首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the coastal grasslands of western France, extensive mixed grazing by cattle and horses has been practised for many centuries. The vegetation of these old embanked grasslands varies along a topographical gradient with a hygrophilous plant community in low-lying depressions seasonally flooded, a mesophilous community on high level flats that are never flooded, and a meso-hygrophilous community on slopes where the soil remains saline. Recently, fewer horses have been grazed on these pastures and so a 6-year study was designed to investigate the effects of monospecific and mixed grazing by horses and cattle on plant community structure, composition and diversity. Mixed grazing produced the most species-rich and structurally diverse swards. Mixed grazing enhanced the development of rosette, sub-halophyte and halophyte species where the soil is saline, due to additive effects between the two herbivore species. Mixed grazing also limited the strongly competitive Elymus repens and Agrostis stolonifera on horse latrine areas, cattle grazing, thus showing a compensatory effect. The combination of additive and compensatory effects with mixed grazing could be used to manage plant diversity, heterogeneity in vegetation structure and communities of conservation value at the scale of the grassland ecosystem.  相似文献   

2.

Purpose

Small-scale soil heterogeneity relates to productivity and biodiversity and is crucial to understand. Soil heterogeneity could be affected by vegetation structure, and large mammal grazers could modify it through herbivory and excretion. The objective is to clarify the effects of livestock grazing on the small-scale (~3 m) soil heterogeneity in three types of Mongolian grasslands.

Materials and methods

We sampled soils from inside (ungrazed) and outside (grazed) exclosures in three vegetation types: forest-steppe, shrub-steppe, and desert-steppe. We measured laboratory rates of soil net nitrogen (N) mineralization and net nitrification and geostatistically analyzed heterogeneity.

Results and discussion

Average rates of net N mineralization and net nitrification were lower at shrub-steppe and desert-steppe and were decreased by grazing. Semivariograms showed vegetation-induced heterogeneity in ungrazed plots, except for net nitrification at forest-steppe. We found linear change with distance under dense and uniform vegetation at forest-steppe, 1.3 m patch under patchy vegetation at shrub-steppe, and linear change, but with much smaller semivariance, under sparse and poor vegetation at desert-steppe. At forest-steppe, grazing randomized the spatial patterns of net N mineralization and net nitrification. At shrub-steppe and desert-steppe, grazing greatly decreased the semivariances of net N mineralization and net nitrification as well as their averages, and the soil heterogeneity was virtually disappeared.

Conclusions

Grazing in Mongolian grasslands homogenized the spatial patterns of net N mineralization and net nitrification, irrespective of their original spatial patterns determined by the differences in vegetation structure.  相似文献   

3.
Reindeer grazing has a great influence on the ground vegetation of nutrient-poor northern boreal forests dominated by Cladonia lichens in Fennoscandia. Grazing may influence the soil processes in these systems either by influencing the quality of plant litter, or by indirect effects through the soil microclimate. In order to investigate the mechanisms underlying the effects of reindeer on boreal forest soils, we analyzed litter decomposition, soil and microbial C and N, microbial community composition, and soil organic matter quality in three forest sites with old reindeer exclosures adjacent to grazed areas. There was no effect of grazing on soil C/N ratio, inorganic N concentrations, microbial biomass C, microbial community structure analyzed by phospholipid fatty acid (PLFA) analysis, and organic matter quality analyzed by sequential fractionation, in the soil organic layer. However, microbial N was enhanced by grazing at some of the sampling dates and was negatively correlated with soil moisture, which indicates that increased microbial N could be a stress response to drought. The effect of grazing on litter decomposition varied among the decomposition stages: during the first 1.5 months, the litter C loss was significantly higher in the grazed than the ungrazed areas, but the difference rapidly levelled out and, after one year, the accumulated litter C loss was higher in the ungrazed than the grazed areas. Litter N loss was, however, higher in the grazed areas. Our study demonstrates that herbivores may influence soil processes through several mechanisms at the same time, and to a varying extent in the different stages of decomposition.  相似文献   

