首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The immature platelet fraction (IPF) is a measure of newly released platelets, which has been used as a marker of platelet production in multiple human studies but is not widely available in multispecies analyzers. We developed gates to measure the IPF in diluted and undiluted murine blood samples on the Sysmex XN-1000V multispecies hematology analyzer. IPF gates were created using undiluted and diluted (1/10) blood samples obtained from adult and newborn (postnatal day 10, P10) C57BL/6J wild-type (WT) mice, and from 3 murine models of thrombocytopenia: c-MPL−/− mice, which lack the thrombopoietin receptor (hyporegenerative); antibody-mediated thrombocytopenia; and acute inflammation-induced thrombocytopenia. P10 mice were chosen because, at their size, we could consistently obtain (by terminal phlebotomy) the blood volume needed to run an undiluted sample. The undiluted blood IPF gate successfully differentiated between mechanisms of thrombocytopenia in both adult and P10 mice. For diluted samples, 2 IPF gates were generated: a thrombocytopenic (T) gate, which performed well in samples with platelet counts (PCs) <800 × 109/L in adult mice and <500 × 109/L in newborn mice, and a non-thrombocytopenic (NT) gate, which performed well in samples with PCs above these thresholds. PCs and IPFs measured in diluted blood using these gates agreed well with those measured in undiluted blood and had good reproducibility. These diluted gates allow for the accurate measurement of PCs and IPFs in small (10 µL) blood volumes, which can be obtained easily from adult and newborn mice as small as P1 to assess platelet production serially.  相似文献   

2.
Background: Many Cavalier King Charles Spaniel (CKCS) dogs are affected by an autosomal recessive dysplasia of platelets resulting in fewer but larger platelets. The IDEXX Vet Autoread (QBC) hematology analyzer directly measures the relative volume of platelets in a blood sample (plateletcrit). We hypothesized that CKCS both with and without hereditary macrothrombocytosis would have a normal plateletcrit and that the QBC results would better identify the total circulating volume of platelets in CKSC than methods directly enumerating platelet numbers.
Objectives: The major purpose of this study was to compare the QBC platelet results with platelet counts from other automated and manual methods for evaluating platelet status in CKCS dogs.
Methods: Platelet counts were determined in fresh EDTA blood from 27 adult CKCS dogs using the QBC, Sysmex XT-2000iV (optical and impedance), CELL-DYN 3500, blood smear estimate, and manual methods. Sysmex optical platelet counts were reanalyzed following gating to determine the number and percentage of normal- and large-sized platelets in each blood sample.
Results: None of the 27 CKCS dogs had thrombocytopenia (defined as <164 × 109 platelets/L) based on the QBC platelet count. Fourteen (52%) to 18 (66%) of the dogs had thrombocytopenia with other methods. The percentage of large platelets, as determined by regating the Sysmex optical platelet counts, ranged from 1% to 75%, in a gradual continuum.
Conclusions: The QBC may be the best analyzer for assessing clinically relevant thrombocytopenia in CKCS dogs, because its platelet count is based on the plateletcrit, a measurement of platelet mass.  相似文献   

