首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The aim of this study is to determine the effects of plasticizer hydrogen bonding capability and chain length on the molecular structure of sodium caseinate (NaCAS), in NaCAS/glycerol and NaCAS/polyethylene glycol 400 (PEG) systems. Both solution and film phases were investigated. Glycerol and PEG reduced the viscosity of aqueous NaCAS, with the latter having a greater effect. This was explained in terms of protein/plasticizer aggregate size and changes to the conformation of the caseinate chain. In the film phase, glycerol caused more pronounced changes to the film tensile strength compared with PEG. However, the effect of glycerol on film water vapor permeability was smaller. These observations are attributed to the differences in plasticizer size and hydrogen bonding strength that controls the protein-plasticizer and protein-protein interactions in the films. Glass transition calculations from the tensile strength data indicate that the distribution of bonding interactions is more homogeneous in NaCAS/PEG films than in NaCAS/glycerol films.  相似文献   

2.
Drying is a major component of the cost of making caseinate-based films. We determined the drying curves for making calcium caseinate/glycerol films at low and high relative humidity at 21-34 degrees C. The drying curves exhibited a very long constant rate period followed by a single falling rate period. Much of the drying was in the constant rate period and preceded the actual film formation. Normally, calcium caseinate solutions are dried from about 5% solids, but it was possible to start with a more concentrated solution, 10% solids, to avoid much of the constant rate period. The resulting films were equal to those prepared starting at high initial moisture. An estimate of the drying costs indicated it is much cheaper to start with the more concentrated solutions.  相似文献   

3.
Oxygen permeabilities (OP) of CO(2)-casein (CO(2)CN), calcium caseinate (CaCN), and acylated casein (AcCN) films were determined as functions of % relative humidity (% RH), temperature, and plasticizer type. Tensile properties and water vapor permeabilities (WVP) were also measured. Plasticizers were glycerol (GLY) or a 3:1 ratio of GLY:poly(propylene glycol) (PPG), a hydrophobic plasticizer. OP of the CO(2)CN:GLY film was almost twice that of films containing either plasticizer at 35% RH, but its OP approached that of the other films at 70% RH. OP and WVP of films plasticized with GLY were greater than that for films plasticized with PPG. Plasticizer type had little impact on the tensile strength of CO(2)CN films while tensile strength of CaCN-GLY:PPG (3:1) films approximately doubled. Results show that structural dissimilarities in the films contribute to differences in OP only under conditions of low RH where the plasticizing effects of water are not significant.  相似文献   

4.
The mechanical properties of cross-linked edible films based on calcium caseinate and two type of whey proteins (commercial and isolate) were investigated. Cross-linking of the proteins was carried out using thermal and radiative treatments. Size-exclusion chromatography performed on the cross-linked proteins showed that gamma-irradiation increased the molecular weight of calcium caseinate, while it changed little for the whey proteins. However, heating of the whey protein solution induced cross-linking. For both cross-linked proteins, the molecular weight distribution was >/=2 x 10(3) kDa. Combined thermal and radiative treatments were applied to protein formulations with various ratios of calcium caseinate and whey proteins. Whey protein isolate could replace up to 50% of calcium caseinate without decreasing the puncture strength of the films. Films based on commercial whey protein and calcium caseinate were weaker than those containing whey protein isolate. Electron microscopy showed that the mechanical characteristics of these films are closely related to their microstructures.  相似文献   

5.
Plasticizer effect on oxygen permeability (OP) of beta-lactoglobulin (beta-Lg) films was studied. Propylene glycol (PG), glycerol (Gly), sorbitol (Sor), sucrose (Suc), and polyethylene glycol at MW 200 and 400 (PEG 200 and PEG 400, respectively) were studied due to their differences in composition, shape, and size. Suc-plasticized beta-Lg films gave the best oxygen barrier (OP < 0.05 cm3 x microm/m2 x day x kPa). Gly- and PG-plasticized films had similar OP values, and both had higher OP than Sor-plasticized films. PEG 200- and PEG 400-plasticized films were the poorest oxygen barriers. Empirical equations including plasticizer efficiencies for OP were employed to elucidate the relationships between OP of plasticized beta-Lg films and plasticizer type and content. Plasticizer efficiency ratios between mechanical and OP properties of beta-Lg films show the relative efficiency of plasticizers in modifying mechanical and OP properties. A large ratio is desirable.  相似文献   

