首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为探讨GmKAB1在大豆处于低钾胁迫下的表达水平,以大豆钾高效品系油06-71和钾敏感型品系衡春04-11为试验材料,设置低钾胁迫试验,分别在处理后0.5h、2h、6h、12h、3d、6d、9d和12d取样提取RNA,利用Real time-PCR检测各时间段GmKAB1基因的表达量。结果显示GmKAB1基因在地下部分表达比地上部持续时间更长,地下部相对表达倍数最高为3.5,较地上部相对表达倍数更高。克隆目的基因并对基因序列进行同源性及生物信息学分析,结果表明,与GmKAB1基因相似性在30%以上的同源基因有45个,GmKAB1在进化树中的位置与Glyma20g19000最近;GmKAB1编码蛋白为稳定的可溶性蛋白,具有2个保守结构域,多个磷酸化位点,表明在受到低钾胁迫后该基因编码的β亚基与α亚基结合调控电压门控钾离子通道,对大豆从根部获取钾离子可能起着关键作用。  相似文献   

2.
Effect of soybean (Glycine max) on serum level of some sex hormones: testosterone, follicle stimulating hormone (FSH), luteinizing hormone/interstitial cell stimulating hormone (LH/ICSH), estradiol and prolactin in male rats was investigated. Twenty male albino rats of 12 weeks old with similar body weights were assigned to four groups of 5 rats each and treatment with soybean meal at 100, 200 and 300 mg kg(-1) body weight, respectively daily for 8 weeks. Blood samples collected through cardiac puncture were assayed for levels of hormones. There were dose-dependent effects of the soybean meal on the serum concentration of the hormones. The treatment significantly reduced the levels of testosterone and FSH in the serum while it significantly increased the levels of estradiol, LH/ICSH and prolactin. The results show that soybean (Glycine max) had strong capability to disrupt hormonal functions. Hence, its indiscriminate use could increase the risk of infertility in males.  相似文献   

3.
草甘膦对大豆叶片超微结构及生化指标的影响   总被引:2,自引:0,他引:2  
喷施草甘膦后研究大豆莽草酸、叶绿素以及叶片超微结构变化,揭示草甘膦对大豆伤害的机理。喷施草甘膦后,大豆品种东农42叶绿体内产生嗜锇颗粒,片层结构变得稀薄,淀粉粒减少;由于叶绿素含量降低,东农42莽草酸积累;随后叶绿体变形裂解,细胞膜从细胞壁上脱落,细胞瓦解。相比之下,GTS40-3-2叶肉细胞的液泡、叶绿体、叶绿体片层、淀粉粒等先出现一定程度的变化,后恢复;叶肉细胞出现嗜锇颗粒,表现为先增多,后减少,大约1周后消失;莽草酸含量几乎没有变化,叶绿素先下降后恢复,恢复过程需要2周左右。  相似文献   

4.
用已知的52个抗病基因的全长蛋白质序列在GenBank中对大豆(Glycine max L.)ESTs进行tblastn检索,得到的ESTs具备Score≥100和E-value≤10-10作为侯选的抗病基因同源ESTs (R-gene-like ESTs),利用Phrap软件进行聚类拼接,聚类后的unigene在GenBank数据库中通过Blastx来证实其可能的抗病功能。通过该方法,得到403条与抗病基因同源的ESTs,其中有33个推导编码产物含有NBS-LRR 或TIR-NBS-LRR结构域;102条推导的编码产物含有LRR或PK/LRR结构域;254条推导的编码产物含有PK结构域;其它结构域有14条。证明了应用全长序列进行数据库检索的方法是一种快速高效的基因预测方法,得到的RGA数量多类型丰富,为R基因的克隆提供了一种新思路。  相似文献   

5.
大豆硫氧还蛋白基因的克隆与分析   总被引:2,自引:0,他引:2  
王伟旗  侯文胜 《大豆科学》2011,30(3):351-355
通过对大豆耐盐品种文丰7盐处理抑制差减文库的筛选,获得了一些差异表 达的EST序列,与NCBI中EST数据库进行比对分析后发现,其中1个与硫氧还蛋白相关.据此预测了大豆硫氧还蛋白(Thioredoxin,Trx)基因的cDNA序列,并采用RT-PCR方法克隆了大豆Trx基因.生物信息学分析表明:该基因包含1个354 b...  相似文献   