3.
BACKGROUND: The LaserCyte hematology analyzer (IDEXX Laboratories, Chalfont St. Peter, Bucks, UK) is the first in-house laser-based single channel flow cytometer designed specifically for veterinary practice. The instrument provides a full hematologic analysis including a 5-part WBC differential (LC-diff%). We are unaware of published studies comparing LC-diff% results to those determined by other methods used in practice. OBJECTIVE: To compare LC-diff% results to those obtained by a manual differential cell count (M-diff%). METHODS: Eighty-six venous blood samples from 44 dogs and 42 cats were collected into EDTA tubes at the Forest Veterinary Centre (Epping, UK). Samples were analyzed using the LaserCyte within 1 hour of collection. Unstained blood smears were then posted to Langford Veterinary Diagnostics, University of Bristol, and stained with modified Wright's stain. One hundred-cell manual differential counts were performed by 2 technicians and the mean percentage was calculated for each cell type. Data (LC-diff% vs M-diff%) were analyzed using Wilcoxon signed rank tests, Deming regression, and Bland-Altman difference plots. RESULTS: Significant differences between methods were found for neutrophil and monocyte percentages in samples from dogs and cats and for eosinophil percentage in samples from cats. Correlations (r) (canine/feline) were .55/.72 for neutrophils, .76/.69 for lymphocytes, .05/.29 for monocytes and .60/.82 for eosinophils. Agreement between LC-diff% and Mdiff% results was poor in samples from both species. Bland-Altman plots revealed outliers in samples with atypical WBCs (1 cat), leukocytosis (2 dogs, 9 cats), and leukopenia (16 dogs, 11 cats). The LaserCyte generated error flags in 28 of 86 (32.6%) samples, included 7 with leukopenia, 8 with lymphopenia, 7 with leukocytosis, 1 with anemia, and 1 with erythrocytosis. When results from these 28 samples were excluded, correlations from the remaining nonflagged results (canine/feline) were .63/.65 for neutrophils, .67/.65 for lymphocytes, .11/.33 for monocytes, and .63/.82 for eosinophils. CONCLUSION: Although use of a 100-cell (vs 200-cell) M-diff% may be a limitation of our study, good correlation between WBC differentials obtained using the LaserCyte and the manual method was achieved only for feline eosinophils.  相似文献   

4.
We evaluated the performance of the Advia 2120 (Siemens) differential leukocyte count (A-Diff) compared to the manual method (M-Diff) in rabbits. EDTA-anticoagulated blood samples collected for diagnostic purposes were analyzed within 6 h of collection. The M-Diff was performed blindly by 2 observers on blood smears by counting 200 cells. We initially included 117 samples; 25 samples were excluded because of suboptimal gating of leukocytes in the Advia peroxidase cytogram or poor blood smear quality. The correlation between the A-Diff and M-Diff was very high for heterophils (r = 0.924, p < 0.001) and lymphocytes (r = 0.903, p < 0.001), high for basophils (r = 0.823, p < 0.001), moderate for monocytes (r = 0.645, p < 0.001), and low for eosinophils (r = 0.336, p = 0.001). The Passing–Bablok regression analyses revealed a small-to-moderate constant error for lymphocytes and a slight constant error for basophils. Small proportional errors were detected for heterophils, lymphocytes, and eosinophils. The Bland–Altman analyses revealed that the Advia significantly underestimates heterophils and overestimates lymphocytes compared to M-Diff. The biases for the other leukocytes were minimal and likely clinical insignificant; however, our results, particularly for eosinophils, should be interpreted cautiously given the observed low percentages in our samples. Given the observed biases in heterophil and lymphocyte percentages in the Advia 2120 CBC results in rabbits, method-specific reference intervals should be used. The Advia can recognize leporine basophils. Evaluation of blood smears is still recommended to investigate abnormal results and erroneous cytograms reported by the Advia.  相似文献   

5.
A novel haematology analyser was evaluated for its use with feline samples. Complete blood cell counts, a five-part differential count, and reticulocyte numbers were determined, and the results compared with reference data. Coefficients of correlation, Passing–Bablok regression analysis and Bland–Altmann difference plots with biases and 95% limits of agreement are reported. Precision and linearity were also studied. The instrument demonstrated very low imprecision, and the tested range of linearity exceeded the reference ranges provided by the manufacturer. For all parameters except monocytes (r = 0.65), the analyser results correlated well with reference methods. Compared with the manual count of aggregated reticulocytes, the instrument showed good agreement with a positive bias. The optical platelet count correlated well with the manual chamber count. In conclusion the analyser was found to be highly reliable for the analysis of feline blood samples in a large veterinary laboratory.  相似文献   