4.
Marine inputs from seabirds (in the form of guano) to terrestrial coastal communities play an important role in supporting aboveground food webs. However, little is known about the importance of seabird-derived nutrient inputs for belowground food webs and their function relative to other factors that regulate belowground communities. Here, we tested the relative importance of nutrient enrichment from seabirds and grazing, a known driver of belowground properties, in determining the structure and function of the soil food web in an island system. This was tested by measuring the size and composition of the microbial community, the abundance of nematode feeding groups and rates of decomposition and net nitrogen (N) mineralisation in soil samples collected from grazed and ungrazed plots at coastal and inland locations, representing sites of high and low seabird influence respectively, on the Isle of May in the Firth of Forth, east Scotland. We found that proximity to seabird breeding colonies, and associated greater input of seabird-derived N, stimulated the size of the soil microbial biomass and the abundance of bacteria relative to fungi in the soil microbial community relative to inland areas that received significantly less N. Despite this, proximity to seabird colonies had no detectable effect on rates of decomposition or N-mineralisation. The short-term removal of mammalian grazers, in the form of rabbits, had only limited effects on the structure of the soil food web, mainly affecting the abundance of bactivorous nematodes which were greater in grazed than ungrazed situations. However, cessation of grazing did impact significantly on rates of N-mineralisation and decomposition, which were higher and lower in grazed than ungrazed situations respectively. In conclusion, our study provides evidence that allochthonous nutrient inputs from seabirds have significant impacts on the composition of the soil microbial community, and that these effects outweigh short-term effects of grazers as a driver of soil food web structure in the island system studied. Overall, our results indicate the important roles that natural sources of N and grazing play as drivers of soil food webs and their function.  相似文献   

5.
In nature management, the introduction of large herbivores into human-influenced grasslands is thought to be effective to maintain or enhance plant diversity. In order to test the validity of this assumption, we studied the effect of grazing by large herbivores on plant species richness and community heterogeneity across a soil acidity gradient at different spatial scales in dry coastal dune grasslands in western Belgium and north-western France. The effect of grazing on plant richness varied with scale and soil acidity. Grazing had a predominantly positive effect on plant species richness in all habitats at the small scale (0.25 × 0.25 m). However, at site scale (8 × 8 m) it had only positive effects in grasslands with higher soil pH (6-7.4). Similarly, grazing resulted in a homogenization of grassland vegetation at lower pH, while heterogeneity increased with grazing on soil with higher pH. In general, grazing increased the number of rare species, independent of soil pH. The results confirm that the impact of grazing on plant diversity depends on the scale considered and that the effects further depend on soil acidity which was correlated to biomass production at the given soil pH range in this study. Although grazing seems an appropriate management tool to maintain and even enhance plant biodiversity under many circumstances, it may negatively affect plant species richness, where soil resources limit plant biomass production.  相似文献   

6.
We assessed soil N and C dynamics in a decomposition experiment at microcosm scale with leaf litter of evergreen shrubs and perennial grasses of the Patagonian Monte. We hypothesised that eventual changes in leaf-litter quality in arid Patagonian ecosystems disturbed by grazing would lead to changes in C and N dynamics in decaying leaf litter and the associated soil. We constructed microcosms with local soil and litterbags containing leaf litter of three perennial grass and three evergreen shrub species. Microcosms were incubated at field capacity during 12, 42 and 84 days. We assessed N, C, phenolics and lignin concentrations in leaf litter before incubation, and N and C concentrations after incubation. We estimated inorganic and total N and organic C in soil before and after incubation. We calculated C and N budgets and the associated rates of C and N losses from leaf litter, microbial respiration, N immobilisation in litter and soil, and N mineralisation at microcosms of each species by inverse modelling techniques. Initial leaf-litter N concentration was significantly higher and C:N ratio lower in evergreen shrubs than in perennial grasses. Leaf litter of perennial grasses was very similar in initial chemical composition among species. In contrast, evergreen shrubs displayed a large variability in the concentration of secondary compounds among species. Accordingly, microcosms of perennial grasses showed similar rates of C and N processes while those of evergreen shrubs showed diverse patterns and rates of processes among them. Process rates in microcosms of one of the evergreen shrub species were closely related to those of perennial grasses. In contrast, process rates in microcosms of the two other evergreen shrub species were quite different between them and from those of perennial grasses. We conclude that (i) the replacement of perennial grasses by evergreen shrubs or the shifting of species within evergreen shrubs in ecosystems disturbed by grazing could have different effects on ecosystem processes depending on the species involved, and (ii) species rather than life forms should be used to predict leaf-litter decomposability and associated soil C and N dynamics particularly in evergreen shrubs.  相似文献   

