首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A 56-day study was conducted in which shrimp (Litopenaeus vannamei) were stocked at 300 m−3 into 16, 500-L tanks. Four treatments were created: chemoautotrophic (CA), heterotrophic sucrose (HS), heterotrophic molasses (HM), and heterotrophic glycerol (HG). The heterotrophic treatments were managed such that the C:N ratio of inputs (feed and carbohydrate source) was 22:1. The chemoautotrophic treatment received no added carbohydrate, only shrimp feed. Each treatment was assigned randomly to four replicate tanks. Nitrate-N was significantly greater in the CA treatment, accumulating to a peak mean concentration of 162 mg NO3-N L−1 and nitrate was typically below detection (<0.01 mg NO3-N L−1) in the heterotrophic treatments. 5-Day biochemical oxygen demand (BOD5) was significantly greater in the heterotrophic treatments compared to the chemoautotrophic treatment. Total suspended solids concentration was significantly lower in the CA treatment compared to any other. Shrimp growth rate was significantly greater in the CA and HS treatments versus the HM treatment and there was no significant difference in growth rate between the HG treatment and any other treatment. These results indicate that differences in management and carbohydrate source can lead to substantial disparity in system function and shrimp production.  相似文献   

2.
The food grade agar in India has been almost exclusively obtained from Gracilaria edulis, but the industrial production overwhelmingly relies on exploitation of natural resources. United Nations efforts through Food and Agriculture Organization under Bay of Bengal Program highlighted the necessity of undertaking commercial farming of this species along Indian coast for socio-economic benefits. The pilot-scale experiments established viability of large-scale cultivation by floating raft method. Nevertheless, drastic reduction in yield and quality during summer months due to enhanced sedimentation and severe epiphytism is found to be a major hindrance. Altering the positioning of rafts from horizontal to vertical alignment improved the growth and yield under open sea condition at two different locations along south east coast of India. The average yield in horizontal raft was found to be 3.08 ± 0.61 kg fr wt raft−1 with corresponding DGR of 1.87 ± 0.63% day−1 while same in case of vertical rafts was 13.76 ± 3.86 kg fr wt raft−1 and 5.00 ± 0.5% day−1 in Gulf of Mannar under 45 days growth cycle. The corresponding values along Palk Bay were 2.98 ± 0.52 g fr wt raft−1 and 1.38 ± 0.42% day−1 for horizontal raft and 13.02 ± 6.06 kg fr wt raft−1 and 4.14 ± 1.18% day−1 for vertical raft. ANOVA clearly indicated that raft position significantly influenced the biomass yield and DGR at Palk Bay (F = 75.77; F = 112.81) as well as Gulf of Mannar (F = 27.21; F = 59.16) at p = 0.001. The increment of 1.9–2.6% in fresh weight of individual frond was reported in vertically aligned rafts. The computational fluid dynamics (CFD) based unsteady numerical simulations have confirmed that vertical alignment of raft facilitates relatively free movement of water due to which sedimentation and epiphytism are either minimised or eliminated. Thus these studies can help us to deduce important conclusions pertaining to management of sustained commercial cultivation of this alga in Indian waters.  相似文献   