6.
BACKGROUND: Platelet aggregates are a common artifact in canine blood. Aggregates may affect the accuracy of platelet counts, with important consequences for patient care. OBJECTIVES: The purpose of this study was to determine if platelet counts in dogs were more accurate if blood was collected into citrate instead of EDTA as an anticoagulant. METHODS: Blood was collected from 50 dogs with neoplasia admitted to the oncology service at Cornell University. EDTA and citrate Vacutainer tubes were filled with blood in random order. Platelet counts and parameters (mean platelet volume [MPV], platelet distribution width [PDW], mean platelet component concentration [MPC], platelet component distribution width [PCDW], and automated platelet clump count [APCC]) were determined using an optical-based hematology analyzer (ADVIA 120). Blood smears from each anticoagulated sample were scored visually for platelet aggregates. RESULTS: The median platelet count was significantly lower (median decrease, 27 x 10(9)/L) in citrate-anticoagulated blood compared with EDTA-anticoagulated blood. This was attributed to platelet activation and aggregation: significantly more aggregates were seen in smears of citrate- than of EDTA-anticoagulated blood. Aggregates were typically small and not detected by the analyzer. Also, the MPV and MPC (or density) were significantly higher (median increase, 3 fL) and lower (median decrease, 33 g/L) in citrate-anticoagulated samples, respectively. CONCLUSIONS: Platelets aggregate, likely from activation, when blood from dogs with neoplasia is anticoagulated with citrate for hematology testing, resulting in lower platelet counts. Citrate also yields inaccurate results for MPV and MPC, likely because of inadequate sphering of platelets. Thus, we recommend that citrate not be used as an anticoagulant when accurate platelet counts are desired in dogs.  相似文献   

7.
BACKGROUND: The CA530-VET is a completely automated impedance cell hematology analyzer, which yields a 16-parameter blood count including a 3-part leukocyte differential. OBJECTIVES: The aim of this study was to examine the operational potential of the CA530-VET and its value for use in veterinary practice. METHODS: The analyzer was tested for blood carry-over, precision, and accuracy. Comparison methods included the CELL-DYN 3500, microhematocrit centrifugation, manual platelet (PLT) counting for feline and equine species, and a 100-cell manual WBC differential. Blood samples for comparison of the methods were obtained from 242 dogs, 166 cats, and 144 horses. RESULTS: The carry-over ratio (K) was 0.28% for RBC, 0.59% for PLT, 0.32% for WBC, and 0.18% for hemoglobin (HGB) concentration. Coefficients of variation (CVs) for within-batch precision and duplicate measurement of blood samples were clearly within the required limits, except for duplicate platelet counts in cats (8.7%) and horses (9.5%). The WBC count was in excellent agreement for dogs and horses and RBC count was in excellent agreement for horses. The accuracy of feline WBC counts was not acceptable, with the exception of values at the high end of the range. RBC counts in dogs and cats, and HGB concentration and MCV in all 3 species were sufficiently accurate. The CA530-VET HCT results were in excellent agreement with microhematocrit results in horses but exceeded the maximum allowed inaccuracy for cats and dogs. In all species, PLT counts established mechanically and manually were not in adequate agreement. Large differences were found between the CA530-VET and the manual differential percentage for lymphocytes and "mid-sized cells" (monocytes and basophilic granulocytes). CONCLUSIONS: The CA530-VET can be considered useful for routine canine, feline, and equine blood cell analyses. It should not be considered accurate, however, for PLT counts, feline total WBC counts in the subnormal and normal range, and leukocyte differentials, except for granulocytes.  相似文献   