7.
It is not clear from the literature how the spatial distribution of topsoil and vegetation properties is affected by grazing cessation. Thus, the objective of this study was to elucidate if long‐term grazing exclosure increases spatial heterogeneity of topsoil and vegetation properties in a steppe ecosystem in NE China. Variograms and crossvariograms were calculated for bulk density, organic carbon (OC), total N, and total S concentration, δ13C, pH, Ah horizon thickness, vegetation cover, and aboveground biomass. Five sites with different grazing intensities (ungrazed since 1979, ungrazed since 1999, winter grazing, continuously grazed, heavily grazed) were sampled with two different grid sizes, allowing the exploration of scale effects. Small grids (15 m spacing, 5 m nested sampling) exhibited a different spatial structure compared to large grids (50 m spacing, 10 m nested sampling). Spatial distribution in small grids changed with grazing intensity. Generally, heterogeneity of topsoil properties increased with decreasing grazing intensity from a homogeneous to a patchy distribution. We attribute this to vegetation recovery/succession and deposition of windblown material in ungrazed areas. The plot ungrazed since 1999 showed different spatial dependencies than continuously and heavily grazed plots, but has not yet reached the high variability of the plot which was ungrazed since 1979. Large grid sampling did not detect small‐scale variability or grazing impacts, but showed spatial dependencies that were attributed to topography or soil erosion/deposition. Low OC concentration and low Ah thickness were associated with hilltop and shoulder positions, resulting in lower OC stocks at these topographic units.  相似文献   

8.
Grassland birds are declining at a faster rate than any other group of North American bird species. Livestock grazing is the primary economic use of grasslands in the western United States, but the effects of this use on distribution and productivity of grassland birds are unclear. We examined nest density and success of ground-nesting birds on grazed and ungrazed grasslands in western Montana. In comparison to grazed plots, ungrazed plots had reduced forb cover, increased litter cover, increased litter depth, and increased visual obstruction readings (VOR) of vegetation. Nest density among 10 of 11 common bird species was most strongly correlated with VOR of plots, and greatest nest density for each species occured where mean VOR of the plot was similar to mean VOR at nests. Additionally, all bird species were relatively consistent in their choice of VOR at nests despite substantial differences in VOR among plots. We suggest that birds selected plots based in part on availability of suitable nest sites and that variation in nest density relative to grazing reflected the effect of grazing on availability of nest sites. Nest success was similar between grazed plots and ungrazed plots for two species but was lower for nests on grazed plots than on ungrazed plots for two other species because of increased rates of predation, trampling, or parasitism by brown-headed cowbirds (Molothrus ater). Other species nested almost exclusively on ungrazed plots (six species) or grazed plots (one species), precluding evaluation of the effects of grazing on nest success. We demonstrate that each species in a diverse suite of ground-nesting birds preferentially used certain habitats for nesting and that grazing altered availability of preferred nesting habitats through changes in vegetation structure and plant species composition. We also show that grazing directly or indirectly predisposed some bird species to increased nesting mortality. Management alternatives that avoid intensive grazing during the breeding season would be expected to benefit many grassland bird species.  相似文献   

