首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free-standing sterilized edible films based on milk proteins, namely calcium caseinate and whey protein isolate, and polysaccharides, namely pectin and agar, were developed. Cross-linking of the proteins was achieved by the combination of thermal and radiative treatments. Autoclaving pectin and agar prior to their addition to the protein solutions generated films with an improved (P < or = 0.05) puncture strength. The presence of proteins and pectin-agar in the film formulation enhanced (P < or = 0.05) the moisture barrier of the films by 18%. A strain of Streptococcus thermophilus was used to assess the biodegradability behavior of the cross-linked films. Microbiological counts and soluble nitrogen analysis confirmed the biodegradability property of the milk protein films containing autoclaved pectin and agar.  相似文献   

2.
Sterilized biofilms based on soy protein isolate (SPI, S system) and a 1:1 mixture of SPI and whey protein isolate (WPI, SW system) were achieved through the formation of cross-links by means of gamma-irradiation combined with thermal treatments. The effect of the incorporation of carboxymethylcellulose (CMC) and poly(vinyl alcohol) was also examined. gamma-Irradiation combined with thermal treatment improved significantly the mechanical properties, namely, puncture strength and puncture deformation, for all types of films. Irradiated formulations that contain CMC behave more similarly as elastomers. CMC showed also significant improvements of the barrier properties, namely, water vapor permeability, for irradiated films of the S system and for non-irradiated films of the SW system.  相似文献   

3.
When cross-linked by heating or by gamma-irradiation and entrapped in cellulose, whey proteins can generate insoluble biofilms with good mechanical properties and high resistance to attack by proteolytic enzymes. Interchain cross-linking of proteins generated an increase in the puncture strength, and a decrease in water vapor permeability. Gelatin was added in film formulation as a stabilizer to improve the puncture strength and film appearance. The structure of the biofilms was also analyzed. SDS-PAGE revealed that heating and gamma-irradiation produce an increase of the molecular weight of the cross-linked protein. Size exclusion chromatography showed a molecular mass of 40 kDa for un-cross-linked whey proteins, whereas for the soluble fractions of the cross-linked proteins, molecular distributions were between 600 and 3800 kDa for the heated proteins and between 1000 and 2000 kDa for gamma-irradiated proteins. No major alteration of the structural conformation of the proteins was observed by FTIR for biofilms obtained after heat treatment, whereas gamma-irradiation induced some modifications in the protein structure. X-ray diffraction analysis suggests that cross-linking by gamma-irradiation seems to modify the conformation of proteins, which became more ordered and more stable.  相似文献   

4.
The influence of gamma-irradiation (32 kGy) followed by the addition of polysaccharides (potato starch, soluble potato starch, and sodium alginate) and heating on the properties of the films based on calcium caseinate (CC)-whey proteins isolate (WPI) and the gels formed with CaCl(2) was evaluated. Radiation induced an improvement of the mechanical and barrier properties of all films. The polysaccharides' effect on the irradiated and non-irradiated CC-WPI gels could be predicted as the sum of their separate effects on CC and on WPI, apart from the alginate interaction with the irradiated CC-WPI. The better properties of the films achieved after admixing polysaccharides to the formerly irradiated protein solution correspond to the smaller strength of gels. Properties of the films and gels prepared using the irradiated proteins and alginate differed depending on whether alginate was admixed before or after irradiation. Results were related to the protein structure, interaction with polysaccharides, and the film's microstructure.  相似文献   