8.
9.
BACKGROUND: Conventional techniques for canine cerebrospinal fluid (CSF) analysis require large sample volumes and are labor intensive and subject to operator variability. Objective: The purpose of this study was to evaluate the ADVIA120 CSF assay for analysis of canine CSF samples. METHODS: CSF samples collected from 36 healthy control dogs and 17 dogs with neurologic disease were processed in parallel using the automated assay and established manual methods using a hemocytometer and cytocentrifugation. Results for WBC (total nucleated cell) count, RBC count, and differential nucleated cell percentages were compared using Spearman rank correlation coefficients and Bland-Altman bias plots. RESULTS: Correlation coefficients for WBC and RBC counts were 0.57 and 0.83 for controls, and 0.92 and 0.94 for ill dogs, respectively. Coefficients for the percentages of neutrophils, lymphocytes, and monocytes were 0.53, 0.26, and 0.12 for controls and 0.77, 0.92, and 0.70 for dogs with neurologic disease. When data were combined (n=53), correlation coefficients were 0.86 and 0.91 for WBC and RBC counts, and 0.63, 0.43, and 0.30 for neutrophil, lymphocyte, and monocyte percentages. A 9.5% positive bias and 7.0% negative bias were obtained for the ADVIA 120 CSF assay for lymphocytes and macrophages in dogs with neurologic disease with Bland-Altman analysis. A 12.2% positive bias was found for lymphocyte percentage in dogs with neurologic disease. CONCLUSIONS: Manual and automated CSF assays had moderate to excellent correlation for WBC and RBC concentrations, but results were more variable for differential cell percentages. The ADVIA assay may be more useful for assessment of canine CSF with adjustment of cell differentiation algorithms.  相似文献   

10.
OBJECTIVE: To compare WBC, neutrophil, and platelet counts and Hct values obtained with a point-of-care hematology analyzer with values obtained by a reference method for dogs and cats receiving chemotherapy. DESIGN: Cross-sectional study. ANIMALS:105 dogs and 25 cats undergoing chemotherapy. PROCEDURES:Blood samples were analyzed with a point-of-care hematology analyzer and with an impedance- and laser-based analyzer with manual differential WBC counts. Results for WBC, neutrophil, and platelet counts and Hct were compared. Sensitivity and specificity of the point-of-care analyzer to detect leukopenia, neutropenia, and anemia were calculated. RESULTS: 554 canine and 96 feline blood samples were evaluated. Correlation coefficients for dogs and cats, respectively, were 0.92 and 0.95 for total WBC count, 0.91 and 0.88 for neutrophil count, 0.95 and 0.92 for Hct, and 0.93 and 0.71 for platelet count. Sensitivity and specificity, respectively, of the point-of-care analyzer to detect leukopenia were 100% and 75% for dogs and 100% and 68% for cats; to detect neutropenia were 80% and 97% for dogs and 100% and 80% for cats; to detect anemia were 100% and 80% for dogs and 100% and 66% for cats; and to detect thrombocytopenia were 86% and 95% for dogs and 50% and 87% for cats. CONCLUSIONS AND CLINICAL RELEVANCE:The point-of-care analyzer was reliable for monitoring CBCs of dogs and cats receiving chemotherapy. It had good to excellent correlation for WBC and neutrophil counts and Hct and accurately detected leukopenia, neutropenia, and anemia. Sensitivity of the analyzer for detecting thrombocytopenia was lower but acceptable.  相似文献   

11.
Background: A CBC is an integral part of the assessment of health and disease in companion animals. While in the past newer technologies for CBC analysis were limited to large clinical pathology laboratories, several smaller and affordable automated hematology analyzers have been developed for in‐clinic use. Objectives: The purpose of this study was to compare CBC results generated by 7 in‐clinic laser‐ and impedance‐based hematology instruments and 2 commercial laboratory analyzers. Methods: Over a 3‐month period, fresh EDTA‐anticoagulated blood samples from healthy and diseased dogs (n=260) and cats (n=110) were analyzed on the LaserCyte, ForCyte, MS45, Heska CBC, Scil Vet ABC, VetScan HMT, QBC Vet Autoread, CELL‐DYN 3500, and ADVIA 120 analyzers. Results were compared by regression correlation (linear, Deming, Passing‐Bablok) and Bland–Altman bias plots using the ADVIA as the criterion standard for all analytes except HCT, which was compared with manual PCV. Precision, linearity, and carryover also were evaluated. Results: For most analytes, the in‐clinic analyzers and the CELL‐DYN performed similarly and correlated well with the ADVIA. The biases ranged from ?0.6 to 2.4 × 109/L for WBC count, 0 to 0.9 × 1012/L for RBC count, ?1.5 to 0.7 g/dL for hemoglobin concentration, ?4.3 to 8.3 fL for MCV, and ?69.3 to 77.2 × 109/L for platelet count. Compared with PCV, the HCT on most analyzers had a bias from 0.1% to 7.2%. Canine reticulocyte counts on the LaserCyte and ForCyte correlated but had a negative bias compared with those on the ADVIA. Precision, linearity, and carryover results were excellent for most analyzers. Conclusions: Total WBC and RBC counts were acceptable on all in‐clinic hematology instruments studied, with limitations for some RBC parameters and platelet counts. Together with evaluation of a blood film, these in‐clinic instruments can provide useful information on canine and feline patients in veterinary practices.  相似文献   