6.
The seeds of three promising advanced lines of soybeans (TGx 923-2EN, TGx 1019-2EN and TGx 1497-1D) which were part of a larger collection evaluated in agronomic field trials in Nigeria were selected for characterization of physicochemical properties, chemical composition, water absorption, cooking time and cooked texture as a function of soaking and cooking. Seed density, leached solids, swelling capacity and seed coat percentage were within a range of 1.15 to 1.26 g per ml, 1.00 to 1.26 g per 100 g, 80.25 to 84.35 g per 100 g and 6.6 to 10.1% w/w of dry beans, respectively. The total polyphenol content of the cream colored beans was similar (0.75 to 0.76 mg/g) but higher than the amount (0.60 mg/g) found in the white beans. Cooking times varied between 71 and 96 min without soaking and were reduced by about 32.0% following a presoaking treatment in water for 12 hours at room temperature (28±1°C). Small seeds absorbed higher amounts of water during soaking and required less cooking time than larger seeds. Unsoaked beans required 40 min of cooking to achieve the same degree of cooked texture as the soaked beans cooked for 20 min, suggesting that cooking times and cooked texture for all lines were improved through soaking.  相似文献   

7.
土壤团聚体大小对大豆出苗和幼苗生长的影响   总被引:2,自引:0,他引:2  
采用盆栽试验对生长在不同粒径团聚体干旱土壤中大豆出苗和幼苗生长指标进行研究.结果表明,在低土壤含水量条件下,与大粒径团聚体和未筛土壤相比,小粒径团聚体(尤其1~2mm)显著提高大豆出苗率(P<0.05),缩短出苗时间,显著增加冠干重、苗高及叶面积,显著增加总根长和根表面积,但显著降低主根直径和根干重(P<0.05).说明大粒径团聚体不利于干旱土壤大豆出苗和幼苗生长,种床内小粒径团聚体可部分地补偿土壤干旱对大豆出苗和幼苗生长造成的危害.  相似文献   

8.
大豆抗旱性和抗光氧化特性相互关系的研究   总被引:7,自引:0,他引:7  
采用地理来源不同的50份大豆种质资源,利用人工控水法研究了它们的抗旱性。将上述材料的离体叶片在夏季放入水中,在晴天日照形成的光氧化逆境下处理4d后,根据供试材料光合色素的衰退情况,决定各品种的抗光氧化级别。将大豆的抗旱性和抗光氧化特性进行相关分析,两者的相关系数为r=0.8366**。初步结果说明大豆的抗光氧化性和抗旱性有着较高的相关性。  相似文献   

9.
A field study was conducted in 2006 at Sari Agricultural and Natural Resources University, in order to determine the best time for weed control in soybean promising line, 033. Experiment was arranged in randomized complete block design with 4 replications and two series of treatments. In the first series, weeds were kept in place until crop reached V2 (second trifoliolate), V4 (fourth trifoliolate), V6 (sixth trifoliolate), R1 (beginning bloom, first flower), R3 (beginning pod), R5 (beginning seed) and were then removed and the crop kept weed-free for the rest of the season. In the second series, crops were kept weed-free until the above growth stages after which weeds were allowed to grow in the plots for the rest of the season. Whole season weedy and weed-free plots were included in the experiment for yield comparison. The results showed that among studied traits, grain yield, pod numbers per plant and weed biomass were affected significantly by control and interference treatments. The highest number of pods per plant was obtained from plots which kept weed-free for whole season control. Results showed that weed control should be carried out between V2 (26 day after planting) to R1 (63 day after planting) stages of soybean to provide maximum grain yield. Thus, it is possible to optimize the timing of weed control, which can serve to reduce the costs and side effects of intensive chemical weed control.  相似文献   

