首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A propeller-wash bead filter (PWBF) and a fluidized sand filter (FSF) on a 28 m3 recirculating system stocked with tilapia maintained favorable water quality at five different feed rates, ranging from 0.9 to 4.5 kg feed per day. TAN removal rates ranged up to about 200 g TAN/m3 of media per day for each of the units. Peak rates of 244 g TAN/m3 of media per day were observed when the recirculating flow was boosted by 20%. Roughly 75% of the removal was accomplished by the fluidized sand filter an observation that is consistent with the difference between the fluidized sand filter volume (0.92 m3) and the bead filter media volume (0.28 m3). The bead filter's primary function was clarification. At the highest daily feed load, over 570 g dry weight of solids were removed during each daily bead filter backwashing event. A 20% increase in flow, at the same daily feed rate, improved solids removal to over 670 g dry weight per bead filter backwash event. The PWBF and FSF combination provided suitable water quality for fish production; however, further increases in feed loading were limited by carbon dioxide buildup and oxygen limitations.  相似文献   

2.
A simple tank system, using artificial aeration to supply oxygen and incoming water to dilute metabolic by-products and other wastes, was tested. Blue tilapia, Oreochromis aureus, were grown under a wide range of loads, 7–31 kg liter−1 min−1, and densities, 19–77 kg fish m−3 culture unit. Average yield ranged from 6–10 kg m−3 culture unit per month. Approximately 14–20 m3 of water was used for each kilogram of fish produced.  相似文献   

3.
This paper describes the performance characteristics of an industrial-scale air-driven rotating biological contactor (RBC) installed in a recirculating aquaculture system (RAS) rearing tilapia at 28 °C. This three-staged RBC system was configured with stages 1 and 2 possessing approximately the same total surface area and stage 3 having approximately 25% smaller. The total surface area provided by the RBC equaled 13,380 m2. Ammonia removal efficiency averaged 31.5% per pass for all systems examined, which equated to an average (± standard deviation) total ammonia nitrogen (TAN) areal removal rate of 0.43 ± 0.16 g/m2/day. First-order ammonia removal rate (K1) constants for stages 1–3 were 2.4, 1.5, and 3.0 h−1, respectively. The nitrite first-order rate constants (K2) were higher, averaging 16.2 h−1 for stage 1, 7.7 h−1 for stage 2, and 9.0 h−1 stage 3. Dissolved organic carbon (DOC) levels decreased an averaged 6.6% per pass across the RBC. Concurrently, increasing influent DOC concentrations decreased ammonia removal efficiency. With respect to dissolved gas conditioning, the RBC system reduced carbon dioxide concentrations approximately 39% as the water flowed through the vessel. The cumulative feed burden – describes the mass of food delivered to the system per unit volume of freshwater added to the system daily – ranged between 5.5 and 7.3 kg feed/m3 of freshwater; however, there was no detectable relationship between the feed loading rate and ammonia oxidation performance.  相似文献   

4.
A 2.83 m3 prototype paddle-washed bead filter for combined solids capture and biological filtration was successfully operated in a commercial recirculating alligator (Alligator mississippiensis) facility. The bead filter was originally designed and operated as a downflow filter but due to operational and water quality problems, it was reconfigured to operate in an upflow mode. Water quality conditions and filter performance improved dramatically, with the upflow bead filter capable of handling the equivalent loading of 10.3 kg m−3 beads per day of 40% protein feed, despite oxygen limitations and hydraulic problems associated with the retrofitted alligator system.  相似文献   

5.

为实现池塘循环水槽养殖模式的高效利用,降低养殖风险,文章开展了吉富罗非鱼(GIFT, Oreochromis niloticus)一年两造池塘循环水槽养殖研究。第一造吉富罗非鱼放养密度分别为183尾·m−2和274尾·m−2,规格为(36.6±2.8) g,养殖期为122 d;第二造吉富罗非鱼放养密度分别为154尾·m−2和215尾·m−2,放养规格为(185.2±15.8) g,养殖期为100 d;外池塘套养罗氏沼虾(Macrobrachium rosenbergii)、鲢(Hypophthalmichthys molitrix)和鳙(Aristichthys nobilis)。对养殖过程中的水质、养殖结果和效益进行评价分析。结果显示,第一造吉富罗非鱼成活率为83.38%,饵料系数1.12,养殖产量24 107 kg;第二造吉富罗非鱼成活率为93.35%,饵料系数1.17,养殖产量25 730 kg;外池塘罗氏沼虾2 012 kg,鲢1 789 kg,鳙801 kg;每公顷投入452 566元,收入655 099元,利润202 533元,投资回报率44.75%。研究表明,利用池塘循环水槽养殖模式开展吉富罗非鱼一年两造养殖,降低了链球菌发病率,提高了养殖效益,实现了养殖模式的高效利用。

