共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitigation of nitrous oxide emissions in spray-irrigated grazed grassland by treating the soil with dicyandiamide, a nitrification inhibitor 总被引:4,自引:0,他引:4
Abstract. Nitrous oxide (N2 O) from animal excreta in grazed pasture systems makes up a significant component (c. 10%) of New Zealand's total greenhouse gas inventory. We report an effective method to decrease N2 O emissions from animal urine patches by treating the soil with the nitrification inhibitor dicyandiamide (DCD), in a simulated grazed dairy pasture system under spray irrigation. The soil was a free-draining Lismore stony silt loam (Udic Haplustept loamy skeletal) and the pasture was a mixture of perennial ryegrass ( Lolium perenne ) and white clover ( Trifolium repens ). By treating the soil with DCD, N2 O emissions were decreased by 76% following urine application in the autumn, from 26.7 kg N2 O-N ha−1 without DCD to an average of 6.4 kg N2 O-N ha−1 with DCD over the 6-month experimental period. N2 O flux was decreased by 78% following urine application in the spring, from 18 kg N2 O-N ha−1 without DCD to 3.9 kg N2 O-N ha−1 with the application of DCD over the 3-month period. A single application of DCD immediately after urine was sufficient to effectively mitigate N2 O emissions from the urine. The results showed that repeated applications of DCD after urine application, or mixing DCD with urine, offered no advantage over a single application of DCD immediately after urine deposition. 相似文献
2.
Effects of the nitrification inhibitor dicyandiamide on potassium, magnesium and calcium leaching in grazed grassland 总被引:9,自引:0,他引:9
Abstract. Leaching of calcium (Ca), potassium (K) and magnesium (Mg) from urine patches in grazed grassland represents a significant loss of valuable nutrients. We studied the effect on cation loss of treating the soil with a nitrification inhibitor, dicyandiamide (DCD), which was used to reduce nitrate loss by leaching. The soil was a free-draining Lismore stony silt loam (Udic Haplustept loamy skeletal) and the pasture was a mixture of perennial ryegrass ( Lolium perenne ) and white clover ( Trifolium repens ). The treatment of the soil with DCD reduced Ca2+ leaching by the equivalent of 50%, from 213 to 107 kg Ca ha−1 yr−1 on a field scale. Potassium leaching was reduced by 65%, from 48 to 17 kg K ha−1 yr−1 . Magnesium leaching was reduced by 52%, from 17 to 8 kg Mg ha−1 yr−1 . We postulate that the reduced leaching loss of these cations was due to the decreased leaching loss of nitrate under the urine patches, and follows from their reduced requirement as counter ions in the drainage water. The treatment of grazed grassland with DCD thus not only decreases nitrate leaching and nitrous oxide emissions as reported previously, but also decreases the leaching loss of cation nutrients such as Ca2+ , K+ and Mg2+ . 相似文献
3.
Urine patches in dairy pastures are major sources of nitrous oxide (N2O). Wet winters result in compaction damage to pastures because of animal trampling. The nitrification inhibitor, dicyandiamide (DCD), is effective at reducing N2O emissions from urine patches. Here, we assessed the extent of damage to the physical quality of the soil by trampling and whether this influenced the ability of DCD to mitigate N2O emissions. A field experiment was conducted where a sandy loam soil was trampled by a mechanical hoof just before urine and DCD application. Trampling reduced air permeability and pore continuity, but this had no effect on bulk density. Urine appeared to have contributed to pore collapse and blockage. Trampling increased average cumulative N2O emissions from 1.74 to 4.66% of urine‐N applied. This effect was attributed to increased water‐filled pore space, aggregate destruction and suppression of grass growth. DCD was highly effective in reducing N2O emissions, with the N2O emission factor of the urine‐N being decreased by 58–63%. Trampling did not significantly affect the effectiveness of DCD in reducing N2O emissions. 相似文献
4.
