首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
A simple multiplicative model using temperature, foliage nitrogen (N) concentration and water status was developed to predict the maximum photosynthetic rate (Pmax) of field‐grown cocksfoot (Dactylis glomerata L.) leaves when none, one, two or all the factors were limiting. The highest Pmax was 27·4 μmol CO2 m–2 s?1 in non‐limited conditions, which was defined as the standardized Pmax value dimensionless (Pmaxs=1). Pmaxs increased 0·058 units per °C from 10°C to the optimum range (19–23°C) (Pmaxs=1) and then declined 0·077 units of Pmaxs per °C from 23 to 31°C. Pmaxs=1 was also measured from 59 to 52 g N kg?1 dry matter (DM) foliage N. Pmaxs then decreased at the rate of 0·115 units per 10 g N kg?1 DM from 52 to 26 g N kg?1 DM, and 0·409 units of Pmaxs per 10 g N kg?1 DM from 26 to 15 g N kg?1 DM. For predawn leaf water potential (ψlp), Pmaxs=1 was measured from ?0·1 to ?1·2 bar but declined linearly at a rate of 0·078 units per bar of ψlp from ?1·2 to ?14·0 bar because of a linear decrease in stomatal conductance. An interaction between low N content (≤20 g N kg?1 DM) and high temperature (>23°C) was also detected. Together, this multiplicative model accounted for 0·82 of the variation in Pmaxs.  相似文献   

2.
Remote sensing of nitrogen (N) concentration and in vitro dry matter digestibility (IVDMD) in herbage can help livestock managers make timely decisions for adjusting stocking rate and managing pastures during the grazing season. Traditional laboratory analyses of N and IVDMD are time-consuming and costly. Non-destructive measurements of canopy hyperspectral reflectance of pasture may provide a rapid and inexpensive means of estimating these measures of nutritive value. Using a portable spectroradiometer, canopy reflectance was measured in eight warm-season grass pastures in the USA in June and July in 2002 and 2003 to develop and validate algorithms for estimating N concentration and IVDMD of herbage. Nitrogen concentration of herbage was linearly correlated (r = 0·82; P < 0·001) with a ratio of reflectance in the 705- and 1685-nm wavebands (R705/R1685) and IVDMD was correlated with R705/R535 (r = 0·74; P < 0·001). Compared with simple linear regressions of N concentration and IVDMD in herbage with two-waveband reflectance ratios, multiple regression, using maximum r2 improvement, band-depth analysis with step-wise regression, and partial least-squares regression enhanced the correlation between N concentration and IVDMD of herbage and canopy reflectance values (0·81 ≤ |r| ≤ 0·90; P < 0·001). Validation of the prediction equations indicated that multiple regression only slightly improved accuracy of a model for predicting N concentration and IVDMD of herbage compared with simple linear regression of reflectance ratios. Results suggest that the N concentration and IVDMD of herbage of warm-season grass pastures can be rapidly and non-destructively estimated during the grazing season using canopy reflectance in a few narrow wavebands.  相似文献   

3.
The effects of three canopy heights (10, 25 and 40 cm) and two N rates (50 and 250 kg ha?1 year?1) on herbage accumulation (HA), participation of leaf categories in the leaf area index (LAI) and photosynthesis of grazed “Mulato II” brachiariagrass (Brachiaria brizantha × B. decumbens × B. ruziziensis) were investigated during two summer growing seasons in Piracicaba, São Paulo, Brazil. The HA and LAI increased linearly from 8560 to 13600 kg DM ha?1 year?1 and 2.3 to 5.5 m2 m?2, respectively, as canopy height increased. Mulato II brachiariagrass maintained at 10 cm canopy height showed greater proportion of young leaves, but was less productive than taller canopies. Taller canopies had greater proportion of mature leaves in the LAI as well as greater photosynthesis. The greater N rate contributed to increased LAI, leaf and canopy photosynthesis rates and HA but did not affect the LAI composition. The total leaf area is more important to HA than the proportion of young leaves in the LAI, as taller canopies were more productive, suggesting that maintaining Mulato II brachiariagrass at 25 or 40 cm is advantageous for this grass.  相似文献   