  相似文献   

6.
A simulation model to analyze the water flow and sediment transport in aquaculture raceways was developed using a computational fluid dynamics (CFD) software package. The simulation was used to evaluate the efficiency of solids settling in the quiescent zone of existing trout raceways. This efficiency was based on the percentage of solids removed, which corresponds to the percentage of solids introduced into the raceway that settle in it, with settling taking place primarily in the quiescent zone.

The raceway selected for model validation was a rectangular concrete raceway 30.0 m long, 3.0 m wide, 0.9 m deep, with a slope of 0.01. The raceway included a quiescent zone of approximately 5.3 m in length, which was separated from the rearing area by a screen. The water flow rate through the raceway was approximately 0.058 m3/s. Velocity measurements were recorded at 230 stations along the raceway using an acoustic Doppler velocimeter, for comparison with the results obtained from the simulations.

For the purpose of simulating sediment transport, six groups of particles were used to account for the total suspended solids. The sizes of the particles selected were based on an experimentally determined distribution for solids from a similar raceway, and were 692, 532, 350, 204, 61, and 35 μm for Groups 1–6, respectively. The particle density for each size was assumed to be 1150 kg/m3. Values of the percentage of solids removed for the different particle sizes were 100.0% for the largest particles, and 54.7, 0.9, and 0.1% for the three smallest particles, respectively. This methodology of analyzing the raceway sediment transport in terms of its percentage of solids removed based on CFD simulations can also be used to examine raceway design alternatives for improving the particle removal efficiency.  相似文献   


7.
A partial-reuse system for coldwater aquaculture   总被引:7,自引:0,他引:7  
A model partial-reuse system is described that provides an alternative to salmonid production in serial-reuse raceway systems and has potential application in other fish-culture situations. The partial-reuse system contained three 10 m3 circular ‘Cornell-type’ dual-drain culture tanks. The side-wall discharge from the culture tanks was treated across a microscreen drum filter, then the water was pumped to the head of the system where dissolved carbon dioxide (CO2) stripping and pure oxygen (O2) supplementation took place before the water returned to the culture tanks. Dilution with make-up water controlled accumulations of total ammonia nitrogen (TAN). An automatic pH control system that modulated the stripping column fan ‘on’ and ‘off’ was used to limit the fractions of CO2 and unionized ammonia nitrogen (NH3---N). The partial-reuse system was evaluated during the culture of eight separate cohorts of advanced fingerlings, i.e., Arctic char, rainbow trout, and an all female brook trout × Arctic char hybrid. The fish performed well, even under intensive conditions, which were indicated by dissolved O2 consumption across the culture tank that went as high as 13 mg/L and fish-culture densities that were often between 100 and 148 kg/m3. Over all cohorts, feed conversion rates ranged from 1.0 to 1.3, specific growth rates (SGR) ranged from 1.32 to 2.45% body weight per day, and thermal growth coefficients ranged from 0.00132 to 0.00218. The partial-reuse system maintained safe water quality in all cases except for the first cohort—when the stripping column fan failed. The ‘Cornell-type’ dual-drain tank was found to rapidly (within only 1–2 min) and gently concentrate and flush approximately 68–88% (79% overall average) of the TSS produced daily within only 12–18% of the tank’s total water flow. Mean TSS concentrations discharged through the three culture tanks’ bottom-center drains (average of 17.1 mg/L) was 8.7 times greater than the TSS concentration discharged through the three culture tanks’ side-wall drains (average of 2.2 mg/L). Overall, approximately 82% of the TSS produced in the partial-reuse system was captured in an off-line settling tank, which is better TSS removal than others have estimated for serial-reuse systems (approximately 25–50%). For the two cohorts of rainbow trout, the partial-reuse system sustained a production level of 35–45 kg per year of fish for every 1 L/min of make-up water, which is approximately six to seven times greater than the typical 6 kg per year of trout produced for every 1 L/min of water in Idaho serial-reuse raceway systems.  相似文献   