3.
Environmentally sustainable aquaculture development requires increased nitrogen removal from recirculating aquaculture systems (RAS). In this study, removed solids from a large commercial outdoor recirculated trout farm (1000 MT year−1) were explored as an endogenous carbon source for denitrification. This was done by (1) a controlled laboratory experiment on anaerobic hydrolysis of the organic matter (from sludge cones, drumfilter, and biofilter back-wash) and (2) an on-site denitrification factorial experiment varying the soluble COD (CODS)/NO3-N ratio from 4 to 12 at hydraulic retention times (HRT) from 50 to 170 min in simple 5.5 m3 denitrification reactors installed at the trout farm.The lab-experiments showed that the major part of the readily biodegradable organic matter was hydrolyzed within 14 days, and the hydrolysis rate was fastest the first 24 h. Organic matter from the sludge cones generated 0.21 ± 0.01 g volatile fatty acids (VFA) g−1 total volatile solids (TVS), and the VFAs constituted 75% of CODS. Analogously, 1 g TVS from the drum filter generated 0.15 ± 0.01 g VFA, constituting 68% of the CODS. Comparison of the laboratory hydrolysis experiments and results from the on-farm study revealed as a rough estimate that potentially 17–24% of the generated VFA was lost due to the current sludge management.Inlet water to the denitrification reactors ranged in NO3-N concentration from 8.3 to 11.7 g m−3 and CODS from 52.9 to 113.4 g m−3 (10.0 ± 1.2 °C). The highest NO3-N removal rate obtained was at the intermediate treatments; 91.5–124.8 g N m−3reactor d−1. The effect of the C/N ratio depended on the HRT. At low HRT, the variation in C/N ratio had no significant effect on NO3-N removal rate, contrary to the effect at the high HRT. The stoichiometric ratio of CODS/NO3-N was 6.0 ± 2.4, ranging from 4.4 (at the high HRT) to 9.3 (at the low HRT). A simple model of the denitrification reactor developed in AQUASIM showed congruence between modeled and measured data with minor exceptions. Furthermore, this study pointed to the versatility of the NO3-N removal pathways expressed by the bacterial population in response to changes in the environmental conditions; from autotrophic anammox activity presumably present at low C/N to dissimilatory nitrate reduction to ammonia (DNRA) at high C/N, besides the predominate “normal” heterotrophic dissimilatory nitrate reduction (denitrification).  相似文献   

4.
Irrigated rice fields have enormous potential for expanding the aquaculture production in rice producing countries. Two field experiments were carried out at the Bangladesh Agricultural University, Mymensingh, to optimize the productivity of integrated rice–fish systems using Nile tilapia, Oreochromis niloticus (L.), and common carp, Cyprinus carpio L. Both experiments were laid out in a randomized complete block design with three replicates per treatment and regular rice monoculture as control. In the first trial, carp and tilapia were tested in single culture and in mixed culture with supplementary feeding at 2× maintenance level. The highest fish yield was obtained in the carp/tilapia mixed culture (586 ± 125 kg ha 1), followed by tilapia alone (540 ± 65 kg ha 1), and carp alone (257 ± 95 kg ha 1). Carp had significantly lower yield than the other two fish groups (p < 0.05) due to high mortality and inefficient feed utilization. As the carp/tilapia combination performed the best in the first experiment, it was tested with different inputs in the second trial, i.e. regular urea fertilization and two different feeding levels. The feeding levels were: continuous feeding at 2× maintenance level (feed level I) and a declining feeding schedule from 4× to 2× maintenance level (feed level II). The highest fish yield was obtained in feed level II (935 ± 29 kg ha 1), followed by feed level I (776 ± 22 kg ha 1), and the non-fed group (515 ± 85 kg ha 1). Yield differences between the treatments were significant at p < 0.05. Rice yields showed controversial effects between the rice–fish treatments and were dependent on the inputs provided. The highest rice production (4.2 t ha 1) was obtained from rice–fish plots with regular urea fertilization. Various significant effects of fish on water quality parameters were observed. Fish decreased the dissolved oxygen (DO) and pH value compared to rice only, especially when supplementary feed was provided. Moreover, fish stimulated the growth of phytoplankton and increased chlorophyll-a concentration. In conclusion, carp/tilapia mixed culture with supplementary feeding was found to be optimal for maximizing the output from rice–fish culture.  相似文献   

5.
Although the use of artificial substrates can favor shrimp culture, some studies indicate that their presence in growth tanks does not improve water quality or the performance of the animals. One objective of this study was to evaluate whether the presence of artificial substrates modifies the microbial activity and the water quality of the culture of Litopenaeus vannamei with bioflocs. The substrate effects on the shrimp performance and the relationship between these effects and the stocking density/biomass of shrimp were also evaluated. The experiment consisted of four treatments: D238: 238 shrimp m−3; D238 + S: 238 shrimp m−3 + substrates; D473: 473 shrimp m−3; D473 + S: 473 shrimp m−3 + substrates. Twelve experimental units of 850 L were stocked with juvenile L. vannamei (2.6 g) that were grown for 34 days. The substrates did not appear to affect water quality since the concentrations of orthophosphate, ammonia and nitrite were not significantly different in tanks with or without substrates. The periphyton biomass was low and the biological activity on the substrates was not significant, indicating that the water quality variables were mainly controlled by the microbial community associated with the suspended bioflocs. The shrimp grown in the presence of the substrate exhibited greater weight gain (D238 + S = 1.40 ± 0.05 and D473 + S = 1.20 ± 0.04 g week−1) than those grown without substrates (D238 = 0.73 ± 0.04 and D473 = 0.44 ± 0.13 g week−1). The final biomass was 314% greater in the tanks with substrates. The shrimp survival was significantly higher in the tanks with substrates (93.9 ± 2.4%) than in the tanks without substrates (42.5 ± 35.9%). The results indicate that the substrates served to increase the surface area of the tank and to reduce the relative stocking density, which appears to reduce the stress levels of shrimp, indicated by higher shrimp performance. In tanks with higher biomass, where the negative effects of intensification were most severe, the presence of the substrates had a positive effect on the production indices.  相似文献   