10.
大豆杂交种及其亲本籽粒基因差异表达与杂种优势关系   总被引:3,自引:0,他引:3  
采用4×5 NC II设计,以大豆鼓粒期未成熟籽粒为材料,应用mRNA差异显示技术,分析杂交种及亲本之间基因差异表达模式,并与杂种优势进行相关分析,以期从基因差异表达角度来揭示大豆杂种优势产生的机理。结果表明,杂交种和亲本之间存在明显的基因差异表达,差异表达模式可分为单亲表达一致一型(110型)、单亲表达一致二型(011型)、双亲共沉默型(101型)、单亲表达沉默一型(100型)、单亲表达沉默二型(001型)和杂种特异表达类型(010型)6种。差异表达模式与杂种表现的相关分析中,有11个相关系数达到显著或极显著水平。差异表达模式与中亲优势的相关分析中,株高与110型,分枝数、单株粒数、单株粒重与001型呈显著正相关。差异表达模式与超亲优势相关分析中,株高、节数与110型呈极显著负相关;茎粗与100型呈显著负相关;株高、虫食粒率和011型呈极显著正相关;蛋白质和110型,株高、节数与101型,百粒重与100型呈显著正相关。说明大豆鼓粒期基因差异表达与杂种优势形成有一定的相关性。  相似文献   

11.
The objective of this research was to investigate the effect of water stress in regulated deficit irrigation (RDI) on the yield of soybean growing on Ultisol soil. This research was conducted under plastic house on the experimental farm of Lampung Polytechnique from August to November 2004. The water stress treatments in regulated deficit irrigation were ET1 (1.0 × ETc), ET2 (0.8 × ETc), ET3 (0.6 × ETc), ET4 (0.4 × ETc) and ET5 (0.2 × ETc), arranged in a randomized block design with four replications. ETc means crop evapotranspiration under standard condition, which was well watered. For example, the ET2 (0.8 × ETc) treatment means that the amount of supplied water per a day is the same as the crop adjustment evapotranspiration (ETcadj) with the value 0.8 of water stress coefficient (K s). The RDI treatments were carried out just at vegetative phase and its treatments were stopped at the beginning of flowering phase, and afterwards the treatments were watered at 1.0 × ETc. The results showed that since week II, the soybean experienced stress throughout the growth period except ET2 treatment. ET2 treatment started to be stressed at week V and continued to be stressed until the harvest time. At the ET3 treatment, the critical water content (θc) of soybean was reached at week II, and the θc was 0.24 m3/m3 on the average. The RDI at vegetative period significantly affected the yield. The highest yield was ET1 (35.2 g/plant), followed by ET2 (31.0 g/plant), ET3 (18.1 g/plant), ET4 (7.6 g/plant), and ET5 (3.3 g/plant). The optimal water management of soybean with the highest yield efficiency was regulated deficit irrigation with water stress coefficient (K s) of 0.80 for vegetative phase.  相似文献   

12.
The objective of this research was to investigate the critical water content (θ c) and water stress coefficient (K s) of soybean plant under deficit irrigation. This research was conducted in a plastic house at the University of Lampung, Sumatra in Indonesia from June to September 2000. The water deficit levels were 0–20%, 20–40%, 40–60%, 60–80%, and 80–100% of available water (AW) deficit, arranged in Randomized Completely Block (RCB) design with four replications. The results showed that the soybean plant started to experience stress from week IV within 40–60% of AW deficit. The fraction of total available water (TAW) that the crop can extract from the root zone without suffering water stress (p) was 0.5 and θc was 0.305 m3 m−3. The values of K s at p=0.5 were 0.78, 0.86, 0.78, and 0.71 from week IV to week VII, respectively. The optimum yield of soybean plant with the highest yield efficiency was reached at 40–60% of AW deficit with an average K s value of 0.78; this level of deficit irrigation could conserve about 10% of the irrigation. The optimum yield of soybean plant was 7.9 g/pot and crop water requirement was 372 mm.  相似文献   