8.
An indoor aquaponic system (i.e., the integration of fish culture with hydroponic plant production in a recirculating setup) was operated for maximizing water reuse and year-round intensive food production (Nile tilapia, Oreochromis niloticus , and leaf lettuce) at different fish feed to plants ratios. The system consisted of a fish culture component, solid removal component, and hydroponic component comprising six long channels with floating styrofoam rafts for holding plants. Fish culture effluents flowed by gravity from the fish culture component to the solid removal component and then to the hydroponic component. Effluents were collected in a sump from which a 1-horsepower in-line pump recirculated the water back to the fish culture tanks at a rate of about 250 L/min. The hydroponic component performed as biofilter and effectively managed the water quality. Fish production was staggered to harvest one of the four fish tanks at regular intervals when fish attained a minimum weight of 250 g. Out of the total eight harvests in 13 mo, net fish production per harvest averaged 33.5 kg/m3 of water with an overall water consumption of 320 L/kg of fish produced along with the production of leaf lettuce at 42 heads/m2 of hydroponic surface area. Only 1.4% of the total system water was added daily to compensate the evaporation and transpiration losses. A ratio of 56 g fish feed/m2 of hydroponic surface effectively controlled nutrient buildup in the effluents. However, plant density could be decreased from 42 to 25–30 plants/m2 to produce a better quality lettuce.  相似文献   

9.
Application of microbead biological filters   总被引:1,自引:0,他引:1  
The application of floating microbead filters to aquaculture is reviewed and discussed. The microbead filter is distinctly different from the more commonly used floating bead filters that are used today. Conventional bead filters work in pressured vessels and use a media that is only slightly buoyant. The required mass of beads for the volume required make the media a relatively expensive component of a floating bead filter in contrast to sand or microbead media that is much less expensive on a per volume basis. Microbead filters use polystyrene beads (microbead) that are 1–3 mm in diameter (floating bead filters use media approximately 3 mm in diameter also). Microbead have an overall bulk density of 16 kg/m3 and a specific surface area of 3936 m2/m3 (for 1 mm beads). This material can be obtained commercially in bulk for roughly US$ 4 kg−1 of material. Biological filters that use microbeads for their nitrifying substrate can be thought of as a trickling bio-filter in terms of how the flow distribution and collection mechanics are designed and operated. For design purposes, microbead filters can be assumed to nitrify approximately 1.2 kg of TAN/m3 of media per day for warm water systems with influent ammonia–nitrogen levels from 2 to 3 mg/l. For cool water applications, rates should be assumed to be 50% of warm water rates or use rates similar to those used for fluidized sand beds. Designs and results in several applications are presented. Microbead filters have been used successfully by several commercial growers after being first introduced in the mid 1990s. Effects of capitalization for equipment and buildings upon production costs is discussed and presented in graphical form.  相似文献   

10.
Abstract.
The study was conducted to develop guidelines for high-density overwintering of tilapia in tanks using warm underground sea water. Seawater-acclimated fish of 20 g were stocked in 36 tanks at 250, 500 and 750/m3. Water flow was regulated at 0.1 and 0.2 l/kg fish/min. Fish were fed at the rates of 0.75% and 1.0% of biomass per day.
After 135 culture days, the mean individual weight gain and specific growth rate decreased, whereas feed conversion increased significantly ( P <0.0001) with the increase in stocking density. The condition factor at 500 and 750 fish/m3 was significantly lower ( P <0.0005) than at 250 fish/m3. However, stocking density had no significant effect on the survival rate. Significantly better specific growth rate, condition factor and feed conversion were observed at a water flow rate of 0.2 l/kg fish/min than at 01 l/kg fish/min. Significantly higher mean individual weight gain, specific growth rate, and survival rate were observed at 1.0%/day than at the 0.75%/day feeding rate. The findings indicate that the optimum stocking density for overwintering tilapia in tanks using warm underground sea water is 750 fish/m3 with a water flow rate of 0.1 l/kg fish/min and a feeding rate of 0.75%/day.  相似文献   