6.
In vivo digestibility determination in shrimp is a challenge because these animals are coprophagous, benthic and slow feeders and the small amount of feces that they produce is difficult to collect. The objective of this study was to evaluate an efficient tank design for the purpose of studying shrimp digestibility. Different tank designs were evaluated considering drain system (dual-drain and single-drain), water inlet flow rate (8, 12, and 16 L min−1) and bottom drain diameter (6, 13, 19, 25 and 50 mm) and their effects on tank hydraulics, water velocity and solids flushing. A circular and slightly conical 500 L tank was adapted with a clarifier for the two dual-drain designs (Cornell-type and central-type) and settling columns for the two single-drain designs (Guelph-F and Guelph-L). Results showed that: (1) water rotational velocity profile was more homogeneous in tanks with larger bottom drain outlets, and water velocity increased with water inlet flow rate from almost zero up to 14.5 ± 0.7 cm s−1; (2) solids flushing, measured as the percentage of feed pellets retained at both the bottom drain and in the settling devices, was positively correlated with the surface loading rate (L min−1 flow per m2) and was more effective at the Guelph-L design fitted with a 150 mm diameter settling column. In this system 100% of the solids were removed at the inflow rate of 16 L min−1. It can be concluded that among the systems evaluated, the Guelph-L at an inflow-rate of 12 L min−1 was most efficient for both solids removal and water velocity profile and thus seemed more suitable for shrimp digestibility studies in high performance conditions. Technologies involving hydrodynamic must be intensively applied to solids removal for aquatic species production as well as research purposes like digestibility, which is highlighted in this study.  相似文献   

7.
A jet fish pump with a throat of ø60 mm was designed to study its performance in the transport of different fish species and the physiological changes in fish thereafter. Experiments were conducted to investigate the fish transport rate and energy required to transport each ton of fish when transporting Carassius auratus, commonly known as the Chinese goldfish, Megalobrama amblycephala, or Wuchang bream, and Ctenopharyngodon idella, the grass carp. Fish were examined for external injuries as well as for several important enzymes and hormones which are indicators of tissue injury and stress. The results showed that the transport rate for all three species of fish rose dramatically with an increase in the primary stream rate. In this experiment, the transport rates of C. auratus, M. amblycephala and C. idella reached 2357 ± 37.2 kg  h−1, 2888 ± 41.6 kg  h−1, and 2060 ± 40.2 kg  h−1, respectively. However, both injury rate and energy required to transport each ton of fish increased no matter whether the primary stream rate was too low or too high. Considering both transport rate and injury rate, the mean primary stream rate of 80 m3  h−1 was determined to be the optimal operating condition in this experiment. Fish were stressed and most likely some of their organs were damaged. However, most physiological indexes almost fully recovered after several hours.  相似文献   

8.
Indoor shrimp aquaculture systems can be used to produce fresh, never-frozen, quality shrimp near metropolitan seafood markets regardless of season and climate. However, questions still remain regarding what type of production system is best suited to maximize indoor production. In this project, two types of systems were compared: clear-water (CW) RAS and biofloc (BF) systems. Three, 1.36 m3 tanks were assigned to each of the two treatments; CW tanks had external settling chambers, two foam fractionators, and external biofilters, all operated continuously. BF tanks had settling chambers and one foam fractionator which were operated as needed to control solids accumulation. Shrimp weighing 0.42 g were stocked in all tanks at 250 m−3 and grown for 55 days. Ammonia and pH levels were significantly (P < 0.05) higher in the CW treatment, while nitrite, nitrate, and turbidity were all significantly higher in the BF treatment, although all parameters remained within acceptable ranges for shrimp growth. Shrimp mean harvest weight was significantly higher, biomass (kg m−3) was significantly greater, and FCR was significantly lower in the CW treatment; there were no significant differences in survival between treatments. Isotope levels indicated that shrimp in the BF treatment obtained a portion of the C (18-60%) and N (1-18%) in their tissues from biofloc material; however, this effect did not positively influence production in that treatment. By nearly eliminating solids from the water and using an external biofilter, substantially better water quality was maintained in the CW systems, which may have been a major contributor to the improved shrimp production in that treatment.  相似文献   