土壤紧实胁迫对黄瓜生长、产量及养分吸收的影响 总被引:14,自引:2,他引:14
用容重分别为1.2、1.4和1.6.g/cm3的土壤进行盆栽试验,研究了土壤紧实度对黄瓜生长、产量及养分吸收的影响。结果表明,当土壤紧实度增大时,黄瓜秧苗的株高在定植后的15.d后受到显著抑制;第4叶的叶宽和叶长在定植后9~17.d内增加;茎粗则是在稍紧的土壤中(R.1.4)最大,过紧的土壤中(R.1.6)最小;根系伸长生长受阻,干物质质量及活力显著下降,根冠比降低;生物学产量、经济产量、经济系数的变化情况及植株对氮、磷、钾吸收量的变化与茎粗的变化趋势相同。在本试验条件下,容重为1.2.g/cm3的土壤利于株高及根系的生长,容重1.4g/cm3的土壤则利于茎粗、根系养分的吸收及产量的增加。 相似文献
5.
Nitrous oxide (N2O) is a potent greenhouse gas, which is mainly produced from agricultural soils. Ammonia oxidation is the rate‐determining step in N2O production, and the process is carried out by ammonia oxidizers, bacteria and archaea. Soil aggregate size has been shown to alter soil properties, which affect N2O emissions and bacterial communities. However, the effect of aggregate size on temporal and total N2O emissions and ammonia‐oxidizing bacteria (AOB) and archaea (AOA) is not fully understood. This incubation study investigated the effect of three different soil aggregate sizes on N2O emissions and ammonia oxidizer abundance under high urine‐N concentrations and the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), at reducing N2O emissions in different aggregate soils. It was found that temporal patterns of N2O emissions were affected by aggregate size with higher peak emissions in the large and medium aggregates. However, the total emissions were the same due to a ‘switch’ in emissions at day 66, after which smaller aggregates produced higher N2O emissions. It is suggested that the switch was caused by an increase in aggregate disruption in the small aggregates, following the urine application, due to their higher surface area to volume ratio. AOB and AOA abundances were not significantly affected by aggregate size. DCD was effective in reducing N2O emissions in all aggregate sizes by an average of 79%. These results suggest that similar ammonia oxidizer abundance is found in soils of different aggregate sizes, and the efficacy of DCD in reducing N2O emissions was not affected by aggregate size of the soil. 相似文献
6.
Nitrogen (N) losses via nitrate (NO3−) leaching, ammonia (NH3) volatilization and nitrous oxide (N2O) emissions from grazed pastures in New Zealand are one of the major contributors to environmental degradation. The use of N inhibitors (urease and nitrification inhibitors) may have a role in mitigating these N losses. A one-year field experiment was conducted on a permanent dairy-grazed pasture site at Massey University, Palmerston North, New Zealand to quantify these N losses and to assess the effect of N inhibitors in reducing such losses during May 2005-2006. Cow urine at 600 kg N ha−1 rate with or without urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) or (trade name “Agrotain”) (3 L ha−1), nitrification inhibitor dicyandiamide (DCD) (7 kg ha−1) and the use of double inhibitor (DI) containing a combination of both Agrotain and DCD (3:7) were applied to field plots in autumn, spring and summer. Pasture production, NH3 and N2O fluxes, soil mineral N concentrations, microbial biomass C and N, and soil pH were measured following the application of treatments during each season. All measured parameters, except soil microbial biomass C and N, were influenced by the added inhibitors during the three seasons. Agrotain reduced NH3 emissions over urine alone by 29%, 93% and 31% in autumn, spring and summer respectively but had little effect on N2O emission. DCD reduced N2O emission over urine alone by 52%, 39% and 16% in autumn, spring and summer respectively but increased NH3 emission by 56%, 9% and 17% over urine alone during those three seasons. The double inhibitor reduced NH3 by 14%, 78% and 9% and N2O emissions by 37%, 67% and 28% over urine alone in autumn, spring and summer respectively. The double inhibitor also increased pasture dry matter by 10%, 11% and 8% and N uptake by the 17%, 28% and 10% over urine alone during autumn, spring and summer respectively. Changes in soil mineral N and pH suggested a delay in urine-N hydrolysis with Agrotain, and reduced nitrification with DCD. The combination of Agrotain and DCD was more effective in reducing both NH3 and N2O emissions, improving pasture production, controlling urea hydrolysis and retaining N in NH4+ form. These results suggest that the combination of both urease and nitrification inhibitors may have the most potential to reduce N losses if losses are associated with urine and improve pasture production in intensively grazed systems. 相似文献
7.