9.
The effects of grazing intensity on plant and insect diversity were examined in four different types of grassland (intensively and extensively cattle-grazed pastures, short-term and long-term ungrazed grassland; 24 study sites). Vegetation complexity (plant species richness, vegetation height, vegetation heterogeneity) was significantly higher on ungrazed grasslands compared to pastures but did not differ between intensively and extensively grazed pastures. However, insect species richness was higher on extensively than on intensively grazed pastures, established by suction sampling of four insect taxa (Auchenorrhyncha, Heteroptera, Coleoptera, Hymenoptera Parasitica). This may be due to intensive grazing disrupting plant-insect associations as predicted by a “trophic-level” hypothesis. Local persistence and small-scale recolonization of insects on plants appeared to be difficult in the highly disturbed environment of intensive grazing. Insect diversity increased across the four treatments in the following order: intensively grazed<extensively grazed<short-term ungrazed<long-term ungrazed. The major predictor variable of differences in species diversity was found to be vegetation height. Predator-prey ratios within the investigated insect groups were not affected by grazing intensity.  相似文献   

10.
Long-term overgrazing is known to influence soil microbiological properties and C sequestration in soil organic matter. However, much remains to be known concerning overgrazing impacts on soil microbial activity and litter turnover in heavily grazed rangelands of Central Iran. Aboveground litter decomposition of three dominant species (Agropyron intermedium, Hordeum bulbosum, and Juncus sp.) were studied using a litter bag experiment under field conditions in three range sites of Central Iran, a site with continuous grazing, a site ungrazed for 17 years with dominant woody species (80% cover), and a site ungrazed for 17 years with dominant pasture species (70% cover). Soil samples were taken from 0 to 30 cm depth and analyzed for their chemical and microbiological properties. Results demonstrate that soil organic C and total N contents and C/N ratios were similar for both ungrazed and grazed sites, while available P and K concentrations significantly decreased under grazed conditions. It was also evident that range grazing decreases soil respiration and microbial biomass C, suggesting a lower recent annual input of decomposable organic C. Nevertheless, grazing conditions had no significant effect on litter decomposition indicating soil microclimate is not affected by grazing animals in this ecosystem. It is concluded that overgrazing may presumably depress microbial activity through either reduced input of fresh plant residue into the surface soil or lack of living roots and exudates for stimulating microbial activity. This study also suggests that 17 years of livestock exclusion might be insufficient time for expected C accumulation in soil.  相似文献   

11.
[目的]探讨放牧对羊草群落和贝加尔针茅群落的影响,为草原土壤的保护和草原自然保护区建设提供科学依据。[方法]以呼伦贝尔草甸草原为样地,采用野外调查和实验室分析相结合的方法。[结果]在放牧干扰下,以羊草为建群种的群落所受的影响比贝加尔针茅群落小,植物群落盖度、高度和Simpson指数明显高于贝加尔针茅群,物种多样性更丰富,生长情况相对更好。羊草草原土壤全氮、全磷和有机质含量高于贝加尔针茅草原土壤。各放牧区土壤微生物数量均表现为:细菌放线菌真菌;垂直分布为0—10cm10—20cm;土壤脲酶、过氧化氢酶、转化酶活性、全N,全P和有机质等0—10cm土层的均高于10—20cm。相关分析表明,植物群落α多样性与土壤微生物数量、土壤酶活性、全N,全P和有机质等呈显著正相关。[结论]适度放牧有助于提高草甸草原羊草群落和贝加尔针茅群落α多样性、土壤微生物数量和土壤酶活性。两个群落相比较,羊草群落更适合放牧。  相似文献   