9.
Basic data describing the physical characteristics of fish fecal waste are important in the design of effective solid waste management in aquaculture, especially in land-based facilities such as recirculating aquacultural systems (RAS).This study describes the physical properties of feces from rainbow trout fed eight different commercially available and widely used diets in Germany. Additional data from an earlier but unpublished study pertaining to feces derived from two rather extreme all-vegetarian diets are also presented for consideration of the settling properties. The diets were tested on duplicate groups of 50 rainbow trout in a flow-through aquaculture system. The effects of the diets on the physical properties of fecal particles such as particle size distribution (PSD), modeled settling velocity and rheological character were examined and the effects of each diet on fish health, growth and feed utilization were determined. Specific growth rate (SGR) and feed conversion ratio (FCR) for the different diets ranged from 0.98% d−1 ± 0.012% d−1 to 1.39% d−1 ± 0.012% d−1 and 0.97 ± 0.017 to 1.61 ± 0.017 (mean ± S.E.), respectively. The density of presoaked feces was significantly lower than that of intestinal feces and ranged from 1.01013 ± 0.00692 g cm−3 to 1.04547 ± 0.00692 g cm−3 (mean ± S.E.). Stability data were in the range from 390.12 ± 29.4 Pa to 1214.79 ± 29.0 Pa for elastic modulus and from 62.12 ± 6.1 Pa s to 232.68 ± 6.0 Pa s for dynamic viscosity. Based on the stability and PSD data theoretical efficiencies for removal of fecal waste using a drum filter showed remarkable variation, ranging from 82.5 to 95.9% (60 μm gauze). Based on the same data, theoretical removal by a sedimentation basin with routinely using overflow rates of 0.057 cm s−1 to 0.394 cm s−1 ranged from 62.8 to 93.8%. Both fecal density and PSD have an exponential impact on settling performance. Increasing fecal density improves the removal efficiency of a sedimentation basin by about 20%, however sedimentation was seen to be a less robust and efficient removal technique than drum filtration. Sedimentation systems also experience additional problems with respect to leaching. Turbulence that was mimicked in this study reflects to an optimal fish farm, which means disintegrating effects are mainly caused by fish motion. If disintegrating units e.g. pumps are used, which are known to promote further particle breakdown the effects would be amplified.The results demonstrate the central importance of density of suspended solids in defining removal efficiencies and suggest that manipulation of fecal density might offer a new and effective means of managing and optimizing waste output from aquaculture operations. This study describes the basic properties of fecal wastes generated by commercial diets and can be used as a basis for further research.  相似文献   

10.
Striped trumpeter have a complex and extended larval phase and are difficult to culture. Two experiments were conducted in replicated, 300-l hemispherical tanks to determine if larval survival, growth, bacterial or fatty acid profile were improved by feeding non-enriched rotifers or rotifers enriched with algae or commercially available products, as well as the effect of an antibiotic, oxytetracycline (OTC). Larvae were stocked at 25 l 1 and 15 l 1 and reared until Day 16 and Day 19 in Experiments 1 and 2, respectively. In Experiment 1, the feeding treatments were non-enriched rotifers, or rotifers enriched on algae, DHA Selco (a fish oil based emulsion) or RotiMac (dried Schizochytrium). There were no significant differences in mean survival (± SD) across treatments, which were generally low at 14.6 ± 5.2%. Larvae reared on rotifers fed DHA Selco and RotiMac, had significantly higher proportions of incorporated DHA but no significant increase in growth. In Experiment 2, larvae were fed rotifers enriched on DHA Selco or AlgaMac 2000 and reared with or without the daily addition of 25 mg l 1 OTC. At Day 19, there was significantly higher survival for larvae reared on AlgaMac 2000 and OTC, (37.4 ± 5.6%), than DHA Selco and OTC, (16.0 ± 7.4%), AlgaMac 2000 without OTC (7.0 ± 8.0) and DHA Selco without OTC (3.3 ± 1.2). Larvae reared with OTC were larger (279 ± 58 μg and 7.4 ± 0.2 mm) than without OTC (177 ± 40 μg and 6.3 ± 0.2 mm). The addition of antibiotics did not significantly influence fatty acid profiles of larvae. There were no significant differences in the percentage of DHA, 27.6 ± 2.8%, EPA 4.6 ± 1.0% or ARA 4.9 ± 0.4%. Larvae reared with OTC had significantly less ‘grey gut’ (a measure of intestinal dysfunction). The results indicated that bacterial infection was a major source of mortality in striped trumpeter larvae and compromised larval growth. Assessment of the bacterial flora indicated that antibiotic use reduced the bacterial load, but did not eliminate potential pathogens. Our study suggests that microbial control has a greater influence than lipid nutrition on the survival and growth of larvae during the rotifer feeding stage.  相似文献   