8.
微肥对玉米生长发育、养分吸收及产量的影响 总被引:2,自引:1,他引:2
通过田间小区试验,研究了覆膜滴灌条件下施用铁、锰、锌等微肥对玉米生长发育、养分吸收及产量的影响。结果表明:玉米干物质累积最快的时期是在播种后62~99 d,NPK+Fe、NPK+Mn和NPK+Zn处理的玉米单株干物质的积累量分别比NPK处理增加8.84、4.74、15.69 g。NPK+Zn处理的玉米吸N量比NPK处理提高了3.07%,达到了显著差异,而NPK+Fe和NPK+Mn处理的玉米吸N量与NPK处理没有显著差异。NPK+Fe、NPK+Mn和NPK+Zn处理的玉米吸P量和吸K量与NPK处理相比均没有显著差异。施用铁、锌肥可以显著提高玉米的产量,增加玉米的百粒重,增产率分别为6.61%和4.46%,但施用锰肥效果不显著。 相似文献
9.
不同滴灌施肥模式对棉花产量及养分吸收的影响 总被引:4,自引:1,他引:4
通过等养分和等成本施肥田间试验,研究不同滴灌施肥模式对棉花产量及养分吸收的影响。试验设4种滴灌施肥模式,分别为常规基施(CK)、常规追施(DCK)、普通滴灌专用肥(F1)和高磷钾滴灌专用肥(F2)。结果表明,在等养分施用条件下,高磷钾滴灌专用肥和普通滴灌专用肥处理的棉花干物质重、养分吸收量和产量均显著高于常规基施处理,但普通滴灌专用肥和常规追施处理差异不大;常规基施处理的氮肥和磷肥的利用率最低,普通滴灌专用肥和常规追施处理的氮肥和磷肥利用率差异不显著,高磷钾滴灌专用肥可显著提高磷肥利用率。在等成本施用条件下,常规追施处理的棉花干物质重、养分吸收量和产量最高,而高磷钾滴灌专用肥、普通滴灌专用肥和常规基施处理无显著差异。因此,滴灌专用肥尤其是高磷钾滴灌专用肥具有较好的应用效果,但是如何降低肥料成本是滴灌专用肥技术面临的重要问题。 相似文献
10.
Abstract. In grazed dairy pasture systems, a major source of NO3– leached and N2O emitted is the N returned in the urine from the grazing animal. The objective of this study was to use lysimeters to measure directly the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO3– leaching and N2O emissions from urine patches in a grazed dairy pasture under irrigation. The soil was a free‐draining Lismore stony silt loam (Udic Haplustept loamy skeletal) and the pasture was a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). The use of DCD decreased NO3–‐N leaching by 76% for the urine N applied in the autumn, and by 42% for urine N applied in the spring, giving an annual average reduction of 59%. This would reduce the NO3–‐N leaching loss in a grazed paddock from 118 to 46 kg N ha–1 yr–1. The NO3–‐N concentration in the drainage water would be reduced accordingly from 19.7 to 7.7 mg N L–1, with the latter being below the drinking water guideline of 11.3 mg N L–1. Total N2O emissions following two urine applications were reduced from 46 kg N2O‐N ha–1 without DCD to 8.5 kg N2O‐N with DCD, representing an 82% reduction. In addition to the environmental benefits, the use of DCD also increased herbage production by more than 30%, from 11 to 15 t ha–1 yr–1. The use of DCD therefore has the potential to make dairy farming more environmentally sustainable by reducing NO3– leaching and N2O emissions. 相似文献
11.
Summary The kinetics of dicyandiamide (DCD) decomposition were studied (at 80% water-holding capacity) in pretreated and non-pretreated soils, using model experiments. DCD was added in different concentrations (6.7, 16.7, and 33.3 g DCD-N g–1 dry soil) and incubated at various temperatures (10°, 20°, and 30°C). Additionally, DCD decomposition was examined in sterile soil (with or without Fe2O3) after inoculation with a DCD-enrichment culture. In the sterile variant, (30°C)the applied dicyandiamide concentration remained constant, even after 36 days. In the sterilized and reinoculated variant, DCD disappeared within 7 days. Addition of Fe2O3 powder to the sterilized soil had no effect on DCD degradation. In the pretreated soils, DCD mineralization started immediately at all temperatures and concentrations without a lag phase. A temperature increase of 10°C doubled the mineralization rate. The mineralization rates were independent of the initial concentrations. In the non-pretreated soils (except at 30°C with 16.7 and 33.3 g DCD-N g–1 dry soil) DCD decreased only after a short (30°C) or a long (10°C) lag phase. These results suggest that an inducible metabolic degradation occurred, following zeroorder kinetics. 相似文献
12.