5.
Surface hydrophobicity (SH) of milk proteins treated physicochemically (by heating and Maillard reaction) or modified enzymatically (by transglutaminase, lactoperoxidase, laccase, and glucose oxidase) was assessed in relation to their techno-functional properties. Heat-treatment increased SH of whey protein isolate and decreased SH of sodium caseinate and bovine serum albumin. Maillard reaction of milk proteins caused time-depended decreases of SH. Only for total milk protein reacting with glucose and lactose elevated SH-values were detected. Protein modification with transglutaminase, laccase, and lactoperoxidase strongly increased the SH of whey protein isolate and total milk protein. Incubation with glucose oxidase elevated SH values of sodium caseinate, whey protein isolate, and total milk protein. When correlating SH with techno-functional properties, a positive correlation was observed between SH and foam formation, and a negative correlation was observed between SH and foam stability as well as emulsion stability. No clear correlation was detected between SH and emulsifying activity, surface tension, viscosity, and heat stability of enzymatically and physicochemically treated milk proteins.  相似文献   

6.
Brookfield viscosimetry, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and measurements of the texture strength of gels formed with CaCl2 and the mechanical and barrier properties of the film were applied in studies of gel formation and structural and mechanical properties of gels and films prepared using calcium caseinate (CC)-whey protein isolate (WPI)-glycerol (1:1:1), control, and irradiated with 60Co gamma rays using a 32 kGy dose. The irradiated gels have appeared to be more "fine-stranded" as compared to the more "particulate" control gels and lead to the formation of more rigid films with improved mechanical strength and barrier properties. This results from cross-linking and the modification of protein conformations were induced by irradiation, in particular the increase in the beta-sheet and beta-strand contents. Structural modifications taking place in CC-WPI composition are related to modifications taking place separately in CC and WPI. Improvement of the properties of the films after irradiation corresponds to the increased density of the cross-linked material because no change in the porosity of the films was observed by TEM.  相似文献   

7.
Calcium caseinate (CC) and whey protein isolate (WPI) films were prepared to contain 5 or 10% Gluconal Cal (GC), a mixture of calcium lactate and gluconate, or 0.1 or 0.2% alpha-tocopheryl acetate (VE), respectively. The pH and viscosity of film-forming solutions and the water vapor permeability and tensile property of the films were determined using standard procedures. CC and WPI films have the capabilities to carry high concentration of GC or VE, but some of the film functionality might be compromised. Adding VE to CC and WPI films increased film elongation at break, whereas incorporating 0.2% VE decreased WVP of CC films and tensile strength of both CC and WPI films. Incorporation of GC reduced the tensile strength of CC films (P < 0.05), with 10% GC decreasing both elongation at break and WVP (P < 0.05). These types of films may be used for wrapping or coating to enhance the nutritional value of foods. The concentration of GC and VE added to the films must be carefully selected to meet required water barrier and mechanical properties of the films depending on their specific applications.  相似文献   

8.
The effects of heat at temperatures in the range of 80-90 degrees C on mixtures of reconstituted skim milk powder (RSMP) and sodium caseinate have been determined. In the absence of caseinate, the action of heat on RSMP produces soluble complexes of whey proteins and kappa-casein, as well as complexes of whey protein with the casein micelles. When sodium caseinate was added to RSMP at levels of 0.5 and 1.0%, the denaturation of the whey protein and the production of the soluble complexes in the serum were hardly affected, either in rate or in amount. However, during the heating, the caseinate disappeared from the serum. Further studies on model mixtures of the different components showed that it was probable that the bulk of the caseinate associated with the casein micelles during heating, probably by binding inside the surface layer of kappa-casein, because no increase in the diameters of the casein micelles could be observed.  相似文献   

9.
Interactions of the model flavor compound 2-nonanone with individual milk proteins, whey protein isolate (WPI), and sodium caseinate in aqueous solutions were investigated. A method to quantify the free 2-nonanone was developed using headspace solid-phase microextraction followed by gas chromatography with flame ionization detection. Binding constants (K) and numbers of binding sites (n) for 2-nonanone on the individual proteins were calculated. The 2-nonanone binding capacities decreased in the order bovine serum albumin > beta-lactoglobulin > alpha-lactalbumin > alpha s1-casein > beta-casein, and the binding to WPI was stronger than the binding to sodium caseinate. All proteins appeared to have one binding site for 2-nonanone per molecule of protein at the flavor concentrations investigated, except for bovine serum albumin, which possessed two classes of binding sites. The binding mechanism is believed to involve predominantly hydrophobic interactions.  相似文献   

