首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The members of the ADAR (adenosine deaminase acting on RNA) gene family are involved in site-selective RNA editing that changes adenosine residues of target substrate RNAs to inosine. Analysis of staged chimeric mouse embryos with a high contribution from embryonic stem cells with a functional null allele for ADAR1 revealed a heterozygous embryonic-lethal phenotype. Most ADAR1+/- chimeric embryos died before embryonic day 14 with defects in the hematopoietic system. Our results suggest the importance of regulated levels of ADAR1 expression, which is critical for embryonic erythropoiesis in the liver.  相似文献   

2.
3.
In higher eukaryotes, a multiprotein exon junction complex is deposited on spliced messenger RNAs. The complex is organized around a stable core, which serves as a binding platform for numerous factors that influence messenger RNA function. Here, we present the crystal structure of a tetrameric exon junction core complex containing the DEAD-box adenosine triphosphatase (ATPase) eukaryotic initiation factor 4AIII (eIF4AIII) bound to an ATP analog, MAGOH, Y14, a fragment of MLN51, and a polyuracil mRNA mimic. eIF4AIII interacts with the phosphate-ribose backbone of six consecutive nucleotides and prevents part of the bound RNA from being double stranded. The MAGOH and Y14 subunits lock eIF4AIII in a prehydrolysis state, and activation of the ATPase probably requires only modest conformational changes in eIF4AIII motif I.  相似文献   

4.
Photosynthesis occurs mainly in chloroplasts, whose development is regulated by proteins encoded by nuclear genes.Among them, pentapeptide repeat(PPR) proteins participate in organelle RNA editing. Although there are more than 450members of the PPR protein family in rice, only a few affect RNA editing in rice chloroplasts. Gene editing technology has created new rice germplasm and mutants, which could be used for rice breeding and gene function study. This study evaluated the functions of OsPPR9...  相似文献   

5.
RNA editing in trypanosomes occurs by a series of enzymatic steps that are catalyzed by a macromolecular complex. The TbMP52 protein is shown to be a component of this complex, to have RNA ligase activity, and to be one of two adenylatable proteins in the complex. Regulated repression of TbMP52 blocks editing, which shows that it is a functional component of the editing complex. This repression is lethal in bloodforms of the parasite, indicating that editing is essential in the mammalian stage of the life cycle. The editing complex, which is present in all kinetoplastid parasites, may thus be a chemotherapeutic target.  相似文献   

6.
RNA polymerase II (Pol II) transcribes genes that encode proteins and noncoding small nuclear RNAs (snRNAs). The carboxyl-terminal repeat domain (CTD) of the largest subunit of mammalian RNA Pol II, comprising tandem repeats of the heptapeptide consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7, is required for expression of both gene types. We show that mutation of serine-7 to alanine causes a specific defect in snRNA gene expression. We also present evidence that phosphorylation of serine-7 facilitates interaction with the snRNA gene-specific Integrator complex. These findings assign a biological function to this amino acid and highlight a gene type-specific requirement for a residue within the CTD heptapeptide, supporting the existence of a CTD code.  相似文献   

7.
A small RNA of Bacillus subtilis bacteriophage phi 29 is shown to have a novel and essential role in viral DNA packaging in vitro. This requirement for RNA in the encapsidation of viral DNA provides a new dimension of complexity to the attendant protein-DNA interactions. The RNA is a constituent of the viral precursor shell of the DNA-packaging machine but is not a component of the mature virion. Studies of the sequential interactions involving this RNA molecule are likely to provide new insight into the structural and possible catalytic roles of small RNA molecules. The phi 29 assembly in extracts and phi 29 DNA packaging in the defined in vitro system were strongly inhibited by treatment with the ribonucleases A or T1. However, phage assembly occurred normally in the presence of ribonuclease A that had been treated with a ribonuclease inhibitor. An RNA of approximately 120 nucleotides co-purified with the phi 29 precursor protein shell (prohead), and this particle was the target of ribonuclease action. Removal of RNA from the prohead by ribonuclease rendered it inactive for DNA packaging. By RNA-DNA hybridization analysis, the RNA was shown to originate from a viral DNA segment very near the left end of the genome, the end packaged first during in vitro assembly.  相似文献   