通过加工番茄大田试验,研究了不同施肥方式下,膜下滴灌加工番茄的干物质积累与养分吸收规律及产量构成。结果表明,在滴灌追施100%氮肥和初果期之后滴灌追施70%钾肥的基础上,基施65%磷肥和初果期之前滴灌追施35%磷肥(优化处理)比100%磷肥基施的加工番茄干物质增加11.51%,产量提高3.59%,氮、磷、钾肥的利用率分别增加了6.06、4.15和5.26个百分点。氮肥和磷肥在初果期之前滴灌追施,氮肥和钾肥在初果期之后滴灌追施的滴灌配方肥处理的产量显著低于优化处理,且优化处理的肥料效益也好于滴灌配方肥处理。加工番茄在初果期之前滴灌追施氮与磷,在初果期之后滴灌追施氮与钾可以提高加工番茄产量,增加肥料利用效率。 相似文献
13.
通过田间试验研究了硼、氮配施对棉花产量及其构成因子、叶柄环带及养分吸收的影响。结果表明:硼、氮在棉花上,有一定的交互作用,在相同施氮量下,棉花叶柄环带出现率、株环带叶数和叶环带圈数均随施硼量的增加而显著降低;施硼量从0 kg/hm~2增至13.5 kg/hm~2时,叶片的氮、磷、硼和叶绿素含量增加,棉花的株高、分枝数、铃数、铃重、衣分和产量均显著提高。施硼量从13.5 kg/hm~2增至27 kg/hm~2时,两个氮水平下的叶片磷、钾、硼和叶绿素含量没有显著变化,270 kg/hm~2氮水平下棉花叶片的氮含量、株高、铃重和铃数降低,产量没有变化,而在375 kg/hm~2氮水平下棉花叶片氮含量、株铃数、铃重、衣分和产量显著增加。对相同量硼处理,增施氮肥提高了棉花叶柄环带出现率、株环带叶数和叶环带圈数、叶片氮和叶绿素含量,而对叶片磷、钾、硼和产量没有显著影响。在施硼肥13.5 kg/hm~2,施氮量为270 kg/hm~2时,棉花产量达到最高值3 592 kg/hm~2。说明湖北天门地区棉田适当增加硼肥的同时减少氮肥用量可有效缓解棉花缺硼症状和提高产量。 相似文献
14.
In grazed pasture systems, a major source of N2O is nitrogen (N) returned to the soil in animal urine. We report in this paper the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), applied in a fine particle suspension (FPS) to reduce N2O emissions from dairy cow urine patches in two different soils. The soils are Lismore stony silt loam (Udic Haplustept loamy skeletal) and Templeton fine sandy loam (Udic Haplustepts). The pasture on both soils was a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). Total N2O emissions in the Lismore soil were 23.1–31.0 kg N2O-N ha−1 following the May (autumn) and August (late winter) urine applications, respectively, without DCD. These were reduced to 6.2–8.4 kg N2O-N ha−1 by the application of DCD FPS, equivalent to reductions of 65–73%. All three rates of DCD applied (7.5, 10 and 15 kg ha−1) were effective in reducing N2O emissions. In the Templeton soil, total N2O emissions were reduced from 37.4 kg N2O-N ha−1 without DCD to 14.6–16.3 kg N2O-N ha−1 when DCD was applied either immediately or 10 days after the urine application. These reductions are similar to those in an earlier study where DCD was applied as a solution. Therefore, treating grazed pasture soils with an FPS of DCD is an effective technology to mitigate N2O emissions from cow urine patch areas in grazed pasture soils. 相似文献
15.