6.
Films forming solutions composed of Amaranth (Amaranthus cruentus) flour (4.0 g/100 mL), stearic acid (5-15 g/100 g of flour), and glycerol (25-35 g/100 g of flour) were prepared by an emulsification process, with varying stirring speed values (6640-13360 rpm). The influence of these parameters (stearic acid and glycerol concentrations and stirring speed) on the water vapor barrier and mechanical properties of films was evaluated using the response surface methodology (RSM). Other characterizations, including microstructure, water solubility, and oxygen permeability, were performed in optimized films. According to statistical analysis results, the optimized conditions corresponded to 10 g of stearic acid/100 g of flour, 26 g of glycerol/100 g of flour, and a stirring speed of 12 000 rpm. The films produced under these conditions exhibited superior mechanical properties (2.5 N puncture force, 2.6 MPa tensile strength, and 148% elongation at break) in comparison to those of other protein and polysaccharide composite films, low solubility (15.2%), and optimal barrier properties (WVP of 8.9 x 10(- 11) g m(- 1) s(- 1) Pa(- 1) and oxygen permeability of 2.36 x 10(- 13) cm3 m(-1) s(-1) Pa(-1)).  相似文献   

7.
Methylcellulose (MC)-based films were prepared by solution casting from its 1% aqueous suspension containing 0.25% glycerol. Trimethylolpropane trimethacrylate (TMPTMA) monomer (0.1-2% by wt) along with the glycerol was added to the MC suspension. The films were cast and irradiated from a radiation dose varied from 0.1 to 10 kGy. Then the mechanical properties such as tensile strength (TS), tensile modulus (TM), and elongation at break (Eb) and barrier properties of the films were evaluated. The highest TS (47.88 PMa) and TM (1791.50 MPa) of the films were found by using 0.1% monomer at 5 kGy dose. The lowest water vapor permeability (WVP) of the films was found to be 5.57 g·mm/m(2)·day·kPa (at 0.1% monomer and 5 kGy dose), which is 12.14% lower than control MC-based films. Molecular interactions due to incorporation of TMPTMA were supported by FTIR spectroscopy. A band at 1720 cm(-1) was observed due to the addition of TMPTMA in MC-based films, which indicated the typical (C═O) carbonyl stretching. For the further improvement of the mechanical and barrier properties of the film, 0.025-1% nanocrystalline cellulose (NCC) was added to the MC-based suspension containing 1% TMPTMA. Addition of NCC led to a significant improvement in the mechanical and barrier properties. The novelty of this investigation was to graft insoluble monomer using γ radiation with MC-based films and use of biodegradable NCC as the reinforcing agent.  相似文献   

8.
Starch plasticized with water, glycerol, and stearic acid was extruded and sheeted into films 0.4–0.6 mm thick. The ingredients were extruded in a conical twin‐screw extruder at a temperature profile of 50–120–120–120°C and a screw speed of 45 rpm. The effects of glycerol, water, and stearic acid on selected physical and functional properties of the films were studied. The tensile strength, tensile strain at break, and Young's modulus were 0.23–2.91 MPa, 45.79–90.83%, and 2.89–37.94 MPa, respectively. Differential scanning calorimetry thermograms exhibited two glass transitions and multiple melting endotherms, including that of amylose‐lipid complexes formed during extrusion. The enthalpy of gelatinization of starch in the extruded films was 0.7–4.1 J/g and was dependent largely on the plasticizer content. Fourier‐transform infrared spectra revealed significant interactions between the starch and plasticizer but the peaks shifted to higher wave numbers with increasing glycerol content. During extrusion in the presence of glycerol, the A‐type crystalline structure of starch was transformed to B‐type. It also was observed that the Vh crystallinity increased with increase in glycerol content due to tight packing of starch chains. The water vapor permeabilities of the starch films were 12.3–19.9 g·mm/hr·m2·kPa.  相似文献   

9.
Kafirin, the seed storage protein of the cereal sorghum, is highly homologous with the maize storage protein zein. The effects of plasticisation of a kafirin film by glycerol in the absence of water were examined by a combination of spectroscopic (NMR and infrared), rheological, and calorimetric methods. The results suggest that at low glycerol levels the glycerol is absorbed onto and possibly into the protein. Increasing the level of glycerol increases the motion of the protein and changes the protein conformation. There are corresponding changes of the mechanical properties of protein films. At 40% (w/w) of glycerol, two glass transition temperatures were observed, one of which corresponded to the glass transition temperature of pure glycerol. This result indicates that at this level of plasticizer there are sufficient glycerol/glycerol interactions occurring to allow a separate glass formation process for glycerol.  相似文献   