11.
In previous proof-of-concept work, it was shown that the use of treated coal mine water for rainbow trout (Oncorhynchus mykiss) culture in a cage was technically feasible, though only a 50-fish bioassay was grown and no work on production-related issues was conducted. To further advance the use of treated mine water, an under-utilized water resource throughout Mid Appalachia, work was conducted to assess the effects of using treated coal mine water for the intensive production of rainbow trout in a flow-through system. During this study, comprehensive water quality data were collected to supplement fish weight and length data taken during routine monthly sampling events. The 8000 fish grew well in the raceway system over the 9 months of production, where a feed conversion ratio of 1.4 and a condition factor of 5.1 × 10−4 were measured with stocking and harvest densities of 26.4 and 50.2 kg/m3, respectively. Further, total net production was 3275 kg (7220 lb) with 98.6% survival. Throughout the study, dissolved ion concentrations (Fe, Al, Mg, Ca, and SO4) often exceeded recommended tolerance limits. Further, elevated ammonia nitrogen concentrations generated from a component of the mine water-treatment process were identified as a potential limiting factor for aquaculture development. However, when the non-ideal effects of high ionic strength and the speciation of dissolved metal–ligand complexes were taken into account, the concentrations of free metal ions were within recommended tolerance limits.  相似文献   

12.
Nitrogen and phosphorus budgets were estimated in 12 indoor fiberglass tanks stocked with hybrid tilapia (Oreochromis niloticus×O. aureus) at densities of 1 kg, 5 kg, 10 kg and 15 kg/m3 and reared for 14 days. Each density was replicated three times, and the experiment was repeated five times. The water in each tank was changed daily. Fish were fed a 34% protein tilapia feed to satiation twice daily. Feed consumption rate significantly decreased (P<0.05) with increasing density, but the FCR did not vary significantly (P>0.05) among the treatments. The production of one kilogram of fish required 2.0–2.2 kg of feed in different stocking density treatments, while 87.1–95.6 g nitrogen and 12.6–13.8 g phosphorus were released into the water, as metabolic waste. Of the feed input, 21.4% of the nitrogen and 18.8% of the phosphorus were incorporated in the fish harvested.  相似文献   

13.
Ecuadorian Penaeus vannamei were cultured in dirt ponds (each of approximately 163 m2) at four different stocking densities, i.e. 5 shrimp m−2, 10 shrimp m−2, 15 shrimp m−2 and 20 shrimp m−2. Experiments were carried out over three different periods during the year. Each experiment lasted for 11–14 weeks. No commercial feed was given to the shrimp. The only input to the ponds was about 30 kg of cattle manure per pond per week. Chemical composition of the cattle manure was analyzed. Water quality parameters such as temperature, pH, DO and turbidity were recorded twice daily for each experiment; nutrients (nitrite, nitrate, ammonium and phosphate), water ATP, sediment ATP, H2S and chlorophyll were measured twice weekly for each experiment. Shrimp were sampled either weekly or bi-weekly for body weight measurements.

The results showed a negative correlation between stocking density and growth. Weekly growth ranged from 0·44 to 1·58 g week−1. Survival was over 50% in all treatments and averaged at 70·8%. Under these stocking densities, shrimp production ranged from 4·4 to 18·8 kg ha−1 day−1. The stocking density of 15 shrimps m−2 provides better production than the other stocking densities.

Water quality data did not relate to any shrimp growth. Water nutrient levels in pond discharge water were less than or equal to the nutrients in the incoming water in spite of the weekly addition of cattle manure and did not increase with the addition of cattle manure. No coliform bacteria were detected in any pond water samples through the study period. This indicates digestion of cattle manure in marine shrimp ponds would not pollute the environment with high concentrations of dissolved nutrients.

Thus, a marine shrimp pond can be considered a dissolved nutrient marine treatment plant converting unwanted cattle manure (1841 kg cattle manure ha−1 week−1 in this study) into a valuable commodity — shrimp.  相似文献   


14.
为研究高海拔山区稻田养殖禾花鱼的最优养殖模式,提高郴州高山禾花鱼养殖的标准化水平和规模化程度,试验在不影响禾花鱼品质和稻谷产量的前提下,综合考虑了苗种规格、养殖密度及投饵率3个关键因素,交叉设计了9个养殖模式试验组,通过每667 m2的禾花鱼产量和经济效益对不同模式进行比较评估.研究表明,9个试验模式均能当年养成商品鱼...  相似文献   

15.
Florida red tilapia (Oreochromis sp.) were reared in 23 m3 seawater (37 ppt) pools. Monosex males (1.3 g mean weight) were stocked at a density of 25 fish/m3 and reared to fingerling size (>10 g) in pools receiving either chicken manure applied at a rate of 105 kg/ha day−1 or pelletized feed (30% protein) administered ad libitum. Following the nursery period, fingerlings in fed pools were reared through adult, marketable sizes.