4.
Soil salinity is a major environmental stress causing significant loss of crop productivity. Barley (Hordeum vulgare L.) is one of the few field crops that can grow in salt-affected fields and varietal differences in productivity under salinity conditions were known. To clarify the trait most responsible for grain production under salt stress, barley cultivars that were salt tolerant (OUE812) or salt sensitive (OUC613) were grown from seedling to harvest stage in vermiculite containing various concentrations of NaCl. Dry weight of aboveground parts and grain weight decreased significantly with increasing NaCl concentration. The dry weight of the aboveground parts and grain weight decreased more significantly in OUC613 than in OUE812 for plants treated with 150 mM and 200 mM NaCl. A marked reduction in ripening percentage caused significantly decreased grain production in OUC613 as compared with OUE812. In plants treated with 200 mM NaCl, the photosynthetic rate decreased three weeks after starting the NaCl treatment, but a significant difference between cultivars in photosynthetic rate did not appear until seven weeks of NaCl treatment. OUE812 kept a higher photosynthetic rate during ripening than did OUC613 and dry matter production during the period from ripening to harvest was significantly larger in OUE812 than in OUC613. Keeping a higher photosynthetic rate might have contributed to higher grain production in OUE812. Higher ripening percentage and higher rate of photosynthesis during ripening might be target traits in breeding to improve the tolerance of barley to long-term salt stress.  相似文献   

5.
Drought stress which often occurs during early growth stage is one constraint in sugarcane production. In this study, the response of sugarcane to drought and nitrogen application for physiological and agronomical characteristics was investigated. Two water regimes (well-watered and drought stress from 60 to 120 day after transplanting) and four nitrogen levels (0, 4.4, 8.8 and 13.2 g pot?1 equivalent to 0, 90, 180 and 270 kg ha?1, respectively) were assigned in a Split-plot design with three replications. The results showed that photosynthetic responses to light intensity and intercellular CO2 concentrations of sugarcane were different between fertilized and non-fertilized treatments. Photosynthetic rates of 180 and 270 N treatments, normally, were significantly higher than that of 90 N, but not significant at drought conditions. Photosynthetic rates of 0 N treatment were the lowest under both conditions. Higher nitrogen application supported higher photosynthetic rate, stomatal conductance, and chlorophyll content because of higher nitrogen concentration accumulated into the leaf. Drought significantly reduced the potential photosynthetic rate, stomatal conductance, SPAD, leaf area, and biomass production. Higher nitrogen applications with larger root system could support higher photosynthetic activities to accumulate more dry mass. Strong positive coefficient between photosynthetic and biomass nitrogen use efficiency and drought tolerance index may suggest that higher nitrogen use efficiency could help plants have higher ability to tolerate drought stress.  相似文献   

6.
The effects of five rates [0 (control), 1, 2, 4 and 6 Mg ha?1] of calcium silicate on the growth and water consumption by rhodes grass (Chloris gayana Kunth) and sudan grass (Sorghum sudanense Piper) under wet and dry soil water regimes (60 g and 30 g H2O kg?1 soil respectively) were evaluated in a pot experiment. The effect of the application of silicate on plant biomass was similar to that of the control. However, the shoot and root dry mass varied significantly (P < 0.001) according to the soil water regime and plant species. During the first cut, the shoot dry mass was 5.7 g per pot under the wet soil moisture regime, significantly exceeding that under the dry soil water regime proportionately by 0.68. For sudan grass, the shoot dry mass varied from 3.6 g per pot in the control to 4.3 g per pot in the treatment that received 6 Mg ha?1 of calcium silicate. Plant water demand decreased as the rate of calcium silicate application increased, suggesting that an application of calcium silicate could reduce drought stress and enhance water economy. For the soil under study, the reduction in plant water demand represents a water saving ranging from 0.076 to nearly 0.20.  相似文献   