8.
9.
10.
11.
12.
13.
The polypyrimidine tract binding protein (PTB) is a 58-kilodalton RNA binding protein involved in multiple aspects of messenger RNA metabolism, including the repression of alternative exons. We have determined the solution structures of the four RNA binding domains (RBDs) of PTB, each bound to a CUCUCU oligonucleotide. Each RBD binds RNA with a different binding specificity. RBD3 and RBD4 interact, resulting in an antiparallel orientation of their bound RNAs. Thus, PTB will induce RNA looping when bound to two separated pyrimidine tracts within the same RNA. This leads to structural models for how PTB functions as an alternative-splicing repressor.  相似文献   

14.
以玉米(Zea mays L.)杂交种农大108为材料,以PEG 6000(25%)模拟低水势,研究H2O2是否参与低水势下ABA维持玉米初生根的生长.结果发现在低水势下,经ABA抑制剂10 μmol·L-1 fluridone(FLU)和1 mmol·L-1 tungstate(Tun)预处理,显著抑制了玉米初生根的生长,加入外源100 μmol·L-1 ABA后,恢复了初生根的生长.利用透射电镜观察,发现在低水势下,维持生长的玉米初生根部有少量H2O2积累,用H2O2的清除剂二甲基硫脲(dimethythiourea,DMTU)5 mmol·L-1、碘化钾(KI)30 mmol·L-1和丙酮酸钠(Na-Pyruvate,Na-pyr)30 mmol·L-1预处理并在低水势下培养,发现玉米的初生根生长几乎完全被抑制.上述结果表明在低水势下,玉米初生根通过积累ABA维持生长,少量的H2O2参与了低水势下ABA维持玉米初生根生长的过程,且不可缺少.  相似文献   

15.
16.
Cell wall is required for fixation of the embryonic axis in Fucus zygotes   总被引:10,自引:0,他引:10  
Establishment of a primary developmental axis generally is thought to involve rearrangements in the plasma membrane or cytoplasm of the egg. In this report the additional requirement for cell wall in polarization of Fucus zygotes was investigated. Protoplasts of fertilized eggs were tested for their ability to establish an axis in accordance with an orienting vector of unilateral light. The results demonstrate that cell wall is not required for axis formation. However, the orientation of the axis remains labile until new cell wall is synthesized. The presence of a cell wall is an absolute requirement for axis fixation.  相似文献   

17.
Plant chlorophyll biosynthesis and chloroplast development are two complex processes that are regulated by exogenous and endogenous factors. In this study, we identified OsDXR, a gene encoding a reductoisomerase that positively regulates chlorophyll biosynthesis and chloroplast development in rice. OsDXR knock-out lines displayed the albino phenotype and could not complete the whole life cycle process. OsDXR was highly expressed in rice leaves, and subcellular localization indicated that OsDXR i...  相似文献   

18.
Planarian flatworms can regenerate heads at anterior-facing wounds and tails at posterior-facing wounds throughout the body. How this regeneration polarity is specified has been a classic problem for more than a century. We identified a planarian gene, Smed-betacatenin-1, that controls regeneration polarity. Posterior-facing blastemas regenerate a head instead of a tail in Smed-betacatenin-1(RNAi) animals. Smed-betacatenin-1 is required after wounding and at any posterior-facing wound for polarity. Additionally, intact Smed-betacatenin-1(RNAi) animals display anteriorization during tissue turnover. Five Wnt genes and a secreted Frizzled-related Wnt antagonist-like gene are expressed in domains along the anteroposterior axis that reset to new positions during regeneration, which suggests that Wnts control polarity through Smed-betacatenin-1. Our data suggest that beta-catenin specifies the posterior character of the anteroposterior axis throughout the Bilateria and specifies regeneration polarity in planarians.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号