11.
In zero-exchange superintensive culture systems, flocculated particles (bioflocs) accumulate in the water column. Consequently, some control over the concentration of these particles must be performed. The objective of this study is to evaluate the effects of three concentrations of bioflocs on microbial activity, selected water quality indicators and performance of Litopenaeus vannamei in a tank system operated with no water exchange. A 44-day study was conducted with juvenile (6.8 g) shrimp stocked in twelve 850 L tanks at a stocking density of 459 shrimp m−3. Biofloc levels were expressed as three presets of total suspended solids (TSS) concentrations, as follows: 200 mg L−1 (T200), 400–600 mg L−1 (T400–600), and 800–1000 mg L−1 (T800–1000). TSS levels were controlled by attaching a 40 L settling tank to each culture tank. Reduction of TSS to concentrations close to 200 mg L−1 decreased the time of bacterial cell residence and significantly reduced the nitrification rates in the water (P < 0.05). The tanks in the T200 treatment had a greater variability of ammonia and nitrite (P < 0.05), which led to the need to increase the C:N ratio of the organic substrate to control ammonia through its assimilation into heterotrophic bacterial biomass. But the higher production of heterotrophic bacteria in T200 (P < 0.05) increased the dissolved oxygen demand. Nitrification rates were higher (P < 0.05) in tanks with TSS concentrations above 400 mg L−1, and ammonia and nitrite were significantly lower than in the T200 tanks. We suggest that ammonia and nitrite in the T400–600 and T800–1000 tanks were controlled primarily by nitrifying bacteria, which provided higher stability of these parameters and of dissolved oxygen. Regarding shrimp performance, the reduction of TSS to levels close to 200 mg L−1 was associated with better nutritional quality of bioflocs. Nevertheless, differences in biofloc levels and nutritional quality were not sufficient to affect the weight gain by shrimp. The rate of shrimp survival and the final shrimp biomass were lower (P < 0.05) when the TSS concentrations were higher than 800 mg L−1. Analysis of the shrimps’ gills showed a higher degree of occlusion in the T800–1000 treatment (P < 0.05), which suggests that the shrimp have an intolerance to environments with a solids concentration above 800 mg L−1. Our results show that intermediate levels of bioflocs (TSS between 400 and 600 mg L−1) appear to be more suitable to superintensive culture of L. vannamei since they create factors propitious for maintaining the system’s productivity and stability  相似文献   

12.
In this work, the practical application of a low-pressure hydrocyclone was examined for feed waste and fecal solid removal for common carp (27 ± 3.1 g, average ± SD) and Nile tilapia (33 ± 3.4 g, average ± SD) in a recirculating aquaculture system. The dimensions of the low-pressure hydrocyclone included an inflow diameter of 30 mm, a cylinder length of 575 mm, an overflow diameter of 60 mm, an underflow diameter of 50 mm, a cylinder diameter of 335 mm and a cone angle of 68°. The different operating conditions tested were inflow rates of 400, 600, 800 and 1000 ml s−1, and underflow rates of 25%, 25%, 20% and 10% of the inflow rates, respectively. Feed waste totals of 4.1 to 4.8% and 3.6 to 4.0% of the feed intake were produced by the common carp and Nile tilapia, respectively. The maximum separation efficiency (Et) for the feed waste from the common carp was 71% at an inflow rate of 600 ml s−1 with an underflow rate of 25% of the inflow rate. The maximum separation efficiency for the feed waste from the tilapia was 59% at an inflow rate of 400 ml s−1 with an underflow rate of 25% of the inflow rate. The fecal solid production estimated from the digestibility was 37.9% and 35.7% of the feed intake for the common carp and Nile tilapia, respectively. The maximum separation efficiency for the feces from the common carp was 60% for an inflow rate of 600 ml s−1 and an underflow rate of 25% of the inflow rate. The maximum separation efficiency for the tilapia feces was 63% at an inflow of 400 ml s−1 with an underflow rate of 25% of the inflow rate. The low-pressure hydrocyclone can be adopted for prefiltration and/or post-filtration for the removal of various sized solids. Furthermore, the solids separated from the underflow can be easily removed for further processing.  相似文献   