12.
Background: The Sysmex XT‐2000iV is a laser‐based, flow cytometric hematology system that has been introduced for use in large and referral veterinary laboratories. Objective: The purpose of this study was to validate the Sysmex XT‐2000iV for counting erythrocytes, reticulocytes, platelets, and total leukocytes in blood from ill dogs, cats, and horses. Methods: Blood samples from diseased animals (133 dogs, 65 cats, and 73 horses) were analyzed with the Sysmex XT‐2000iV and the CELL‐DYN 3500. Manual reticulocyte counts were done on an additional 98 canine and 14 feline samples and manual platelet counts were done on an additional 73 feline and 55 canine samples, and compared with automated Sysmex results. Results: Hemoglobin concentration, RBC counts, and total WBC counts on the Sysmex were highly correlated with those from the CELL‐DYN (r≥0.98). Systematic differences occurred for MCV and HCT. MCHC was poorly correlated in all species (r=0.33–0.67). The Sysmex impedance platelet count in dogs was highly correlated with both the impedance count from the CELL‐DYN (r=0.99) and the optical platelet count from the Sysmex (r=0.98). The Sysmex optical platelet count included large platelets, such that in samples from cats, the results agreed better with manual platelet counts than with impedance platelet counts on the Sysmex. Canine reticulocyte counts on the Sysmex correlated well (r=0.90) with manual reticulocyte counts. Feline reticulocyte counts on the Sysmex correlated well with aggregate (r=0.86) but not punctate (r=0.50) reticulocyte counts. Conclusion: The Sysmex XT‐2000iV performed as well as the CELL‐DYN on blood samples from dogs, cats, and horses with a variety of hematologic abnormalities. In addition, the Sysmex detected large platelets and provided accurate reticulocyte counts.  相似文献   

13.
Background: Automated hematology instruments commonly are used for mammalian blood analysis, but there is a lack of accurate automated methods available for avian leukocyte analysis. Objective: The aim of this study was to validate differential leukocyte counts in blood from chickens using the Cell-Dyn 3500 hematology system and avian-specific software.
Methods: Blood samples were collected in lithium-heparin tubes from 2 groups (n = 84 and n = 139) of laying hens. Manual 200-cell differential counts were done on routinely-stained blood smears, and manual total granulocyte counts (heterophils and eosinophils) were done using an eosinophil stain in a counting chamber. Automated differential counts were done using VET 2.3, a research and development version of avian-specific software for the Cell-Dyn 3500. Results were analyzed using Pearson's correlation and difference plots.
Results: Automated granulocyte counts from the Cell-Dyn were in good agreement with manual granulocyte counts ( r = 0.93 and 0.80 for the 2 study groups). No correlation was found between automated and manual lymphocyte counts. Correlation coefficients for monocyte counts were 0.70 and 0.43. Conclusion: Automated leukocyte results from the Cell-Dyn using VET 2.3 software were not fully accurate. Total granulocyte counts may be of clinical usefulness, but results obtained for other parameters were unreliable.  相似文献   