10.
The kinetics of sucrose crystallization in whey protein isolate (WPI) films was studied at 25 degrees C in four different relative humidity environments: 23, 33, 44, and 53%. The effects of protein matrix, crystallization inhibitors, and storage environment on the rate constants of sucrose crystallization were determined using the Avrami model of crystallization. It was found that a cross-linked, denatured whey protein (WP) matrix more effectively hindered sucrose crystallization than a protein matrix of native WP. The crystallization inhibitors tested were lactose, raffinose, modified starch (Purity 69), and polyvinylpyrrolidone (Plasdone C15). Raffinose and modified starch were determined to be the more effective inhibitors of sucrose crystallization. At lower relative humidities (23, 33, and 44%), the cross-linked protein matrix played a more important role in sucrose crystallization than the inhibitors. As relative humidity increased (53%), the crystallization inhibitors were more central to controlling sucrose crystallization in WPI films.  相似文献   

11.
Whey protein isolate was modified by ethylene diamine in order to shift its isoelectric point to an alkaline pH. The extent of the modification was studied using SDS-PAGE and MALDI-TOF mass spectrometry. The modified whey proteins were used as an emulsifier to stabilize oil-in-water emulsions at acidic and neutral pH ranges, and their emulsifying properties were compared with that of the unmodified whey proteins and with the previously studied ethylene diamine modified sodium caseinate. The emulsifying activity of the modified whey proteins was similar to that of the unmodified ones, but the stability of an emulsion at pH 5 was significantly improved after the modification. Charge and coverage of droplet surface and the displacement of the interfacial proteins by surfactant Tween 20 were further studied as a function of pH. As compared with the unmodified whey proteins, the modified ones were proven to cover the interface more efficiently with extensive surface charge at pH 5, although the interfacial layer was less resistant to the surfactant displacement.  相似文献   

12.
Corn zein was cross-linked with glutaraldehyde (GDA) using glacial acetic acid (HAc) as catalyst. The objectives are to evaluate the swelling characteristics of GDA cross-linked zein gels in water, ethanol, and their combinations. Similar formulations, upon solvent evaporation, form films. The mechanical properties of the films are compared to compression molded tensile bars from GDA melt-processed zein as a second objective. Chemistry of the cross-linking reaction was based on the aldehyde binding characteristics defined by use of fluorescence spectroscopy; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to demonstrate the cross-linking reaction; FTIR to observe absorption differences of the cross-linked product; differential scanning calorimetry, dynamic mechanical analysis and thermogravimetric analysis to assess thermal properties; and the use of Instron Universal Testing Machine to evaluate mechanical properties. A reaction mechanism for acid catalyzed GDA cross-linking of zein is proposed. Thermal and mechanical properties of tensile bars cut from either film or formed by compression molding were similar, where both showed increased tensile strengths, ductility and stiffness when compared with unmodified controls. Samples that were reacted with 8% GDA by weight based on weight of zein from either process retained their integrity when tensile bars from each were subjected to boiling water for 10 min or soaking in either water or HAc for 24 h. The melt-processed, cross-linked zein is a more environmentally friendly method that would eliminate the need for HAc recovery.  相似文献   

13.
The effects of whey protein hydrolysis on film oxygen permeability (OP) and mechanical properties at several glycerol-plasticizer levels were studied. Both 5.5% and 10% degree of hydrolysis (DH) whey protein isolate (WPI) had significant effect (p 0.05) occurred for film OP between unhydrolyzed WPI, 5.5% DH WPI, and 10% DH WPI films at the same glycerol content. Hydrolyzed WPI films of mechanical properties similar to those of WPI films had better oxygen barrier. Therefore, use of hydrolyzed WPI allowed achievement of desired film flexibility with less glycerol and with smaller increase in OP.  相似文献   