7.
Leymus chinensis is a dominant and most promising grass species in the Songnen Grassland of Northern China. Experiments were conducted to determine the effect of temperature, salinity, alkalinity and their interactions on seed germination. Seeds were germinated at four alternating temperatures (10–20, 15–25, 20–30 and 25–35°C), with saline stress (9:1 molar ratio of NaCl:Na2SO4) and alkaline stress (9:1 molar ratio of Na2CO3:NaHCO3). Germination percentage and rate were inhibited by either an increase or decrease in temperature from the optimal temperature range of 20–30°C, and were also inhibited by an increase in salinity and alkalinity at all temperatures. The inhibitory effects of high salinity on germination were greater at 25–35°C, but seeds were subjected to more stress even though the alkalinity was low under this temperature. Recovery percentage was highest at 400 mm salinity at 20–30°C, but only at 100 mm alkalinity, and 25–35°C also resulted in lower recovery percentage under both stresses. Results suggest that saline stress and alkaline stress have different impacts on seed germination and that saline‐alkaline tolerance of L. chinensis seeds is affected by the interactions of temperature and salinity‐alkalinity. Early July sowing in the field is recommended when temperature is optimal and salinity‐alkalinity concentrations are reduced by the high rainfall.  相似文献   

8.
ABSTRACT

In this study, we aimed to clarify the effects of different water management strategies on dry matter production and yield performance of New Rice for Africa (NERICA) varieties. Dry matter production of NERICA 1 and NERICA 5 was compared with that of Yumenohatamochi, a Japanese upland variety, and Hinohikari, a Japanese lowland variety under three water regimes, i.e. continuously flooded, supplemental irrigation, and non-irrigation (rainfed). Total carbohydrate content in the panicles under different watering regimes was more closely related to post-heading photosynthates than pre-heading reserve assimilates. Dry matter production during ripening tended to decrease under low soil water conditions, whereas the dry matter translocated from the leaf and stem to the panicle tended to increase. Consequently, the distribution ratio of post-heading photosynthates in the total carbohydrate content declined in response to the reduction in available soil moisture. These results indicate that the total carbohydrate content vary depending on the soil water conditions. In NERICAs, dry matter production during ripening was lower than that in Japanese varieties, indicating that their dependence on pre-heading reserve assimilates was greater. In particular, post-heading photosynthate content of NERICA 1 was strongly affected by the variation in water management in comparison with that of other varieties. The decrease in crop growth rate during ripening in NERICA 1 can be mainly attributed to the lower post-heading photosynthate content. Thus, the ability of NERICA 1 to assimilate carbon after heading was considered to be potentially low, which has to be improved to achieve higher yield.  相似文献   

9.
Summary A lysimeter experiment was performed to study the optimal allocation of limited water supply in potatoes. Irrigation regimes equal to 40, 60 and 80% of maximum evapotranspiration (ET) were evenly applied over the crop cycle. Other treatments involved withholding 80 mm of irrigation, based on ET, beginning at each of three designated growth stages (tuber initiation, early and late tuber growth). An irrigated control treatment, restoring the entire ET, was included for comparison. Continuous drought stress reduced photosynthesis as irrigation volumes were reduced. Plant biomass and tuber yield decreased almost proportionally to water consumption, so that WUE was roughly constant. N uptake was highest in the control and in 80% ET treatment. Withholding water during tuberisation severely hindered plant physiological processes and penalized tuber yield. Reductions in photosynthesis, total biomass and yield were the greatest when drought was imposed during tuber initiation. The earliest stress resulted in the lowest WUE and N uptake. A new crop water stress index (SI) was proposed, which combines atmospheric demand for water and canopy temperature.  相似文献   

10.
采用室内营养液培养及PEG模拟水分胁迫的方法,在3种供氮形态\[NH4+、NO3-、NH4+/NO3-(质量比)为50∶50\]下,主要研究分蘖期水稻在非水分胁迫及水分胁迫条件下的氮素利用效率及对不同形态氮素的消耗。在非水分胁迫条件下,分蘖期水稻在NH4+/NO3-为50∶50时生物量增量最大;而在水分胁迫条件下,单一供NH4+ N营养的水稻生物量增量最大。在两种水分条件下,当NH4+/NO3-为50∶50时,分蘖期水稻对营养液中NO3- N的消耗量明显大于NH4+ N;此外,在两种水分条件下,均以单一供NH4+ N营养水稻的光合速率、氮素利用率和水分利用率最高。  相似文献   