14.
Background: With more use of bench‐top in‐office hematology analyzers, the accuracy of reported values is increasingly important. Instruments use varied methods for cell counting and differentiation, and blood smears may not always be examined. Objective: The purpose of this study was to compare canine CBC results using 4 bench‐top instruments (Hemavet 950, Heska CBC‐Diff, IDEXX LaserCyte, and IDEXX VetAutoread) with ADVIA 120 and manual leukocyte counts. Methods: EDTA‐anticoagulated canine blood samples (n=100) were analyzed on each instrument. Manual differentials were based on 100‐cell counts. Linear regression, difference plots, paired t‐tests, and estimation of diagnostic equivalence were used to analyze results. Results: Correlations of HCT, WBC, and platelet counts were very good to excellent between all in‐office instruments and the ADVIA 120, but results varied in accuracy (comparability). Hemavet 950 and Heska CBC‐Diff results compared best with ADVIA results and manual leukocyte differentials. HCT and platelet counts on the IDEXX VetAutoread compared well with those from the ADVIA. Except for neutrophil counts, leukocyte differentials from all instruments compared poorly with ADVIA and manual counts. Reticulocyte counts on the LaserCyte and VetAutoread compared poorly with those from the ADVIA. Conclusions: The Hemavet 950 and Heska CBC‐Diff performed best of the 4 analyzers we compared. HCT, WBC, and platelet counts on the LaserCyte had minimally sufficient comparability for diagnostic use. Except for neutrophils (granulocytes), leukocyte differential counts were unreliable on all in‐office analyzers. Instruments with a 5‐part leukocyte differential provided no added benefit over a 3‐part differential. Assessment of erythrocyte regeneration on the LaserCyte and VetAutoread was unreliable compared with the ADVIA 120.  相似文献   

15.
This study compared blood glucose concentrations measured with a portable blood glucometer and a validated laboratory analyzer in venous blood samples of 20 pet ferrets (Mustela putorius furo). Correlation and agreement were evaluated with a Bland-Altman plot method and Lin’s concordance correlation coefficient. Blood glucose concentrations measured with the laboratory analyzer and the glucometer ranged from 1.9 to 8.6 mmol/L and from 0.9 to 9.2 mmol/L, respectively. The glucometer had a poor agreement and correlation with the laboratory analyzer (bias, −0.13 mmol/L; level of agreement, −2.0 to 3.6 mmol/L, concordance correlation coefficient 0.665). The relative sensitivity and specificity of the portable blood glucometer for detection of hypoglycemia were 100% (95% CI: 66% to 100%) and 50% (95% CI: 20% to 80%), respectively. Positive and negative predictive values were 67% (95% CI: 39% to 87%) and 100% (95% CI: 46% to 100%), respectively. Based on these results, clinicians are advised to be cautious when considering the results from this handheld glucometer in pet ferrets, and blood glucose concentrations should be determined with a laboratory analyzer validated for this species.  相似文献   