12.
In a mesocosm experiment, we studied decomposition rates as CO2 efflux and changes in plant mass, nutrient accumulation and soil pools of nitrogen (N) and phosphorus (P), in soils from a sub-arctic heath. The soil was incubated at 10 °C and 12 °C, with or without leaf litter and with or without plants present. The purpose of the experiment was to analyse decomposition and nutrient transformations under simulated, realistic conditions in a future warmer Arctic.Both temperature enhancement and litter addition increased respiration rates. Temperature enhancement and surprisingly also litter addition decreased microbial biomass carbon (C) content, resulting in a pronounced increase of specific respiration. Microbial P content increased progressively with temperature enhancement and litter addition, concomitant with increasing P mineralisation, whereas microbial N increased only in the litter treatment, at the same time as net N mineralisation decreased. In contrast, microbial biomass N decreased as temperature increased, resulting in a high mobilisation of inorganic N.Plant responses were closely coupled to the balance of microbial mineralisation and immobilisation. Plant growth and N accumulation was low after litter addition because of high N immobilisation in microbes and low net mineralisation, resulting in plant N limitation. Growth increased in the temperature-enhanced treatments, but was eventually limited by low supply of P, reflected in a low plant P concentration and high N-to-P ratio. Hence, the different microbial responses caused plant N limitation after litter addition and P limitation after temperature enhancement. Although microbial processes determined the main responses in plants, the plants themselves influenced nutrient turnover. With plants present, P mobilisation to the plant plus soil inorganic pools increased significantly, and N mobilisation non-significantly, when litter was added. This was presumably due to increased mineralisation in the rhizosphere, or because the nutrients in addition to being immobilised by microbes also could be absorbed by plants. This suggests that the common method of measuring nutrient mineralisation in soils incubated without plants may underestimate the rates of nutrient mobilisation, which probably contributes to a commonly observed discrepancy of measured lower rates of net nutrient mineralisation than uptake rates in arctic soils.  相似文献   

13.
放牧对荒漠草原植物生物量及土壤养分的影响   总被引:3,自引:1,他引:2  
以宁夏荒漠草原为研究对象,探讨放牧对荒漠草原植物多样性、 生物量及土壤养分特征的影响。结果表明, 放牧对荒漠草原植物群落多样性、 均匀度和丰富度影响显著。植物群落多样性和均匀度随着放牧强度的增加均呈先增加后降低的趋势,在轻度放牧达到最大值。同围封禁牧相比,重度、 中度和轻度放牧草地的植物地上和地下部生物量显著降低,分别降低了43.8%、 42.0%、 15.4% 和 27.7%、16.2%、11.9%。土壤有机碳随着放牧强度的增加而降低,而土壤全氮含量随着放牧强度的增加呈先增加后降低的趋势。围封禁牧草地土壤有机碳比重度放牧增加了18.1%,而土壤全磷、 速效磷和全钾含量分别降低了 21.1%、 51.9% 和 11.0%。土壤有机碳含量对植物群落地上和地下部生物量的影响大于土壤全氮、 全磷、 全钾、 速效磷和速效钾。放牧干扰下荒漠草原土壤环境及其养分含量,能在一定程度上反映植物群落多样性和生物量的变化。  相似文献   

14.
放牧干扰后自然恢复的退化沙质草地土壤性状的空间分布   总被引:6,自引:0,他引:6  
用地统计学的方法 ,研究了科尔沁沙质退化草地不同强度放牧干扰 (重度放牧和适度放牧 )后自然恢复过程中 0~ 15cm土层土壤有机碳、全氮、pH和电导率在 10m尺度上的空间异质性特征。结果表明 ,重牧后的恢复草地比适度放牧后的恢复草地呈现出显著低的有机碳和全氮含量及其显著高的变异性。在取样尺度的空间分布上均表现出显著的空间结构特征 ,自相关尺度分别为 2 2 2~ 2 9 4m和 2 5 5~ 39m ,结构性方差占样本方差的 87 2 %~ 88 2 %和 6 5 5 %~ 85 9%。全氮的自相关尺度大于有机碳。土壤pH和电导率在取样的尺度内不存在局部格局 ,而可能受更大尺度的格局控制。放牧引起的植被斑块状分布和沙化裸斑的出现是土壤碳、氮空间变异的主要因素 ;土壤异质性尺度的改变又可能影响着植被的恢复演替和分布格局。  相似文献   