13.
7S球蛋白是大豆最主要的过敏原蛋白,大豆脂氧酶是大豆腥臭味产生的源泉,两者均是大豆食品深加工过程中有必要去除的成分。本研究以7S球蛋白的?¢、?、?-亚基完全缺失的“1003-44”为母本,以脂氧酶Lox-1,2,3完全缺失的“SI0162”为父本,配制杂交组合,通过基因聚合育种技术,创制出7S球蛋白亚基与脂氧酶同时缺失大豆新种质资源,并分别对F1和F2种子进行遗传解析。结果表明:F1(1003-44×SI0162)种子表型性状,表现为7S球蛋白亚基缺失、脂氧酶不缺失性状;F2种子表型性状显示:7S球蛋白亚基缺失:野生型=375:125=3:1(X2(0.05,1)=0.0964<3.84),F2种子脂氧酶缺失性状的分离比为Lox-1,2,3野生型:Lox-3缺失:Lox-1,2缺失:Lox-1,2,3缺失=282:96:93:27,符合9:3:3:1的独立分配定律(X2(0.05,3)=0.6275<7.81)。说明7S球蛋白亚基缺失性状受1对显性等位基因控制,脂氧酶3个同工酶同时缺失,受lx1lx2与lx3,2个隐性等位基因位点控制。利用ISDS-PAGE电泳技术对F2及F2:7种子双缺失性状的连续跟踪筛选,获得了脂氧酶与7S球蛋白亚基双重缺失、并可稳定遗传的优良品系2个,说明这种双缺失基因聚合不影响大豆的正常生长发育,为大豆品质遗传改良育种提供理论技术支持,对培育食品加工专用高值大豆新品种具有重要意义。  相似文献   

14.
大豆(Glycine max(L.)Merrill根系研究进展   总被引:5,自引:3,他引:5  
金剑  刘晓冰  王光华 《大豆科学》2002,21(3):223-227
从野生大豆Glycine soja与载培大豆Glycine max(L.)Merrill根系的区别,根系生长与产量关系。不同特性大豆根系性状的比较,根系生理生化特性,根系遗传及环境条件和栽培措施对大豆根系的影响6个方面比较详细地概括了大豆根系的研究现状,提出了今后进一步深入研究的方向。  相似文献   

15.
缺磷胁迫条件下大豆根系有机酸的分泌特性   总被引:2,自引:0,他引:2  
采用水培和砂培方法检测了缺磷胁迫条件下大豆不同生育时期根系有机酸的分泌总量和组分的变化,结果表明:不同磷处理埘大豆根系分泌有机酸有显著的影响,缺磷胁迫条件下,不论是有机酸总量还是各有机酸组分的含量均显著高于正常供磷水平,差异显著,表明缺磷胁迫是促进大豆根系分泌有机酸的一个重要原因;大豆根系有机酸的分泌随生育时期而变化,表现为先增加后降低,在花期达到分泌高峰;大豆根系分泌的有机酸各组分在水培和砂培条件下基本一致,主要以苹果酸、柠檬酸、草酸、酒石酸等为主,砂培条件下有机酸的分泌量为水培条件下的2-3倍.  相似文献   

16.
来源于野生大豆的多小叶性状遗传分析   总被引:3,自引:0,他引:3  
本文通过杂交初步分析一个起源于野生大豆的多小叶性状。五叶大豆与6个正常大豆配制了6个杂交组合,其中5个F2分离群体产生带有主要的3叶和5叶,少数4叶,个别6叶或7叶植株,3叶和5叶(包括其它多小叶)表现为3:1分离;1个组合仅产生带有5叶株和3叶,表现为64:1分离。遗传分析显示,除了一个已知的Lf1基因控制5叶遗传外,可能还存在另外2个控制5叶的基因。5叶多小叶性状基因对正常3叶是不完全显性的,这3个基因是独立遗传的,并且具有重叠地位。  相似文献   

17.
选取黑龙江省第三积温带主栽大豆品种黑农35为材料,采用水培方法,在大豆移栽后28、35、42、49 d取样,对根瘤的物理性状(根瘤干重、根瘤数和单个根瘤干重)进行动态分析,研究了硝态氮对大豆根瘤性状的影响.结果表明:从移栽后第28天开始生物固氮处理根瘤数明显增加,而施用硝态氮根瘤数基本不变,硝态氮抑制了大豆根瘤形成,而单个根瘤干重增加较大.从根瘤密度来看,硝态氮降低大豆根瘤在根系上分配密度,在第28天生物固氮处理每个根上结瘤124.84个,而施用硝态氮每个根上结瘤22.84个.  相似文献   