11.
Chloris virgata is considered a useful grass species for grassland restoration in northern China. However, little information exists concerning the germination responses of this species to temperature and water potential caused by stress conditions. Experiments were conducted in growth chambers to assess the effect of temperature, salinity, alkalinity, drought and the interactions of temperature and stress on seed germination. Seeds were germinated at three diurnal temperature regimes, with four water potentials in NaCl, NaHCO3 and PEG solutions. Results showed that optimal germination under stress occurred at 15–25 °C, and germination percentages and rates were inhibited by either an increase or decrease in temperature from the optimal temperature. The inhibitory effects of the low water potential caused by salinity and drought on germination were greater at 25–35 °C, but seeds were subjected to more stress despite the relatively higher water potential because of the alkalinity at this temperature. The recovery percentage under salinity was highest at ?1·2 MPa at 15–25 °C, and more than 80% of seeds also germinated at this water potential after they were transferred from drought stress. However, seeds lost their viability in higher alkalinities under all temperatures, and at 25–35 °C, there was lower recovery percentage under stress. Results suggest that salinity, alkalinity and drought stress have different impacts on seed germination, and the tolerance to stress of C. virgata seeds is affected by the interactions of temperature and water potential caused by salinity, alkalinity and drought. Chloris virgata shows potential utility as a promising grass species in salinity–alkalinity and drought‐stressed environments.  相似文献   

12.
In a summer‐dominant high‐rainfall, yet seasonally dry environment, soil water dynamics and dry‐matter (DM) production were monitored during 2006–12, for three perennial pasture types: old man saltbush (Atriplex nummularia ssp. nummularia with native grass), native grass (Bothriochloa macra and Rytidosperma bipartita dominant) and lucerne (Medicago sativa cv. Venus). Plant root depth of the old man saltbush pasture (1·5 m) was greater than that of native grass (1·2 m), but equal to that of lucerne (1·5 m), resulting in equivalent levels of maximum extractable water (MEW; mm, 0–1·7 m) for saltbush and lucerne in five of the six seasons. Lucerne (MEW 242 mm) extracted more soil water than native grass (144 mm), but was similar to old man saltbush (205 mm). In the second year of growth, both the lucerne and old man saltbush pastures achieved their maximum yields of 16·8 and 7·9 t DM ha?1 respectively, but thereafter declined. The decline in yield of lucerne in later years was associated with a significantly lower plant frequency and increase in proportion of weeds. The decline in yield of old man saltbush appeared to be associated with an increasingly dry soil profile, despite receiving rainfall that was above average. The yield of the native grass pasture increased during the study as the proportion of weeds declined, and the presence of saltbush plants did not compromise the yield of perennial grasses in the inter‐row spaces. The implications of these findings for livestock production systems in this environment are discussed.  相似文献   

13.
Soil moisture fluctuation (SMF) stress due to erratic rainfall in rainfed lowland (RFL) rice ecosystems negatively affect production. Under such condition, root plasticity is one of the key traits that play important roles for plant adaptation. This study aimed to evaluate root plasticity expression and its functional roles in water uptake, dry matter production and yield under SMF using three chromosome segment substitution lines (CSSLs) with major genetic background of KDML105 and a common substituted segment in chromosome 8. The CSSLs showed greater shoot dry matter production than KDML105 under SMF, which was attributed to the maintenance of stomatal conductance resulting in higher grain yield. The root system development based on total root length of the CSSLs were significantly higher than that of KDML105 due to the promoted production of nodal and lateral roots. These results implied that the common substituted segments in chromosome 8 of the 3 CSSLs may be responsible for the expression of their root plasticity under SMF and contributed to the increase in water uptake and consequently dry matter production and yield. These CSSLs could be used as a good source of genetic material for drought resistance breeding programs targeting rainfed lowland condition with fluctuating soil moisture environments and for further genetic studies to elucidate mechanisms underlying root plasticity.  相似文献   

