共查询到20条相似文献,搜索用时 30 毫秒
1.
Storage and retrieval of excitons were demonstrated with semiconductor self-assembled quantum dots (QDs). The optically generated excitons were dissociated and stored as separated electron-hole pairs in coupled QD pairs. A bias voltage restored the excitons, which recombined radiatively to provide a readout optical signal. The localization of the spatially separated electron-hole pair in QDs was responsible for the ultralong storage times, which were on the order of several seconds. The present limits of this optical storage medium are discussed. 相似文献
2.
Mocatta D Cohen G Schattner J Millo O Rabani E Banin U 《Science (New York, N.Y.)》2011,332(6025):77-81
Doping of semiconductors by impurity atoms enabled their widespread technological application in microelectronics and optoelectronics. However, doping has proven elusive for strongly confined colloidal semiconductor nanocrystals because of the synthetic challenge of how to introduce single impurities, as well as a lack of fundamental understanding of this heavily doped limit under strong quantum confinement. We developed a method to dope semiconductor nanocrystals with metal impurities, enabling control of the band gap and Fermi energy. A combination of optical measurements, scanning tunneling spectroscopy, and theory revealed the emergence of a confined impurity band and band-tailing. Our method yields n- and p-doped semiconductor nanocrystals, which have potential applications in solar cells, thin-film transistors, and optoelectronic devices. 相似文献
3.
Stinaff EA Scheibner M Bracker AS Ponomarev IV Korenev VL Ware ME Doty MF Reinecke TL Gammon D 《Science (New York, N.Y.)》2006,311(5761):636-639
An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing. 相似文献
4.
Femtosecond time-resolved Faraday rotation spectroscopy reveals the instantaneous transfer of spin coherence through conjugated molecular bridges spanning quantum dots of different size over a broad range of temperature. The room-temperature spin-transfer efficiency is approximately 20%, showing that conjugated molecules can be used not only as interconnections for the hierarchical assembly of functional networks but also as efficient spin channels. The results suggest that this class of structures may be useful as two-spin quantum devices operating at ambient temperatures and may offer promising opportunities for future versatile molecule-based spintronic technologies. 相似文献
5.
Ensembles of defect-free InAIAs islands of ultrasmall dimensions embedded in AIGaAs have been grown by molecular beam epitaxy. Cathodoluminescence was used to directly image the spatial distribution of the quantum dots by mapping their luminescence and to spectrally resolve very sharp peaks from small groups of dots, thus providing experimental verification for the discrete density of states in a zero-dimensional quantum structure. Visible luminescence is produced by different nominal compositions of InxAI(1-x)As-AIyGa(1-y)As. 相似文献
6.
Childress L Gurudev Dutt MV Taylor JM Zibrov AS Jelezko F Wrachtrup J Hemmer PR Lukin MD 《Science (New York, N.Y.)》2006,314(5797):281-285
Understanding and controlling the complex environment of solid-state quantum bits is a central challenge in spintronics and quantum information science. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond was used to gain insight into its local environment. We show that this environment is effectively separated into a set of individual proximal 13C nuclear spins, which are coupled coherently to the electron spin, and the remainder of the 13C nuclear spins, which cause the loss of coherence. The proximal nuclear spins can be addressed and coupled individually because of quantum back-action from the electron, which modifies their energy levels and magnetic moments, effectively distinguishing them from the rest of the nuclei. These results open the door to coherent manipulation of individual isolated nuclear spins in a solid-state environment even at room temperature. 相似文献
7.
Greilich A Yakovlev DR Shabaev A Efros AL Yugova IA Oulton R Stavarache V Reuter D Wieck A Bayer M 《Science (New York, N.Y.)》2006,313(5785):341-345
The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots. 相似文献
8.
Ponomarenko LA Schedin F Katsnelson MI Yang R Hill EW Novoselov KS Geim AK 《Science (New York, N.Y.)》2008,320(5874):356-358
The exceptional electronic properties of graphene, with its charge carriers mimicking relativistic quantum particles and its formidable potential in various applications, have ensured a rapid growth of interest in this new material. We report on electron transport in quantum dot devices carved entirely from graphene. At large sizes (>100 nanometers), they behave as conventional single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller than 100 nanometers, the peaks become strongly nonperiodic, indicating a major contribution of quantum confinement. Random peak spacing and its statistics are well described by the theory of chaotic neutrino billiards. Short constrictions of only a few nanometers in width remain conductive and reveal a confinement gap of up to 0.5 electron volt, demonstrating the possibility of molecular-scale electronics based on graphene. 相似文献
9.
Robledo L Elzerman J Jundt G Atatüre M Högele A Fält S Imamoglu A 《Science (New York, N.Y.)》2008,320(5877):772-775
Conditional quantum dynamics, where the quantum state of one system controls the outcome of measurements on another quantum system, is at the heart of quantum information processing. We demonstrate conditional dynamics for two coupled quantum dots, whereby the probability that one quantum dot makes a transition to an optically excited state is controlled by the presence or absence of an optical excitation in the neighboring dot. Interaction between the dots is mediated by the tunnel coupling between optically excited states and can be optically gated by applying a laser field of the right frequency. Our results represent substantial progress toward realization of an optically effected controlled-phase gate between two solid-state qubits. 相似文献
10.
A tunable kondo effect in quantum dots 总被引:1,自引:0,他引:1
A tunable Kondo effect has been realized in small quantum dots. A dot can be switched from a Kondo system to a non-Kondo system as the number of electrons on the dot is changed from odd to even. The Kondo temperature can be tuned by means of a gate voltage as a single-particle energy state nears the Fermi energy. Measurements of the temperature and magnetic field dependence of a Coulomb-blockaded dot show good agreement with predictions of both equilibrium and nonequilibrium Kondo effects. 相似文献
11.