14.
Polyphenols are widely regarded as antioxidants, due in large part to their free radical scavenging activities and their ability to disrupt radical chain propagation. However, recent studies have demonstrated that the oxidation of some polyphenolic compounds, such as the tea-derived compound (-)-epigallocatechin-3-gallate (EGCG), results in the generation of reactive oxygen species that can potentially compromise the oxidative stability of food lipids under some conditions. In this present study, the rate of hydrogen peroxide (H(2)O(2)) generation and its stability, resulting from EGCG oxidation in Tween 80- and sodium caseinate-stabilized oil-in-water (O/W) emulsions in the presence of iron (25 μM Fe(3+) from FeCl(3)), were examined. Observed H(2)O(2) levels in protein-stabilized emulsions were significantly lower across all treatments as compared to surfactant-stabilized emulsions. The lower observed H(2)O(2) concentrations seen in the protein system are likely due to the antioxidant effects of the added proteins, which either prevented the generation of or more likely scavenged the peroxide. All protein-stabilized emulsions containing EGCG showed increases in carbonyl concentrations, a marker of protein oxidation, throughout the study. The H(2)O(2) scavenging activity of aqueous phase and interfacial caseinate and whey protein isolate (WPI) was also evaluated. Both proteins showed concentration-dependent scavenging of H(2)O(2) with caseinate displaying significantly higher scavenging abilities at all concentrations. These results suggest that food proteins may play an important role in mitigating the pro-oxidant effects of polyphenols.  相似文献   

15.
The extent of the Maillard reaction was studied by measuring furosine and color formation in infant and enteral formula-resembling model systems prepared by mixing calcium caseinate, laboratory-obtained or commercial whey protein with lactose or dextrinomaltose (ingredients similar to those used in infant and enteral formula manufacture) and heating the mixture at 100, 120, or 140 degrees C for 0-30 min. The furosine determination was performed by HPLC and the color determination by measuring colorimetric parameters L, a, and b in a reflection photometer. The first steps of the Maillard reaction could be followed by furosine determination when initial ingredients had low thermal damage. Hence, furosine may be an indicator of low thermal damage in ingredients with <100 mg/100 g of protein. At the concentrations used in these model systems, similar to those in infant and enteral formulas, furosine values (indirect measure of lysine losses) were higher in lactose than in dextrinomaltose systems, in which only glucose, maltose, maltotriose, and maltotetraose among all of the sugars present showed reactivity with casein. Finally, the advanced steps could be followed by color determination when the initial ingredients had high thermal damage or the model systems were heated at high temperature or for a long time. Among the parameters assayed, b was the most sensitive.  相似文献   

16.
Determination of sialic acid in sweet whey is useful as the concentration of sialic acid reflects the amount of glycomacropeptide (GMP) present. In this study, the concentration of total sialic acid was determined by the thiobarbituric acid reaction after dialysis of samples in water, and the concentration of GMP sialic acid was estimated by gel chromatography on Sephacryl S-200. Concentrations of total and GMP sialic acid determined in a sweet whey sample prepared from fresh milk were 2.0 and 1.5 microg/mg of dry weight, respectively. Analysis of commercial samples showed that the concentration of total sialic acid in sweet whey was 9 times lower than that in whey protein concentrate but 18 times higher than that in whey permeate. A similar trend was observed in the variation of GMP sialic acid concentration between sweet whey and why protein concentrate. The concentration of sialic acid differed 10 times between two samples of whey protein isolate.  相似文献   