不同施肥量对贵州高产玉米养分吸收、生物性状、产量及品质的影响 总被引:1,自引:0,他引:1
在贵州黄壤地区开展了以玉米品种(“金玉506”和“黔单24”)为主区,不同施肥量为副区处理的大田裂区试验,探讨贵州两种高密度栽培品种玉米的产量、生物性状、养分吸收和品质对不同施肥量的响应。结果表明:不同施肥量对玉米品种产量有显著影响。“金玉506”产量随施肥量的增加呈先增加后降低的趋势,以常规密度种植推荐施肥量增量15%处理产量最高,达10229.3 kg/hm2;而“黔单24”略有不同,其产量随施肥量增加呈降低趋势,以推荐施肥量处理最高,为9434.1 kg/hm2。从产量构成因素看,品种与施肥量对玉米穗粗和千粒重有显著影响,两种玉米品种的千粒重随施肥量增加均呈增加趋势,增幅分别为2.2%~10.3%和3.2%~6.8%。在生物性状方面,“金玉506”以推荐施肥量增量15%处理玉米的株高、穗位高和茎粗最优,分别为308.5、130.4和2.6 cm;而“黔单24”以推荐施肥量处理株高、穗位高和茎粗达最大,分别为311.6、138.0和2.43 cm。从养分吸收看,品种和施肥量对玉米植株的养分吸收有显著影响,其中“金玉506”植株氮、磷和钾的吸收量均随施肥量的增加而增加,增幅分别为24.8%~32.7%、44%~47.8%和5.9%~45.6%;而“黔单24”植株氮、磷和钾吸收量均随施肥量的增加而降低,降幅分别为3.8%~13%、11.8%~23.5%和3.9%~15%。在品质方面,合理施肥量有利于提高玉米的淀粉和粗蛋白含量,而过高施肥量会导致玉米品质的降低。因此,根据不同玉米品种的养分需求规律进行科学合理的施肥有利于促进玉米的养分吸收,提高产量和改善品质。 相似文献
16.
灌水频率和施肥量对滴灌马铃薯生长、产量和养分吸收的影响 总被引:2,自引:3,他引:2
【目的】针对陕北榆林风沙土马铃薯灌水施肥不合理及水肥利用效率低的问题,通过研究滴灌施肥条件下不同的灌水频率和施肥量对马铃薯生长、产量及养分吸收利用的影响,以期科学地对马铃薯进行水肥调控,为实际生产提供参考依据。【方法】试验于2016年5—10月在陕西省榆林市农业科技示范园区内进行,试验设置了3个灌水频率D1 (4 d)、D2 (8 d)、D3 (10 d)和3个施肥量(N、P_2O_5、K_2O)水平,即F1 (100、40、150kg/hm^2)、F2 (150、60、225 kg/hm^2)、F3 (200、80、300 kg/hm^2)组合,共9个处理。在生育期对马铃薯生长指标进行观测,收获时统计产量及产量构成因素。【结果】1)同一灌水频率下,F3处理的株高、茎粗、叶面积和产量显著高于F1和F2处理,肥料偏生产力在F1处理下最高,而水分利用效率受施肥量的影响不显著,养分利用效率随着施肥量的增加而减小。F3处理的产量达41518 kg/hm^2,比F1和F2处理分别提高11.75%和8.52%,F1处理下肥料偏生产力为128.12 kg/kg,比F2和F3处理的高出45.67%和78.99%。2)在同一施肥量下,马铃薯的生长指标、产量和肥料偏生产力均在D2处理达到最大值,D2处理下的产量和肥料偏生产力分别为42932kg/hm^2和105.88 kg/kg,而D1处理下水肥利用效率最高,但D1和D2之间水分利用效率差异不显著。从水肥交互作用来看,D2F3的产量和水分利用效率最高,分别为44870 kg/hm^2,107.39 kg/(mm·hm^2),D2F1的肥料偏生产力最高,为142.02 kg/kg。【结论】合理的灌水频率与施肥量不仅能维持马铃薯较好的生长特性,而且能获得较大的经济效益。综合产量与节水节肥因素,D2F3处理(8 d,N 200 kg/hm^2、P_2O_5 80 kg/hm^2、K_2O 300kg/hm^2)可作为基于本试验条件下较适宜的灌水施肥组合。 相似文献
17.