13.
Total suspended solids are a priority pollutant under the Clean Water Act and a point of concern for aquaculture facilities. The use of ubiquitous vegetated ditches on the aquaculture landscape may serve as an environmentally and economically sustainable practice for reducing suspended sediment contributions to downstream environments. This study assessed effects of consecutive low-grade weirs on suspended solids retention and settling rates of aquaculture pond effluent in a single drainage ditch. Two control and nine treatment discharges were conducted in September and October 2012 at the Mississippi State University South Farm Aquaculture Facility. All discharges decreased total and volatile suspended solid loads. Total suspended solids were decreased 72–94%, with a significant removal rate of 0.02 ± 0.01 mg L−1 min−1 in both control (F = 6.12, P < 0.001) and treatment discharges (F = 16.02, P < 0.001). Volatile suspended solids comprised 2–80% of total suspended solids and had a significant removal rate of 0.02 ± 0.001 mg L−1 min−1 in both control (F = 10.46, P < 0.001) and treatment discharges (F = 6.28, P < 0.001). There was no significant difference in overall settling rates between control and treatment discharges; however, prior to weir 1, both total and volatile suspended solid concentrations increased in control discharges. Treatment discharges decreased both total and volatile suspended solids significantly (P < 0.001) prior to weir 1. Further analysis revealed flow rate to be a significant (P < 0.001) variable in total suspended solid removal while initial concentrations affected reduction rates of volatile suspended solids significantly (P < 0.001). These results suggest that the use of low-grade weirs could be a viable best management practice that easily integrates within the aquaculture landscape and creates hydraulic conditions conducive to sediment retention.  相似文献   

14.
A 13-day nursery trial was conducted to evaluate the performance of young Litopenaeus vannamei post-larvae (from PL6 to PL18) reared in both biofloc and microalgae-based systems at a stocking density of 67 PLs L−1. The effects of different concentrations of total suspended solids (TSS) on PL performance were also evaluated. One experimental group was reared in a conventional microalgae-based system with daily water exchange and daily addition of microalgae (herein called microalgae treatment). The other two experimental groups were reared using biofloc technology (BFT) with daily dextrose addition and no water exchange, but in the “Biofloc-500” treatment, TSS were maintained at around 500 mg L−1, while in the “Biofloc-700” treatment, TSS were maintained at around 700 mg L−1. Water quality variables remained within the appropriate range for larval culture. In microalgae treatment, ammonia control was likely associated with its assimilation into microalgae biomass and daily water exchange. In biofloc tanks, however, the addition of dextrose stimulated the production of bacterial biomass from ammonia. This system required only 12.9% of the water used by the microalgae treatment since water was not exchanged during the culture. The nursery of young PLs resulted in similar (P > 0.05) performance in all treatments: survival >94%, PL length ∼ 11.5 mm, and PL dry weight ∼ 1.2 mg. In addition, the salinity stress test (>90.0%) was not significantly different among treatments. Our results indicate that BFT can be as effective as the microalgae-based system for the nursery of young L. vannamei post-larvae. We also found that post-larvae performance was similar (P > 0.05) between biofloc treatments, indicating that organisms can tolerate environments with large quantities of solids.  相似文献   