12.
We used a hybrid vertical-lateral double-dot device, consisting of laterally coupled vertical quantum dots, to measure the interdot tunnel coupling. By using nonlinear transport measurements of "Coulomb diamonds," we showed that an inherent asymmetry in the capacitances of the component dots influences the diamond slopes, thereby allowing for the determination of the dot through which the electron has passed. We used this technique to prepare a delocalized one-electron state and Heitler-London (HL) two-electron state, and we showed that the interdot tunnel coupling, which determines whether HL is the ground state, is tunable. This implies that our device may be useful for implementing two-electron spin entanglement. 相似文献
13.
We have observed coherent time evolution between two quantum states of a superconducting flux qubit comprising three Josephson junctions in a loop. The superposition of the two states carrying opposite macroscopic persistent currents is manipulated by resonant microwave pulses. Readout by means of switching-event measurement with an attached superconducting quantum interference device revealed quantum-state oscillations with high fidelity. Under strong microwave driving, it was possible to induce hundreds of coherent oscillations. Pulsed operations on this first sample yielded a relaxation time of 900 nanoseconds and a free-induction dephasing time of 20 nanoseconds. These results are promising for future solid-state quantum computing. 相似文献
14.
Atomically uniform silver films grown on highly doped n-type Si(111) substrates show fine-structured electronic fringes near the silicon valence band edge as observed by angle-resolved photoemission. No such fringes are observed for silver films grown on lightly doped n-type substrates or p-type substrates, although all cases exhibited the usual quantum-well states corresponding to electron confinement in the film. The fringes correspond to electronic states extending over the silver film as a quantum well and reaching into the silicon substrate as a quantum slope, with the two parts coherently coupled through an incommensurate interface structure. 相似文献
15.
LP Kouwenhoven TH Oosterkamp MWS Danoesastro M Eto DG Austing T Honda S Tarucha 《Science (New York, N.Y.)》1997,278(5344):1788-1792
Studies of the ground and excited states in semiconductor quantum dots containing 1 to 12 electrons showed that the quantum numbers of the states in the excitation spectra can be identified and compared with exact calculations. A magnetic field induces transitions between the ground and excited states. These transitions were analyzed in terms of crossings between single-particle states, singlet-triplet transitions, spin polarization, and Hund's rule. These impurity-free quantum dots allow "atomic physics" experiments to be performed in magnetic field regimes not accessible for atoms. 相似文献
16.
Larson DR Zipfel WR Williams RM Clark SW Bruchez MP Wise FW Webb WW 《Science (New York, N.Y.)》2003,300(5624):1434-1436
The use of semiconductor nanocrystals (quantum dots) as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding biological environments such as living tissue. We characterized water-soluble cadmium selenide-zinc sulfide quantum dots for multiphoton imaging in live animals. These fluorescent probes have two-photon action cross sections as high as 47,000 Goeppert-Mayer units, by far the largest of any label used in multiphoton microscopy. We visualized quantum dots dynamically through the skin of living mice, in capillaries hundreds of micrometers deep. We found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales. 相似文献
17.
Optical gain and stimulated emission in nanocrystal quantum dots 总被引:1,自引:0,他引:1
Klimov VI Mikhailovsky AA Xu S Malko A Hollingsworth JA Leatherdale CA Eisler H Bawendi MG 《Science (New York, N.Y.)》2000,290(5490):314-317
The development of optical gain in chemically synthesized semiconductor nanoparticles (nanocrystal quantum dots) has been intensely studied as the first step toward nanocrystal quantum dot lasers. We examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient intrinsic nonradiative Auger recombination, large optical gain can be developed at the wavelength of the emitting transition for close-packed solids of these dots. Narrowband stimulated emission with a pronounced gain threshold at wavelengths tunable with the size of the nanocrystal was observed, as expected from quantum confinement effects. These results unambiguously demonstrate the feasibility of nanocrystal quantum dot lasers. 相似文献
18.
A liquid crystal system was used for the fabrication of a highly ordered composite material from genetically engineered M13 bacteriophage and zinc sulfide (ZnS) nanocrystals. The bacteriophage, which formed the basis of the self-ordering system, were selected to have a specific recognition moiety for ZnS crystal surfaces. The bacteriophage were coupled with ZnS solution precursors and spontaneously evolved a self-supporting hybrid film material that was ordered at the nanoscale and at the micrometer scale into approximately 72-micrometer domains, which were continuous over a centimeter length scale. In addition, suspensions were prepared in which the lyotropic liquid crystalline phase behavior of the hybrid material was controlled by solvent concentration and by the use of a magnetic field. 相似文献
19.
The quantum-confined Stark effect in single cadmium selenide (CdSe) nanocrystallite quantum dots was studied. The electric field dependence of the single-dot spectrum is characterized by a highly polarizable excited state ( approximately 10(5) cubic angstroms, compared to typical molecular values of order 10 to 100 cubic angstroms), in the presence of randomly oriented local electric fields that change over time. These local fields result in spontaneous spectral diffusion and contribute to ensemble inhomogeneous broadening. Stark shifts of the lowest excited state more than two orders of magnitude larger than the linewidth were observed, suggesting the potential use of these dots in electro-optic modulation devices. 相似文献
20.
We propose an experimentally feasible scheme to achieve quantum computation based solely on geometric manipulations of a quantum system. The desired geometric operations are obtained by driving the quantum system to undergo appropriate adiabatic cyclic evolutions. Our implementation of the all-geometric quantum computation is based on laser manipulation of a set of trapped ions. An all-geometric approach, apart from its fundamental interest, offers a possible method for robust quantum computation. 相似文献