18.
Glyphosate-resistant (GR) volunteer corn is a troublesome weed in soybean fields in a corn-soybean rotation as well as in corn fields in a continuous corn production system. The objectives of this study were to evaluate the impact of (1) different densities of GR volunteer corn on soybean yields, present as individual plants or clumps, controlled at fourth trifoliate (V4), sixth trifoliate (V6), or full flowering (R2) soybean growth stages, and (2) late-season volunteer corn emergence on soybean yields, after being controlled at different soybean growth stages. Field experiments were conducted in 2013 and 2014 under irrigated conditions in Clay County, Nebraska, and under rain-fed conditions in Lancaster County, Nebraska, USA. To maintain the desired number of isolated volunteer corn plants (1250, 2500, 5000, and 10,000 plants ha−1) and clumps (63, 125, 250, and 500 clumps ha−1), individual seeds and/or corn ears were hand-planted in each plot based on their respective target densities. Volunteer corn was controlled with applications of clethodim at V4, V6, or R2 soybean growth stages. Late-season volunteer corn emergence had no effect on soybean yield with volunteer corn densities and control timings at both locations in 2013 and 2014. During the first year of study at Clay County, volunteer corn densities and control timings had no effect on soybean yield. When volunteer corn was left uncontrolled or controlled at the R2 soybean growth stage, yield was the lowest at highest isolated volunteer corn plants (10,000 plants ha−1) plus clump density (500 clumps ha−1) during the second year of study in Clay County (≤5068 kg ha−1) and during both years of study in Lancaster County (≤1968 kg ha−1).  相似文献   

19.
A field experiment carried out in a calcareous soil with a low available phosphorus to evaluate effectiveness of biofertilizers, mycorrhizae (Glomus intraradices) and Thiobacillus sp. inoculation individually or in combination on seed yield, oil, protein and some elements (P, Fe, Mn, Zn) concentration in two soybean [Glycine max (L.) Merr.] cultivars. The applied treatments were different fertilizers with 6 levels (including: NP (control, 12 kg N ha(-1) as urea, 46 kg P2O5 ha(-1) as triple super phosphate); NPK (NP + 75 kg K2O ha(-1) as potassium sulphate); NPKS [NPK+ S (100 kg S ha(-1))]; NPKST (NPKS + seed inoculation with Thiobacillus bacteria); NPKM (NPK + Seed inoculation with mycorrhizae fungi) and NPKSTM (NPKS + seed inoculation with Thiobacillus and mycorrhizae) and two cultivars (JK and 032). Before planting, soybean seeds were inoculated by Bradyrhizobium japonicum in all treatments. Results showed that combined inoculation of biofertilizers increased yield, however the highest yield was observed in treatment NPKST. Increasing oil content (percentage) was more pronounced in treatments NPKM, while most protein content (percentage) increasing was observed in NPKS and NPKM. Fe and Zn concentrations were unaffected significantly by fertilizer treatments, but NPKSTM showed significantly higher value of seed's Mn concentration compared to treatments NP and NPK. Although no significant difference was observed in terms ofP concentration of 032 line among fertilizer treatments, JK cultivar and NPKSTM caused a significant increasing in P concentration compared to NP, NPKS and NPKM. Present results suggested that applying biofertilizers i.e., mycorrhizae and Thiobacillus increased soybean yield compared to control (NP). Overall, this study demonstrated that soybean seed yield and its chemical composition could be affected by biofertilizer inoculation.  相似文献   

20.
GmPR10基因是病程相关蛋白PR10(pathogenesis-related proteins 10)在大豆中的同源基因。为探明大豆GmPR10基因的表达调控规律,应用PCR技术从大豆抗疫霉根腐病品种绥农10号中克隆了GmPR10基因上游2 235 bp的启动子序列pGmPR10,定向替换pBI121载体的CaMV35S组成型启动子,构建植物表达载体pBI121/pGmPR10/GUS,并转化农杆菌侵染烟草叶盘。GUS染色结果表明,pGmPR10受聚乙二醇(PEG)、低温(4℃)、水杨酸(SA)、茉莉酸(JA)和脱落酸(ABA)诱导表达,因此推测GmPR10基因可能参与植物激素调节植物生长发育的过程,以及生物胁迫和非生物胁迫条件下植物对环境响应的过程。此外,利用PLACE和Plant CARE在线启动子预测工具分析pGmPR10,结果表明:pGmPR10含有启动子的一般结构TATA-box和CAAT-box,光应答元件,生长素和细胞分裂素响应元件,热激元件,低温应答元件,干旱应答元件以及ABA、SA、JA应答元件等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号