10.
Calcium caseinate (CC) and whey protein isolate (WPI) films were prepared to contain 5 or 10% Gluconal Cal (GC), a mixture of calcium lactate and gluconate, or 0.1 or 0.2% alpha-tocopheryl acetate (VE), respectively. The pH and viscosity of film-forming solutions and the water vapor permeability and tensile property of the films were determined using standard procedures. CC and WPI films have the capabilities to carry high concentration of GC or VE, but some of the film functionality might be compromised. Adding VE to CC and WPI films increased film elongation at break, whereas incorporating 0.2% VE decreased WVP of CC films and tensile strength of both CC and WPI films. Incorporation of GC reduced the tensile strength of CC films (P < 0.05), with 10% GC decreasing both elongation at break and WVP (P < 0.05). These types of films may be used for wrapping or coating to enhance the nutritional value of foods. The concentration of GC and VE added to the films must be carefully selected to meet required water barrier and mechanical properties of the films depending on their specific applications.  相似文献   

11.
Free-standing sterilized edible films based on milk proteins, namely calcium caseinate and whey protein isolate, and polysaccharides, namely pectin and agar, were developed. Cross-linking of the proteins was achieved by the combination of thermal and radiative treatments. Autoclaving pectin and agar prior to their addition to the protein solutions generated films with an improved (P < or = 0.05) puncture strength. The presence of proteins and pectin-agar in the film formulation enhanced (P < or = 0.05) the moisture barrier of the films by 18%. A strain of Streptococcus thermophilus was used to assess the biodegradability behavior of the cross-linked films. Microbiological counts and soluble nitrogen analysis confirmed the biodegradability property of the milk protein films containing autoclaved pectin and agar.  相似文献   

12.
为探索新型生物膜材料的制备方法及抗黄曲霉活性,以壳聚糖和大豆胰蛋白酶抑制剂(TI)提取物为原料,甘油为增塑剂,利用溶液共混流延法制备壳聚糖-TI-甘油复合可食性膜,测试其厚度、表观结构、力学性质、透光率、水蒸气透过率及抗黄曲霉侵染活性。结果表明,当壳聚糖浓度为18mg/mL、TI浓度2mg/mL、甘油浓度12mg/mL和干燥温度45℃时,制备复合膜具有优良抗黄曲霉活性,且综合理化性能最佳。制备壳聚糖-TI-甘油复合膜液涂膜于花生上,接种黄曲霉培养后发现,复合膜对于黄曲霉侵染具有较强的抵抗和抑制作用。  相似文献   

13.
为了促进果蔬加工副产物的高附加值利用,以柚子皮干粉为材料,海藻酸钠为增稠剂,甘油为增塑剂,采用流延法制备了柚子皮基可食性膜,分析柚子皮干粉质量分数、海藻酸钠、甘油质量分数对柚子皮基膜力学性能、阻湿性能和透光率等的影响,并对柚子皮基膜的制备配方进行优化。结果表明,柚子皮基膜的最佳制备配方为:柚子皮干粉质量分数3%、海藻酸钠质量分数0.15%(以柚子皮粉浆料质量为基础,下同)、甘油质量分数0.5%,此配方制备的柚子皮基膜外观平滑、颜色淡黄,具有较好的综合性能,其拉伸强度为17.53±0.35 MPa,断裂伸长率为19.46%±0.43%,水蒸气透过系数为(2.327±0.128)×10-12g·cm-1·s-1·Pa-1,透光率为63.2%±0.15%。本研究结果为柚子皮基可食性膜在食品包装等领域的应用提供了理论参考。  相似文献   

14.
The presence in wine of the fungal metabolite, ochratoxin A (OTA), represents a serious risk for consumer health. A variety of fining agents, including activated carbon, silica gel, potassium caseinate, egg albumin, and gelatin, was evaluated in relation to their abilities to remove OTA in fortified wines. Freundlich adsorption isotherms were used to model the adsorption behavior between ochratoxin A and the fining agent. Potassium caseinate and activated carbon were found to be the best fining agents that could be used to remove OTA in wine. Potassium caseinate removed up to 82% of OTA when used at 150 g/hL, whereas activated carbon showed the highest specific adsorption capacity due to a high surface area per mass and low adsorption of total polyphenols.  相似文献   

15.
The physical, molecular, and functional properties of corn, cassava, and yam starches were related to the film properties of these starches. Corn, cassava, and yam starches contained 25%, 19%, and 30% amylose, respectively. Amylose from yam starch showed the smallest molecular weight among the starches and amylopectin from corn starch the smallest molecular weight. Cassava starch presented a higher amylopectin content, and its gels and films were less strong, more transparent, and more flexible than corn and yam films. Plasticized films of the three starches were more flexible, with a higher strain and lower stress at break when the glycerol content increased. Unplasticized films were brittle and had water vapor permeability values ranging from 6.75 x 10(-10) to 8.33 x 10(-10) g m(-1) s(-1) Pa(-1). These values decreased when the glycerol content reached 20 g/100 g of starch because a more compact structure was formed. Then, at a glycerol content of 40 g/100 g of starch, the WVP increased because the film matrixes became less dense.  相似文献   