After 20 days of nursery rearing, mean fish weights (5.7–9.6 g) and survival (77.5–98.6%) in manured pools ranged from less than to greater than values in fed pools (7.9–9.4 g and 95.5–98.2%). By day 33, while mean weights (11.3±0.4 g) and survival (84.5±5.2%) in manured pools were significantly less than those in fed pools (18.0±0.6 g and 95.9±1.4%), fingerling-size fish were obtained from manured pools at an overall productivity of 55 kg/ha day−1.

After 170 days in fed pools, mean fish weight was 467±9 g, survival was 89.7±0.9%, and food conversion was 1.6±0.2. Daily weight gain achieved a maximum of 4.4 g day before a rapid decline in water temperature from 28–29°C to 24–25°C caused a loss of fish appetite and evidence of disease.

The results suggest that while nursery rearing of Florida red tilapia in seawater pools fertilized with chicken manure is feasible, considerable variability in fish performance among pools can be expected, despite identical management methods. In pools receiving prepared feed, high growth rates and survival through adult, marketable sizes suggests a potential for commercial production of Florida red tilapia in seawater.  相似文献   


16.
Three kinds of locally available plastic biofilter media with different configurations (plastic rolls, PVC pipes and scrub pads) were evaluated for their efficiency in organic waste removal from the effluents of an intensive recirculating tilapia culture system. A set of three types of solid-removing filters consisting of screened sedimentation; upflow sand as well as plastic bead filtration accomplished the mechanical filtration. Values of critical metabolic wastes like total ammonia nitrogen (TAN) (0.92 ppm) and nitrite-nitrogen (NO2-N) (0.22 ppm) were found to be well within the acceptable limits, while other water quality parameters in the culture water were also maintained within the normal range by the filtration system. Removal rates of 3.46 g TAN/m3 per day and 0.77 g NO2-N/m3 per day, as well as TAN and NO2-N removal efficiencies of 29.37 and 27.3% respectively, were established to be the best for the plastic-roll biofilter medium as compared to PVC-pipe and scrub-pad media. Percent removal of TAN and NO2-N per pass of the biofilter (25.49 and 26.3% respectively) and the specific TAN and NO2-N removal rates (43 and 9.6 mg/m2 per day) of plastic rolls were also found to be superior to the other two biofilter media. Pieces of PVC pipes as biofilter medium is recommended to be used in the biofilters in view of their cheaper cost.  相似文献   

17.
Convenient, economical, and reduced labor fish harvest and transfer systems are required to realize operating cost savings that can be achieved with the use of much larger and deeper circular culture tanks. To achieve these goals, we developed a new technology for transferring fish based on their avoidance behavior to elevated concentrations of dissolved carbon dioxide (CO2). We observed this behavioral response during controlled, replicated experiments that showed dissolved CO2 concentrations of 60–120 mg/L induced rainbow trout (Oncorhynchus mykiss) to swim out of their 11 m3 “growout” tank, through a transfer pipe carrying a flow with ≤23 mg/L dissolved CO2, into a second 11 m3 “harvest” tank. The research was conducted using separate groups of rainbow trout held at commercially relevant densities (40–60 kg/m3). The average weight of fish ranged from 0.15 to 1.3 kg during the various trials. In all trials that used a constant flow of low CO2 water (≤23 mg/L) entering the growout tank from the harvest tank, approximately 80–90% of the fish swam from the growout tank, through the transfer pipe, and into the harvest tank after the CO2 concentration in the growout tank had exceeded 60 mg/L. The fish that remained in the growout tank stayed within the area of relatively low CO2 water at the entrance of the transfer pipe. However, the rate of fish transfer from the growout tank to the harvest tank was more than doubled when the diameter of the transfer pipe was increased from 203 to 406 mm. To consistently achieve fish transfer efficiencies of 99%, water flow rate through the fish transfer pipe had to be reduced to 10–20% of the original flow just before the conclusion of each trial. Reducing the flow of relatively low CO2 water near the end of each fish transfer event, restricted the zone of relatively low CO2 water about the entrance of the fish transfer pipe, and provided the stimulus for all but a few remaining fish to swim out of the growout tank. Results indicate that the CO2 avoidance technique can provide a convenient, efficient, more economical, and reduced labor approach for fish transfer, especially in applications using large and well mixed circular culture tanks.  相似文献   