16.
A flow cytometric method was developed to perform differential leukocyte counts on bovine blood. Blood specimens from 50 healthy Holstein cows were analyzed by use of a flow cytometer. The method entailed diluting blood with phosphate-buffered, hypotonic saline solution containing acridine orange, and performing a step-wise, 3-parameter analysis on the bases of cell size, cellular granularity, and granulocyte fluorescence. Initially, proportions of monocytes, granulocytes, and lymphocytes were determined by creating appropriate windows on dot plots of cell size (determined by forward light scatter) vs cellular granularity (determined by the logarithm of side light scatter). Eosinophils were resolved by analysis of granulocytes as dot plots of logarithms of green vs red fluorescence ascribed to acridine orange. Proportions of eosinophils and neutrophils were computed from data so generated. Microclumps of platelets spuriously affected counts of some granulocytes, particularly eosinophils. Differential leukocyte counts determined by flow cytometry generally compared favorably with those obtained by use of the conventional microscopic method, using Wright-stained blood films. Mean neutrophil and eosinophil counts determined by the 2 methods did not differ significantly, but lymphocyte counts determined by flow cytometry were significantly higher than those determined by microscopy (P less than 0.01). Correlation coefficients for counts of neutrophils, eosinophils, and lymphocytes determined by the 2 methods ranged from 0.519 to 0.833. Correlation between monocyte counts was low (r = 0.147), although mean monocyte counts determined by the 2 methods did not differ significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
BACKGROUND: Most hematologic analyses are performed within a short time of blood sampling, but samples collected at the end of a week may have to be stored for up to 2 days. The stability of hematologic constituents is poorly documented. OBJECTIVE: The objective of this study was to compare the results of RBC, WBC and platelet counts, hemoglobin (Hgb) concentration, and MCV before and after storage of canine blood at room temperature for 24 and 48 hours. METHODS: One hundred fifty-two K3-EDTA canine blood specimens from 2 veterinary hospitals were analyzed within 4 hours of collection, then 24 and 48 hours later with a Coulter T540 hematology analyzer. Results were compared by Passing-Bablock agreement, difference plots, and according to their classification as normal or abnormal based on reference intervals. RESULTS: RBC count and Hgb concentration were stable for the duration of the study. Differences in WBC and platelet counts varied with the specimen, independently of the initial value. MCV increased consistently over the 2 days. However, only a few results were misclassified. CONCLUSION: Whole blood specimens stored for up to 2 days at room temperature are suitable for cell counts and Hgb measurement. However, potential variations have to be known to avoid misinterpretations, especially near the decision limits.  相似文献   

18.
Previous studies have determined that, compared to whole blood, serum or plasma used in a portable blood glucometer (PBG) may provide more accurate results. We investigated the accuracy of a veterinary PBG (AlphaTRAK 2; Zoetis) for the measurement of glucose concentrations in serum, plasma, and whole blood compared to plasma glucose concentration measured by a biochemical analyzer. Blood samples from 53 client-owned dogs were collected. Lin concordance correlation coefficient (ρc) and Bland–Altman plots were used to determine correlation and agreement between the results obtained for the different sample types. Glucose concentration in whole blood measured by the veterinary PBG was more strongly correlated with the glucose concentration measured by the biochemical analyzer (ρc = 0.92) compared to plasma and serum glucose concentrations (ρc = 0.59 and 0.57, respectively). The mean differences between the glucose concentrations in whole blood, plasma, and serum measured by the veterinary PBG and the glucose concentration determined by the biochemical analyzer were 1.0, 6.3, and 6.7 mmol/L (18, 113, and 121 mg/dL), respectively. Our findings suggest that, when using this veterinary PBG, the accuracy of a glucose measurement obtained is higher when using whole blood compared to plasma or serum. Use of whole blood allows for more correct assessment and diagnosis, which are necessary for appropriate therapeutic intervention.  相似文献   

19.
This study evaluated the quality and bacteriologic safety of platelet-rich plasma (PRP) produced by 3 simple, inexpensive tube centrifugation methods and a commercial system. Citrated equine blood collected from 26 normal horses was processed by 4 methods: blood collection tubes centrifuged at 1200 and 2000 × g, 50-mL conical tube, and a commercial system. White blood cell (WBC), red blood cell (RBC), and platelet counts and mean platelet volume (MPV) were determined for whole blood and PRP, and aerobic and anaerobic cultures were performed. Mean platelet concentrations ranged from 1.55- to 2.58-fold. The conical method yielded the most samples with platelet concentrations greater than 2.5-fold and within the clinically acceptable range of > 250 000 platelets/λL. White blood cell counts were lowest with the commercial system and unacceptably high with the blood collection tubes. The conical tube method may offer an economically feasible and comparatively safe alternative to commercial PRP production systems.  相似文献   

20.
A new whole-blood flow cytometric method has been developed for counting and sizing platelets in samples from cats, a species in which platelet and red blood cell sizes overlap significantly. The method is a modified version of the two-angle laser light scattering technology used by Bayer H*System hematology analyzers. The new method provided accurate platelet counts and mean platelet volumes (MPV, fl) for cats. The method also measured mean platelet component concentration (MPC, g/dl), a parameter which was shown to be sensitive to platelet activation state, and which decreased in value as activation progressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号