle fed barley or corn diets   总被引:2,自引:0,他引:2  
Methane emitted from the livestock sector contributes to greenhouse gas emissions worldwide. Understanding the variability in enteric methane production related to diet is essential to decreasing uncertainty in greenhouse gas emission inventories and to identifying viable greenhouse gas reduction strategies. Our study focused on measuring methane in growing beef cattle fed corn- or barley-based diets typical of those fed to cattle in North American feedlots. The experiment was designed as a randomized complete block (group) design with two treatments, barley and corn. Angus heifer calves (initial BW = 328 kg) were allocated to two groups (eight per group), with four cattle in each group fed a corn or barley diet. The experiment was conducted over a 42-d backgrounding phase, a 35-d transition phase and a 32-d finishing phase. Backgrounding diets consisted of 70% barley silage or corn silage and 30% concentrate containing steam-rolled barley or dry-rolled corn (DM basis). Finishing diets consisted of 9% barley silage and 91% concentrate containing barley or corn (DM basis). All diets contained monensin (33 mg/kg of DM). Cattle were placed into four large environmental chambers (two heifers per chamber) during each phase to measure enteric methane production for 3 d. During the backgrounding phase, DMI was greater by cattle fed corn than for those fed barley (10.2 vs. 7.6 kg/d, P < 0.01), but during the finishing phase, DMI was similar for both diets (8.3 kg/d). The DMI was decreased to 6.3 kg/d with no effect of diet or phase while the cattle were in the chambers; thus, methane emissions (g/d) reported may underestimate those of the feedlot industry. Methane emissions per kilogram of DMI and as a percentage of GE intake were not affected by grain source during the backgrounding phase (24.6 g/kg of DMI; 7.42% of GE), but were less (P < 0.05) for corn than for barley during the finishing phase (9.2 vs. 13.1 g/kg of DMI; 2.81 vs. 4.03% of GE). The results indicate the need to implement dietary strategies to decrease methane emissions of cattle fed high-forage backgrounding diets and barley-based finishing diets. Mitigating methane losses from cattle will have long-term environmental benefits by decreasing agriculture's contribution to greenhouse gas emissions.  相似文献   

17.
The study examined the effects of blend of 80% canola oil and 20% palm oil (BCPO) on nutrient intake and digestibility, growth performance, rumen fermentation and fatty acids (FA) in goats. Twenty‐four Boer bucks were randomly assigned to diets containing 0, 4 and 8% BCPO on a dry matter basis, fed for 100 days and slaughtered. Diet did not affect feed efficiency, growth performance, intake and digestibility of all nutrients except ether extract. Intakes and digestibilities of ether extract, unsaturated fatty acids (FA) and total FA were higher (P < 0.05) while digestibility of C18:0 was lower (P < 0.05) in oil‐fed goats than the control goats. Total volatile FA, acetate, butyrate, acetate/propionate ratio and methane decreased (P < 0.05) with increasing BCPO but propionate, NH3‐N and rumen pH did not differ between diets. Ruminal concentration of C18:0, n‐3 FA and total FA increased (P < 0.05) while C12:0, C14:0, C15:0 and n‐6 FA decreased with increasing BCPO. Analysis of the FA composition of Triceps brachii muscle showed that concentrations of C16:0, C14:0 and C18:2n‐6 were lower (P < 0.05) while C18:1n‐9, C18:3n‐3 and C20:5n‐3 were higher in oil‐fed goats compared with control goats. Dietary BCPO altered muscle lipids without having detrimental effects on nutrient intake and digestibility and growth performance in goats.  相似文献   

18.
The effects of alpha-cyclodextrin-horseradish oil complex (CD-HR) on methane production and ruminal fermentation were studied in vitro and in steers. In the in vitro study, diluted ruminal fluid (30 mL) was incubated anaerobically at 38 degrees C for 6 h with or without CD-HR, using cornstarch as substrate. The CD-HR was added at various concentrations (0, 0.17, 0.85 and 1.7 g/L). Treatment affected neither the pH of the medium nor the number of protozoa. Total VFA increased in a linear manner (P = 0.02), and NH3-N decreased quadratically (P = 0.04) as the concentration of CD-HR increased from 0.17 g/L to 1.7 g/L. Molar proportions of acetate decreased in a linear manner (P = 0.03), and propionate increased linearly (P = 0.008) with increasing concentrations of CD-HR. Production of methane was inhibited up to 90%, whereas accumulation of dihydrogen was increased 36-fold by 1.7 g/L of CD-HR supplementation relative to controls. The effect of CD-HR on methane production, ruminal fermentation and microbes, and digestibility was further investigated in vivo using four Holstein steers in a crossover design. The CD-HR supplement was mixed into the concentrate portion of a (1.5:1) Sudangrass hay plus concentrate mixture that was fed twice daily to the steers. Ruminal samples were collected 0, 2, and 5 h after the morning feeding. No effects of CD-HR supplementation on ruminal pH (P = 0.63) or protozoal numbers (P = 0.44) were observed. Molar proportion of acetate was decreased (P = 0.04) and propionate was increased (P = 0.005) by CD-HR treatment. Molar proportion of butyrate was increased (P = 0.05) in CD-HR-supplemented steers. Ruminal NH3-N was decreased (P = 0.05) by treatment. Blood plasma glucose concentration was increased (P = 0.02) and urea-N was decreased (P = 0.04) with CD-HR supplementation. Daily DMI was decreased (P = 0.04), and apparent digestibility of DM (P = 0.13), NDF (P = 0.14), and CP tended (P = 0.14) to be increased by treatment. Methane production was decreased (P = 0.03) by 19%, and the number of methanogens was also decreased (P = 0.03). Although N retention (P = 0.11), total viable bacteria (P = 0.15), and sulfate-reducing bacteria (P = 0.17) were not significantly altered by treatment, tendencies for increases were noted with CD-HR supplementation. The number of cellulolytic (P = 0.38) and acetogenic bacteria (P = 0.32) remained unchanged by treatment. These results indicate that CD-HR supplementation can be used to decrease methane production in steers.  相似文献   