18.
Abstract This study was conducted to evaluate the effects of stocking density and monosex culture on growth, survival, yield and feed conversion ratio of freshwater prawn Macrobrachium rosenbergii in concrete tanks. Juvenile prawns with an average weight of 1.8 g were stocked into triplicate tanks at densities of 5, 10, 15 and 20 prawns/m2, grown for 168 d and fed a 34% tilapia diet. Stocking density had significant effect on prawns. Final mean body weight decreased with the increasing density, being highest at 5 prawns/m2 (29.6 9). and lowest at 20 prawns/m2 (17.4 g). Total yield increased from 135 g/m2 (1,350 kg/ha) at a density of 5 prawns/m2 to 261 g/m2 (2,610 kg/ha) at density 15/mz to 245 g/m2 (2,450 kg/ha) at 20/mz. Feed conversion ratios were high and ranged from 3.7 (5 prawns/m2) to 5.6 (20 prawns/m2).
In monosex culture of freshwater prawns stocked in triplicate tanks at a density of 5 prawns/m2 for 112 d, the all-male population had the best growth performance and feed conversion ratio, followed by the mixed-sex and all-female populations. The all-male population had 99% marketable prawns (>20 g) with an average yield of 159 g/m2 (1,590 kg/ha); the mixed-sex population had 90% marketable prawns and the yield was 135 g/mz (1,350 kg/ha); and the all-female population had 75% marketable prawns with an average yield of 108 g/m2 (1,080 kgha).  相似文献   

19.
The effects of four levels of diffused aeration (0, 6, 12, and 24 hours/day) and two stocking densities (400 and 600 fish/m3) on the culture performance of caged Florida red tilapia were evaluated in 1 m3 cages in a 2 ha watershed pond on St. Croix, U.S. Virgin Islands. Fish obtained a nutritionally-complete (36% protein), floating feed from demand feeders for 143 to 146 days. Diffused aeration had no significant ( P > 0.05) effect on fish growth, survival, feed conversion, and production in cages. Combined across all levels of diffused aeration, fish stocked at 400/cage had a greater growth rate (2.21 vs. 1.97 g/day), larger final body weight (370 vs. 335 g), and a lower feed conversion ratio (1.69 vs. 1.80) than fish stocked at 600/cage ( P < 0.05). The final biomass of fish stocked at the higher density (181 kg/m3) was greater than at the lower density (140 kg/m3). The enhancement of water exchange rates by diffused aeration did not increase tilapia growth rate or production in cages.  相似文献   

20.

试验以生物絮团技术 (Biofloc technology, BFT) 养殖30 d的凡纳滨对虾 (Litopenaeus vannamei) 及其池塘水体为基础,设定红糖持续添加组 (BS-组) 和不添加红糖组 (NBS-组),探究在稳定的凡纳滨对虾生物絮团 (Bioflic, BF) 养殖系统中,适时停止添加红糖对养殖水质和氮收支的影响。在28 d内监测总氨氮 (TAN)、亚硝酸盐氮 (NO2 -N) 等,并测定试验前后虾体和投喂饲料的总氮 (TN)。结果显示,BS组和NBS组的TAN、NO2 -N均处于较低水平,试验期间两组TAN质量浓度维持在0.02~0.06 mg·L−1,试验第7天后两组NO2 -N质量浓度在1.00 mg·L−1以下。研究发现:1) 氮收入主要为饲料,占比78.8%;氮输出主要为水体TN,BS组和NBS组的水体TN分别占45.06%和52.55%;2) 收获虾体的氮输出分别占21.49%和25.43%,两组的饲料氮利用效率分别为18.14%和23.14%。可见,在稳定的BF养殖系统中适时停止添加红糖,对水体微生物去除TAN和NO2 -N的效果不会产生影响。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号