15.
Inclusion of kalbasu, Labeo calbasu as a candidate species in the Indian major carps based polyculture system was evaluated through a six-month grow-out trial in earthen ponds of 0.08 ha each. Species performance was assessed through provision of varied inputs viz., fertilizers (T-1), fertilizers + supplementary feed (T-2) and fertilizers + supplementary feed + periphytic substrate (T-3) as the three treatments, which were evaluated in replicates. Catla (35%), rohu (35%), mrigal (15%) and kalbasu (15%) were stocked at combined density of 7500 fingerlings/ha. While ponds were fertilized with cowdung, urea and single super phosphate, mixture of groundnut oilcake and rice bran at 1:1 (w/w) was provided as supplementary feed. The periphytic substrate, comprised stripe bamboo mat, was provided at 10% of the pond surface area. Provision of each additional input caused significantly higher increase in overall mean survival, growth, SGR and net biomass yield of carps. Among the carp species, while only rohu and kalbasu showed significantly higher weight gain (234.4 g and 170.3 g, respectively) in T-3, no such increase was noticed either in catla or mrigal. The net production in T-3 (1516.1 ± 24.3 kg ha 1 6 months 1) was 13.0 and 73.2% higher than those of T-2 (1341.7 ± 15.5 kg ha 1 6 months 1) and T-1 (875.2 ± 15.6 kg ha 1 6 months 1), respectively. The study revealed the relative advantage of using periphytic substrates in carp polyculture systems with kalbasu as a component species.  相似文献   

16.
Anaerobic digestion is a way to utilize the potential energy contained in solid waste produced in recirculating aquaculture systems (RASs), either by providing acidogenic products for driving heterotrophic denitrification on site or by directly producing combustive methane. In this study the biochemical acidogenic potential of solid waste from juvenile rainbow trout was evaluated by measuring the yield of volatile fatty acids (VFA) during anaerobic digestion by batch or fed-batch reactor operation at hydrolysis time (HT)/hydraulic retention time (HRT) of 1, 5, or 10 days (and for batch additional 14 and 20 days) in continuously stirred tank reactors. Generally, the VFA yield increased with time and no effect of the reactor type used was found within the time frame of the experiment. At 10 days HT or 10 days HRT the VFA yield reached 222.3 ± 30.5 and 203.4 ± 11.2 mg VFA g−1 TVS0 (total volatile solids at day 0) in batch and fed-batch reactor, respectively. For the fed-batch reactor, increasing HRT from 5 to 10 days gained no significant additional VFA yield. Prolonging the batch reactor experiment to 20 days increased VFA production further (273.9 ± 1.6 mg VFA g−1 TVS0, n = 2). After 10 days HT/HRT, 16.8–23.5% of total Kjeldahl N was found as TAN and 44.3–53.0% of total P was found as ortho-phosphate. A significant difference between reactor types was detected for the phosphorous dissolution at 5 days HT/HRT as a relatively steep increase (of a factor 2–3) in ortho-P content occurred in fed-batch reactors but similar steep increase was only notable after 10 days HT for batch reactors. No differences between reactor types at the other HT/HRT were recorded for P as well as (for all HT/HRT for) N. Based on this study a HRT of approximately 5 days would be recommended for the design of an acidogenic continuously stirred reactor tank in a RAS single-sludge denitrification set-up. The biochemical methane potential of the sludge was estimated to 318 ± 29 g CH4 g−1 TVS0 by a batch assay and represented a higher utility of the solid waste when comparing the methane yield with the VFA yield (in COD units). This points toward a technological challenge of ultimately increase the acidogenic output to match the methane yield as both products are formed from the same source.  相似文献   

17.
Micro-screen rotating drum filters are an alternative to sand filtration especially when excessive waste water is a concern. The filtering process of drum screen filters is very simple, yet very efficient and reliable due to their overall design and operation. Drum filters are designed with few moving parts to ensure a long life with low operating/maintenance costs.Micro-screening essentially captures particles on a screen fabric while letting the water pass. This paper describes a design of two an industrial-scale drum screen filters driven by undershot wheel and its performance installed in recirculating aquaculture system culturing tilapia at El-Nenaeia fish farm. These filters are consisted of a woven metal mesh of 100 μm. The design criteria for solids loading rate in the influent water is 10 kg m−2 min−1.The results indicate that the design parameters of the filter such as surface are and rotation speed were affected by the water flow rate, where the surface area and drum speed ranged from 1.58 to 27.87 m2, and 1.05 to 8.40, respectively. The results also indicated that the efficiency of filter decreased during the first two months compared to the last two months of fish growth period, with an average 34.22 ± 8.85% during the first 60 days and an average 52.41 ± 16.77% during the last period. Using water wheels for driving the screen filter is very important in saving energy, where the filter with such dimensions needs 1.0 hp for driving it, which represents 18.0 kW daily.  相似文献   