19.
Residual expressions of enteric emissions favor a more equitable identification of an animal’s methanogenic potential compared with traditional measures of enteric emissions. The objective of this study was to investigate the effect of divergently ranking beef cattle for residual methane emissions (RME) on animal productivity, enteric emissions, and rumen fermentation. Dry matter intake (DMI), growth, feed efficiency, carcass output, and enteric emissions (GreenFeed emissions monitoring system) were recorded on 294 crossbred beef cattle (steers = 135 and heifers = 159; mean age 441 d (SD = 49); initial body weight (BW) of 476 kg (SD = 67)) at the Irish national beef cattle performance test center. Animals were offered a total mixed ration (77% concentrate and 23% forage; 12.6 MJ ME/kg of DM and 12% CP) ad libitum with emissions estimated for 21 d over a mean feed intake measurement period of 91 d. Animals had a mean daily methane emissions (DME) of 229.18 g/d (SD = 45.96), methane yield (MY) of 22.07 g/kg of DMI (SD = 4.06), methane intensity (MI) 0.70 g/kg of carcass weight (SD = 0.15), and RME 0.00 g/d (SD = 0.34). RME was computed as the residuals from a multiple regression model regressing DME on DMI and BW (R2 = 0.45). Animals were ranked into three groups namely high RME (>0.5 SD above the mean), medium RME (±0.5 SD above/below the mean), and low RME (>0.5 SD below the mean). Low RME animals produced 17.6% and 30.4% less (P < 0.05) DME compared with medium and high RME animals, respectively. A ~30% reduction in MY and MI was detected in low versus high RME animals. Positive correlations were apparent among all methane traits with RME most highly associated with (r = 0.86) DME. MY and MI were correlated (P < 0.05) with DMI, growth, feed efficiency, and carcass output. High RME had lower (P < 0.05) ruminal propionate compared with low RME animals and increased (P < 0.05) butyrate compared with medium and low RME animals. Propionate was negatively associated (P < 0.05) with all methane traits. Greater acetate:propionate ratio was associated with higher RME (r = 0.18; P < 0.05). Under the ad libitum feeding regime deployed here, RME was the best predictor of DME and only methane trait independent of animal productivity. Ranking animals on RME presents the opportunity to exploit interanimal variation in enteric emissions as well as providing a more equitable index of the methanogenic potential of an animal on which to investigate the underlying biological regulatory mechanisms.  相似文献   

20.
Our objective was to measure ruminal fermentation characteristics and site and extent of nutrient digestion in sheep limit-fed an 81.6% (DM basis) concentrate diet supplemented with increasing levels of soybean oil. Eight white-faced wether lambs (39.9+/-3.0 kg BW) fitted with ruminal, duodenal, and ileal cannulas were used in a replicated 4 x 4 Latin square experiment. Diets were formulated to contain 15.0% CP (DM basis) and included bromegrass hay (18.4%), cracked corn, soybean oil, corn gluten meal, urea, and limestone. Soybean oil was added to diets at 0, 3.2, 6.3, and 9.4% of dietary DM. The diet was limit-fed at 1.4% of BW. After 14 d of dietary adaptation, Cr2O3 (2.5 g) was dosed at each feeding for 7 d followed by ruminal, duodenal, ileal, and fecal sample collections for 3 d. Digestibilities of OM, starch, NDF, and N were not affected (P = 0.13 to 0.95) by increasing dietary soybean oil level. Means for true ruminal (percentage of intake), lower-tract (percentage entering the duodenum), and total-tract (percentage of intake) digestibility for each nutrient were (mean+/-SEM): OM = 50.7+/-4.66%, 71.6+/-2.58%, and 82.7+/-0.93%; starch = 92.0+/-1.94%, 96.1+/-0.70%, and 99.8+/-0.05%; NDF = 36.7+/-6.75%, 50.9+/-7.58%, and 71.7+/-1.93%; and N = 31.6+/-9.93%, 84.1+/-1.50%, and 81.0+/-1.10%, respectively. Total VFA concentration was greatest in sheep fed 6.3% soybean oil and least in sheep fed 9.4% soybean oil (cubic, P = 0.01). Duodenal flow of fatty acids from the diet and those metabolized within the rumen increased (linear, P < 0.001) with increasing dietary soybean oil level. Ileal flow of 16:0, 17:0, 18:0, 18:1trans, and 18:1cis-9 fatty acids increased (P < or = 0.04) with increasing dietary soybean oil level. Apparent small intestinal disappearance of 18:0 decreased (linear, P = 0.004) as dietary soybean oil increased, and with 9.4% dietary soybean oil, nearly half the duodenal 18:0 was observed at the ileum; thus, the true energy value of the soybean oil decreased with increasing oil supplementation. We conclude that supplementation of a high-concentrate diet with increasing amounts of soybean oil in limit-fed sheep resulted in a trade off between loss of potential dietary energy from the fat and gain of important PUFA and biohydrogenation intermediates, but without a marked influence on digestibility of other important macronutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号