配方施肥对水稻养分吸收动态及产量的影响 总被引:6,自引:1,他引:6
本文主要研究配方施肥与常规施肥对水稻养分吸收和产量的效应,检验大配方的区域适宜性和合理性。以水稻品种晚稻187为材料,采用大小区随机区组设计,在安徽省怀宁县进行了大配方小调整田间试验,结果表明,整个生育期内,水稻对氮素的总吸收量以小调整配方T4处理 (施肥量为N150 kg/hm2、 P2O5 120 kg/hm2、 K2O 105 kg/hm2)最高,为N 1.25 g/plant;对磷、 钾的吸收总量配方施肥均高于常规施肥,也以小调整配方T4处理最高(P2O5 0.18 g/plant、 K2O 0.95 g/plant)。配方施肥的产量均高于常规施肥,以大配方2(T3, 施肥量为N 232.5 kg/hm2、 P2O5 120 kg/hm2、 K2O 120 kg/hm2)的产量最高,达到了11129 kg/hm2,但小调整配方(T4)的产投比优于大配方。总体而言,配方施肥的施肥配比与肥料运筹较之常规施肥更为科学合理,大配方适宜该地区的水稻生产。 相似文献
18.
在氮素供应水平一致的条件下,采用基质栽培盆栽试验,设置5个NH_4~+-N比例(0、10%、20%、30%、40%),探究增铵营养对基质栽培西葫芦产量、品质与N、K素吸收的影响,为高效优质的西葫芦栽培模式提供理论依据。结果表明,在12.6 mmol/L的N素供应量下,20%增铵比例能促进西葫芦植株的生长发育,株型粗壮。10%~20%的NH_4~+-N比例能促进N素在果实部分积累,且过量的铵供应会明显抑制植株地上部对K素的吸收。同时随着NH_4~+-N比例的增加,西葫芦中NO_3~--N含量与可溶性固形物呈下降趋势,可溶性糖含量不断增加。30%NH_4~+-N比例处理下单株产量最高,相对于全硝处理增产29.6%,且N素偏生产力与收获指数水平最高。当NH_4~+-N比例30%以上时,西葫芦结瓜率低于60%,且地上部生物量呈现下降趋势。因此,30%增铵比例下西葫芦产量、品质以及水肥效率最能实现西葫芦在基质栽培中的高产优质高效。 相似文献
19.
采用田间小区试验,研究了木醋液不同灌溉量对土壤养分、盐碱和番茄产量及品质的影响。结果表明,土壤灌溉木醋液可提高土壤碱解氮、速效钾、有效磷含量,且使用量越大,效果越明显,其中有效磷含量增加最为显著,与对照相比可提高9.27%~25.51%;木醋液也可提高土壤有机质及全盐含量,但与对照相比差异不显著;木醋液还可降低土壤p H值,与对照相比可降低0.14~0.27个单位。木醋液低[2.25 t/(次·hm~2)]、中[4.50 t/(次·hm~2)]用量能显著提高番茄株高、增加产量,其中低用量效果最好,与对照相比可提高株高10.53%,增加产量11.52%;高用量[7.50 t/(次·hm~2)]对番茄生长具有一定抑制作用。木醋液可提高番茄可溶性糖含量5.27%~10.28%,提高Vc含量3.46%~17.15%,降低硝酸盐含量4.25%~15.33%,对有机酸含量影响不明显。综上所述,建议设施土壤番茄季木醋液灌溉量为2.25~4.50 t/(次·hm~2)为宜。 相似文献
20.
Abstract. At present about half of the N fertilizer used in China is as urea. However, recovery of urea N in crops is often limited to 30–40%. Application of urea in combination with hydroquinone plus dicyandiamide (U-HQ-DCD) gave an improved urea-N recovery and grain yield by spring wheat in a pot experiment. The apparent total urea-N recovery was 69% and 73% of this recovered N was found in the grain. The grain yield was 32% higher than in the treatment where urea was applied without inhibitors. The application of hydroquinone and dicyandiamide also resulted in a smaller soil nitrate content, which might restrict post-harvest leaching of N. Another beneficial effect of these inhibitors was that the N2 O emission from the soil—plant system was reduced by 35% compared to the treatment where only urea was applied. The use of urea in combination with hydroquinone plus encapsulated calcium carbide gave smaller beneficial effects. 相似文献