16.
为了选择合适的包装措施以减缓山核桃仁中油脂在贮藏期间的氧化酸败,延长其贮藏期,研究了用聚乙烯塑料膜(Polyethylene,PE)和聚乙烯塑料铝箔膜(Polyethylene/Al,PE/Al)的普通包装与PE、PE/Al的真空包装,4种不同包装措施对山核桃贮藏过程中油脂氧化的影响。通过不同包装对山核桃油脂的酸价、碘价、过氧化值、p-茴香胺值和脂肪氧合酶活性在贮藏过程中的变化情况的影响,确定适合山核桃的包装形式。试验结果表明PE/Al真空包装能有效减缓山核桃油脂的氧化进程,从而延缓山核桃的品质的下降,延长其货架期。  相似文献   

17.
Yam starch films, formulated with yam starch (4.00 g/100 g of solution) and glycerol (1.30 and 2.00 g/100 g of solution) in filmogenic solution, were employed as packaging to extend storage life of strawberries stored at 4 degrees C and 85% RH. The effects of yam starch films on fruits were compared to the effect of PVC (poly(vinyl chloride)) packaging. Starch and PVC films significantly reduced decay of the fruits compared to control. Compared to starch films, PVC presented the better behavior on weight and firmness retention of fruits, especially in the last 7 days of storage. Considering microbiological counts, the shelf life of control fruits was 14 days, and of all packaged samples, stored at same conditions, was 21 days. Two different formulations of yam starch film were tested and had different mechanical properties as a function of glycerol content (1.30 and 2.00 g/100 g of solution) but showed no difference when employed as strawberries packaging.  相似文献   

18.
针对残膜打包装置工作中存在残膜包密度不合适、打包室空间不合理、结构复杂、残膜成包率低等问题,该研究设计了一种无芯卷膜式残膜打包装置,利用V字形布置的前后打包带代替辊筒构成打包室,结构简单,解决了辊筒缠膜的问题。建立了机具完成一行作业时打包装置生成的残膜包直径与农田每行长度的理论模型,并进行田间验证试验,结果表明合理的打包室空间应满足完成一行作业时打包装置生成的最小残膜包直径大于0.45 m。通过分析打包室内残膜包成型过程和运动过程,设计以残膜包密度和成包率为指标,打包前角、打包带表面状态和打包带线速度为因素的正交试验,试验结果表明:机具较优作业参数组合为打包前角35°,打包带表面状态为粗糙面,打包带线速度1.167 m/s。利用较优参数组合进行田间验证试验,残膜成包率为100%,残膜包密度平均值为121.137 kg/m3,满足设计要求,该研究结果可为残膜打包装置的设计与研究提供参考。  相似文献   

19.
Theories for the chemical stability of foods cite the role of moisture content or water activity in reactant mobility, though mobility has been variously defined. One theory, based on plasticization by moisture, is limited by a lack of research directly linking the mobility of a matrix to the mobility and reactivity of small solute molecules in foods. A cross-polarization/magic angle spinning technique was developed to study glucose rotational mobility in the solid state over a range of water activities and in matrixes with different glass transition temperatures. Data analysis stressed the significance of separating molecular mobility from relaxation time. Results showed that, in a caseinate matrix, compared to a control, adding glycerol yielded the highest glucose mobility and lowest glass transition temperature (T(g)), while adding sorbitol also increased mobility and lowered T(g). Consequently, plasticization by either moisture or these humectants increases the mobility of small solute molecules such as glucose.  相似文献   

20.
The effect of octyl gallate and propyl gallate on the molecular mobility, oxygen permeability, and microstructure of zein/glycerol films was studied. Films were cast from 70% ethanol/water containing 20% (w/w) glycerol and different amounts of the antioxidants propyl gallate or octyl gallate. The oxygen permeability and local mobility of these films were measured using phosphorescence from the dispersed triplet probe erythrosin B. Although both antioxidants increased the local mobility of the zein matrix to about the same extent, octyl gallate and to a lesser extent propyl gallate dramatically increased the permeability of the film to oxygen. Atomic force microscopy imaging indicated that propyl gallate induced aggregation of zein complexes, which could lead to a more condensed film. These results indicate that the addition of specific functional ingredients, such as antioxidants, to edible films may significantly affect the physical properties and structure and, thus, functional properties in ways that influence their eventual use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号