15.
科尔沁沙地草地植物群落功能性状对封育和放牧的响应   总被引:1,自引:0,他引:1  
该研究以科尔沁沙地中草甸(meadow)、针茅草原(stipa steppe)、疏林草地(scattered tree grassland)和沙质草地(sandy grassland)4种草地的18种优势植物为研究对象,分别测定了不同草地植物群落在封育和放牧下的高度(height)、比叶面积(specific leaf area,SLA)、叶片干物质含量(leaf dry matter content,LDMC)、叶片面积(leaf area,LA)、叶片氮含量(leaf nitrogen content,LNC)和叶片碳同位素(leaf carbon isotopes)6个相关于植物生理生态过程的功能性状指标。结果表明:1)长期放牧增加了草地中一年生植物和C4植物的丰富度和重要值,降低了沙质草地中多年生植物的相对生物量;2)沙质草地植物群落的SLA和δ13C高于其他3种草地,LDMC小于其他3种草地;3)长期放牧降低了草地植物群落的高度和LA,增加了草地植物群落的δ13C,SLA、LDMC和LNC则不受放牧的影响;4)植物功能性状中,SLA与LDMC极显著负相关且不受放牧的干扰;而长期放牧导致了高度与SLA和δ13C显著负相关以及SLA和δ13C显著正相关。科尔沁沙地长期放牧的草地中一年生植物和C4植物比例相对增加,且优势植物具有较低的高度和LA以及较高的δ13C,表明了草地植物群落通过物种竞争结构和功能性状权衡策略的改变来适应长期放牧。因此,减轻放牧压力,改善植物群落的功能性状,对于该区域退化草地的恢复及持续管理具有一定的重要意义。  相似文献   

16.
在对吴旗县乔木林、灌木林和草原群落野外调查的基础上,对其植被恢复及植被恢复与水土流失的关系进行了定量分析,结果表明,在吴旗县这样的自然地理条件下,通过退耕还林、封山禁牧,植被完全可以得到恢复,完全可以控制水土流失的发生。在自然恢复初期,植物群落将以草原地带性植被为主,并可以恢复到稳定阶段。三种植被群落在植物多样性方面差异并不大,草原群落的物种多样性和群落均匀度要略小于乔木林和灌木林群落。  相似文献   

17.
In order to explore long-term changes in microarthropod communities after introduction of livestock grazing in abandoned fields with herb–grass vegetation at Mols, E. Jutland, Denmark, soil and litter samples were collected from 7 pairs (blocks) of grazed and non-grazed plots over a period of 14 years. Sampling began just before fencing and initiation of cattle and sheep grazing in the spring of 1985. The total material included 76 collembolan species; 65 and 68 species were recorded in the grazed and non-grazed plots, respectively. The number of species recorded at individual sampling dates fluctuated considerably through the period. In the vegetation/litter layer the mean number of species per plot was significantly higher in the non-grazed than in the grazed plots at several sampling dates while in the soil no significant differences were observed. Grazing significantly reduced the abundance of total Collembola, three composite species groups and 12 species at one or more sampling dates. Only three species or species groups (excluding some accidental occurrences) showed significant population increment in response to grazing at one or more sampling dates, most pronounced towards the end of the study period. No species changed from being significantly highest in grazed plots to being significantly highest in the non-grazed plots or vice versa during the study period. Significant relationships between grazing pressure and grazing effect on population density were only found in the vegetation/litter layer and the combined vegetation/litter/soil strata but not in the soil. The three regularly occurring taxa that had highest population densities in the grazed plots were positively correlated with grazing intensity while this was not the case for the majority of those taxa which were most abundant in the non-grazed plots. Canonical correspondence analysis based on species composition suggests separate successional trends for grazed and non-grazed plots. Grazing pressure accumulated through the whole period from start of grazing and precipitation accumulated over one year preceding the sampling date were the most important environmental variables correlated with species composition. According to a permutation test based on a split-plot design water content of the soil measured at each sampling was not significantly correlated with the community development.  相似文献   