14.
D. Levy 《Potato Research》1983,26(4):315-321
Summary The effect of repeated short periods of water stress during the hot season on six potato cultivars was investigated. The number of tubers per plant tended to decrease in response to water stress in cultivars which had more than 9.8 tubers per control plant (Désirée, Alpha, Elvira). In the other cultivars, no consistent effect of water stress on tuber number per plant was observed. Except for Spunta, the percentage of large tubers (>60 g/tuber) was reduced in the water-stressed plants. Consequently, the average weight of these tubers was greater than that of tubers harvested from the unstressed plants, indicating that the sink force of the individual tuber was not impaired by drought. However, tuber yield per plant was reduced due to drought in all cultivars tested. The smallest decrease in dry matter accumulation as well as the greatest lowering of the osmotic potential in the tuber tissue was found in Alpha. No consistent effect of water stress on the percentage of misshapen and sprouting tubers was observed, indicating the marked effect of the high temperature on these traits. Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No 310-E, 1981 series. This investigation was sponsored by a grant from the Ministry for Development Cooperation of the Netherlands.  相似文献   

15.
Several studies have been conducted to evaluate the response of crops, especially temperate cereals, to different source–sink ratios during grain filling. However, there is much less information about temperate legumes and even less work comparing the two. The objective of this study was to evaluate the response of both grain yield and grain nitrogen concentration of wheat (Triticum aestivum L.), narrow-leafed lupin (Lupinus angustifolius L.) and pea (Pisum sativum L.) to similar source reduction during grain filling. Two field experiments were conducted in a high yielding environment of Southern Chile. In experiment 1 wheat and narrow-leafed lupin were grown for two consecutive years. Experiment 2 evaluated wheat and pea on two sowing dates. In both experiments a reduction in the source–sink ratio was imposed by using black nets that intercepted 90% of the incident solar radiation from the commencement of the linear dry matter accumulation to physiological maturity. Grain yield was differentially (p < 0.01) decreased by the source reduction in lupin (98%), wheat (63%) and pea (26%). Given that these experiments were carried out in a high yielding environment, the higher response of wheat relative to previous studies supports the hypothesis that the higher the yield potential, the higher the source sensitivity of this crops during the grain filling period. On the other hand, source reduction positively affected (p < 0.05) grain nitrogen concentration in wheat (66%) and pea (18%) but negatively affected lupin (40%). The higher sensitivity of grain yield compared to that of grain nitrogen yield was the cause of the positive effect of the lower source–sink ratio recorded in wheat and pea. In contrast, source shortage in lupin decreased grain nitrogen concentration probably as result of the quick response of grain growth to source limitation. The contrasting sensitivities of lupin, wheat and pea to source reduction during grain filling prevent us to see grain yield and quality response of these crops as separate groups, i.e. temperate cereals vs. temperate legumes.  相似文献   

16.
The APSIM model was used to assess the impact of legumes on sorghum grown in rotation in a nutrient-limited system under dry conditions in south-western Zimbabwe. An experiment was conducted at Lucydale, Matopos Research Station, between 2002 and 2005. The model was used to simulate soil and plant responses in the experiment. Sequences of cowpea (Vigna unguiculata), pigeonpea (Cajanus cajan), groundnut (Arachis hypogaea) and sorghum (Sorghum bicolor) were used in the rotations. Legumes accumulated up to 130 kg of N ha−1 which was potentially available for uptake by sorghum in the following season. The APSIM model predicted total biomass, grain and N yields of the legume phase within the experimental error and performed well in predicting sorghum yield and N supplied in the rotation after cowpea and groundnut. The model generally under-predicted sorghum total biomass and grain yield after pigeonpea. Observed patterns of crop water use, evaporative losses during the dry season and re-charge of soil profile at the start of the rainy season were generally well predicted by the model. An assessment of output on sorghum N and water stresses in the rotation indicated that the legume–cereal rotation is more driven by soil nitrogen availability than water availability even under semi-arid conditions. Further legume–cereal rotation analysis using the model will assist in the understanding of other processes in the rotations in dry environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号