17.
The effect of added CaCl(2) on heat-induced changes in whey protein (WP) solutions prepared from whey protein isolate (WP1), acid whey protein concentrate (WP2), and cheese whey protein concentrate (WP3) was investigated. The loss of native-like, proteins, aggregation, and gel firmness of WP were maximum at certain levels of added CaCl(2). These levels were different for different WP products. The effect of added CaCl(2) on these changes appeared to be related to the initial calcium concentrations of these solutions. The higher the calcium content of the product, the less available sites for added CaCl(2) to bind. It was considered that addition of CaCl(2) changed the types of protein interactions that formed the protein aggregates during heating. Added calcium caused dramatic decreases in fracture stress of WP gels due to the formation of large protein aggregates.  相似文献   

18.
This work demonstrated the preparation of protein-stabilized beta-carotene nanodispersions using the solvent displacement technique. The emulsifying performance of sodium caseinate (SC), whey protein concentrate (WPC), whey protein isolate (WPI), and a whey protein hydrolysate (WPH, 18% degree of hydrolysis) was compared in terms of particle size and zeta-potential of the nanodispersions. SC-stabilized nanodispersions exhibited a bimodal particle size distribution: large particles (stabilized by casein micelles) with a mean particle size of 171 nm and small particles (stabilized by casein submicelles) of 13 nm. This was confirmed with transmission electron microscopy analysis. Most of the beta-carotene precipitated (87.6%) was stabilized in the small particles. On the other hand, the nanodispersions stabilized by the whey proteins were polydispersed with larger mean particle sizes. The mean particle size of WPC and WPI was 1730 and 201 nm, respectively. The SC-stabilized nanodispersion was expected to be more stable as indicated by its higher absolute zeta-potential value (-31 mV) compared to that of WPC (-15 mV) and WPI (-16 mV). Partially hydrolyzed whey protein possessed improved emulsifying properties as shown by WPH-stabilized samples. It was interesting to note that increasing the SC concentration from 0.05 to 0.5 wt % increased the particle size of beta-carotene stabilized by casein micelles, while the reverse was true for those stabilized by SC submicelles. Microfluidization at 100 MPa of SC solution dissociated the casein micelles, resulting in a decrease in mean particle size of the casein micelle-stabilized particles when the SC solution was used to prepare nanodispersions. The results from this work showed that protein-stabilized beta-carotene nanodispersions could be prepared using the solvent displacement technique.  相似文献   

19.
The aggregation behavior during heating of a solution containing soy protein and whey protein isolate (WPI) was studied using rheology, confocal microscopy, gel filtration, and electrophoresis. Soy/WPI mixtures formed gels at 6% total protein concentration with a high elastic modulus (G') and no apparent phase separation. The ratio of soy to WPI was fundamental in determining the type of network formed. Systems containing a high soy to WPI ratio (>70% soy protein) showed a different evolution of the elastic modulus during heat treatment, with two apparent stages of network development. Whey proteins formed disulfide bridges with soy proteins during heating, and at low ratios of soy/WPI, the aggregates seemed to be predominantly formed by 7S, the basic subunits of 11S and beta-lactoglobulin. Size exclusion chromatography indicated the presence of high molecular weight soluble complexes in mixtures containing high soy/WPI ratios. Results presented are the first evidence of interactions between soy proteins and whey proteins and show the potential for the creation of a new group of functional ingredients.  相似文献   

20.
Whey protein and casein were hydrolyzed with 11 commercially available enzymes. Foam properties of 44 samples were measured and were related to biochemical properties of the hydrolysates using statistical data analysis. All casein hydrolysates formed high initial foam levels, whereas whey hydrolysates differed in their foam-forming abilities. Regression analysis using the molecular weight distribution of whey hydrolysates as predictors showed that the hydrolysate fraction containing peptides of 3-5 kDa was most strongly related to foam formation. Foam stability of whey hydrolysates and of most casein hydrolysates was inferior to that of the intact proteins. The foam stability of casein hydrolysate foams was correlated to the molecular weight distribution of the hydrolysates; a high proportion of peptides >7 kDa, composed of both intact casein and high molecular weight peptides, was positively related to foam stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号