18.
Sea bass (Dicentrarchus labrax) (135 ± 4 g) were reared under tank-based recirculating aquaculture system for a 63-day period at four densities: 10, 40, 70, 100 kg m?3. Fish performance, stress indicators (plasma cortisol, proteonemia plus other blood parameters—Na+, K+, glucose, pH, total CO2?) and water quality were monitored. At the end of the 63-day period, resistance to infection was also studied by a nodavirus challenge. A 25-day test was performed on fish from two extreme densities (10 and 100 kg m3) and one intermediate density (40 kg m3).With regards to the different density treatments, there was no significant difference between the daily feed intake (DFI) and the specific growth rate (SGR) up to a density of 70 kg m?3. No significant difference was found between treatments concerning the feed conversion ratio (FCR) and the mortality rate. No density effect was observed on the fish stress level (plasma cortisol) or on sensitivity to the nodavirus challenge. Under these experimental rearing conditions, the density above 70 kg m?3 has an impact on growth performance (DFI and SGR) indicators and also some blood parameters (CO2) at the highest density tested (100 kg m?3).This study suggests that a density up to 70 kg m?3 has no influence on sea bass performance and welfare. At 100 kg m?3, average specific growth rate was decreased by 14% without welfare deterioration according to the welfare indicators monitored.  相似文献   

19.
Decreased Litopenaeus vannamei performance resulting from excess total suspended solids (TSS) has been highlighted in previous studies. Therefore, the aim of this study was to evaluate the effect of different TSS concentrations on the L. vannamei growth performance in a BFT system for 42 days. Five TSS concentrations were used—250, 500, 1000, 2000, and 4000 mg L−1—in three replicates identified as T250, T500, T1000, T2000, and T4000, respectively, in 200 L-tanks each. Dissolved oxygen concentration (DO) was maintained above 5 mg L−1. Shrimp with an initial average weight of 4.57 ± 1.07 g were stocked at a density of 277 shrimp m−2. The physical and chemical parameters were monitored. Water quality parameters and animal performance were subjected to analysis of variance (ANOVA − one way). The physical and chemical parameters were within the recommended range for L. vannamei. Weekly weight gain, feed conversion rate, survival, and productivity showed no significant differences (p > 0.05). The high TSS concentrations did not seem to affect the performance of this species when DO concentrations were maintained above 5 mg L−1.  相似文献   

20.
Leakage of water soluble nutrients from larval microparticulated feeds is probably extensive and needs to be further investigated. Leaching rates of 14C-labelled serine, pepsin hydrolysed, protein enriched 14C-algae extract and intact protein enriched 14C-algae extract were measured from three microparticulated feeds for marine fish larvae (heat coagulated, protein bond feed; agglomerated feed; protein encapsulated feed). The effects of particle size (< 0.3 mm, 0.3–0.6 mm; 0.6–1.0 mm) and immersion time (1–60 min) in salt water were also tested. Leaching increased by decreasing molecular weight of leaching component (P < 10 5), by the feeds in order encapsulated, heat coagulated and agglomerated feeds (P < 10 5), by longer immersion time (P < 10 5), and by decreasing feed particle size (P < 10 5). Due to low protein content of the algae extract, the leaching rates of intact and hydrolysed algae extract did not represent absolute estimates for protein and hydrolysed protein leaching. A new estimate for leakage of hydrolysed protein was calculated based on molecular weight distribution of the hydrolysed algae extract analysed by cutoff centrifugation of the extract. Assuming that molecules < 300–600 or < 9–18 kD would leak, leakage of hydrolysed protein from the smallest feed particles after 5 min immersion would be 80–98%, 43–54% and 4–6% of the agglomerated, heat coagulated and protein encapsulated feeds, respectively. The feeds were also tested for preference in cod larvae of two different sizes (5.6 ± 2.5 mg and 15.8 ± 7.2 mg). The preference was highest for the heat coagulated feed in the first experiment (feed intake 0.32 ± 0.06 mg dry feed larvae 1) and the agglomerated in the second (2.04 ± 0.32 mg dry feed larvae 1), while the protein encapsulated feed was preferred at lower rates in both experiments (0.11–0.14 mg dry feed larvae 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号