18.
In a context of frequent intensification or de-intensification of management in grasslands, a better understanding of how quickly soil microbiota responds to changes in management is required. The kinetics of changes in the structure of the bacterial community (using ribosomal intergenic spacer analysis) was studied in grassland mesocosms after changes of aboveground grazing regime, taking into account bacteria micro-localisation by separating the bacteria located inside stable aggregates (inner soil fraction) and the bacteria easily washed out, i.e. mainly located in macropores (outer soil fraction). Four treatments were used: (i) control grazed mesocosms, (ii) control ungrazed mesocosms, (iii) application of grazing on previously ungrazed mesocosms, (iv) cessation of grazing on previously grazed mesocosms. Each grazing event was simulated by application of synthetic sheep urine and plant clipping. Application of grazing led to a change in the structure of the whole soil bacterial community within 5 months, whereas changes were observed only 12 months after cessation of grazing. Changes in plant species composition and soil organic carbon content observed after cessation of grazing were found to be possible drivers of the changes in the bacterial community structure. However, after application of grazing, changes of the bacterial community structure occurred prior to changes in plant species composition and soil organic carbon content, suggesting that supply of urine and/or impact of labile carbon were likely the main drivers of changes. After 12 months, the application of grazing significantly affected the bacterial community structure in both inner and outer soil fractions. Conversely, 12 months after cessation of grazing, community structure was affected only for bacteria located in the outer fraction. This study shows that the bacterial community structure responded faster and more deeply after application than after cessation of grazing, and may be driven by different environmental factors between both scenarios. This study also shows that, 2 years after the changes in grazing regime, the bacterial community structure was determined by both the past and new grazing regimes.  相似文献   

19.
Wetlands are ecologically and economically important ecosystems with high conservation value. Although wetland vegetation is strongly determined by abiotic factors, grazing disturbance may also be an important influence on this community. We evaluated the effects of livestock grazing on wetland vegetation in marsh and wet meadow zones in intermountain depressional wetlands in the southern interior of British Columbia, Canada. We sampled marshes and wet meadows in 36 wetlands along a grazing intensity gradient ranging from fully fenced and ungrazed wetlands to unfenced wetlands heavily grazed by livestock. The amount of bare ground was used as a surrogate measure of the intensity of livestock grazing. Vegetation community structure and composition was strongly associated with grazing intensity. Increased livestock grazing favored shorter-lived and smaller plants; conversely, the frequency of tall and rhizomatous species, which constitute the dominant plant species in these systems, declined with higher livestock use. The effects of grazing were more pronounced in the marsh than in the wet meadow. Associations between species richness and grazing differed between zones: native and exotic species richness showed a unimodal response in the marsh while in the wet meadow exotic richness increased and native richness showed no response. The relationship between exotic frequency and grazing was also inconsistent between zones, with a negative association in the marsh and a positive but weak association in the wet meadow. Grazing-related changes in vegetation along the grazing intensity gradient were substantial and may affect the habitat value of these wetlands for dependent wildlife such as breeding waterfowl.  相似文献   

20.
太行山低山丘陵区植被恢复构建的生态对策和途径   总被引:8,自引:0,他引:8       下载免费PDF全文
 对太行山低山丘陵区的植被恢复研究成果进行回顾总结,并探讨太行山低山丘陵区植被恢复的生态对策和途径。基于该地区现代生境和植被退化的基本特征,总结植被恢复与构建的6项生态原则,提出植被恢复的途径:实施封禁措施充分利用天然植被的自然恢复力,采取人工促进措施,加速天然植被恢复进程,选择现有生态经济价值较高的本土种和归化种等多年生植物构建生态经济群落。对今后有关植被退化、恢复与构建尚待研究的问题进行了探讨,诸如:小尺度空间异质性对植被恢复产生的生态效应;在肥沃农田与天然植被之间的生境上,构建的生态经济群落,形成生态缓冲区;认识天然植被植物繁殖对策与干扰的关系,以太行山低山丘陵区陡峭悬崖之间的平台地段受人类干扰较轻的自然群落作为植被恢复的参照目标等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号