首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
Cold storing bareroot pine (Pinus spp.) seedlings grown in the southern U.S. for as little as 1 week in a cooler (just above freezing) in the fall (November to mid‐December) has been shown to reduce seedling survival after outplanting. In contrast, survival of container‐grown seedling is typically not affected when stored for 4 weeks in coolers in November and December. Wounds sustained by seedlings as they are lifted from nursery beds may allow Pythium spp. to infect bareroot seedling roots. Once in the cool, moist storage environment, Pythium multiplies and may result in seedling mortality after outplanting. Bareroot loblolly pine (Pinus taeda) and container‐grown loblolly, longleaf (Pinus palustris), slash (Pinus elliottii) and shortleaf pine (Pinus echinata) seedlings were inoculated with either Pythium dimorphum or Pythium irregulare, cold stored with or without peat moss and monitored for survival after outplanting. Peat moss did not increase bareroot loblolly pine survival or reduce Pythium populations when seedlings were inoculated with Pythium prior to storage. Pythium irregulare reduced survival of longleaf and shortleaf pine grown in peat moss and perlite, respectively. Pythium did not affect loblolly or slash pine, but wounding their roots did reduce seedling survival when grown in containers.  相似文献   

3.
Woody plant encroachment is a threat to savanna ecosystems worldwide. By exploiting differences in the physiology and seasonality of herbaceous species and encroaching hardwoods, herbicides can be used to control woody shrubs in savannas without causing lasting harm to desirable vegetation. We applied three herbicides and one tank mix to control shrubs following removal of the slash pine (Pinus elliottii Engelm.) canopy and replanting with container-grown longleaf pine (Pinus palustris Mill.) seedlings in a mesic-wet savanna in the southeastern USA. The herbicides tested were imazapyr, sulfometuron methyl, hexazinone, and a hexazinone + sulfometuron methyl tank mix. 4 years after application, no negative effects on understory species richness, diversity, evenness, or community composition were evident in any of the herbicide treatments. Oaks (Quercus spp.), one of the dominant shrub genera on the study site, were resistant to sulfometuron methyl, and this herbicide was therefore ineffective both as a pine release treatment and for enhancing herbaceous species cover. Imazapyr was the most effective treatment overall, leading to significant improvements in longleaf pine seedling growth and also enhancing herbaceous species cover. Both hexazinone and the hexazinone + sulfometuron methyl tank mix provided some seedling growth and understory enhancement as well. In particular, the tank mix significantly increased wiregrass cover relative to the control. Shrubs resprouted quickly following a dormant-season prescribed fire in the fifth year after treatment, indicating that herbicide-related increases in herbaceous cover may be lost if an aggressive prescribed fire program is not implemented.  相似文献   

4.

Key message

The suite of traits expressed as seedlings by coastal and mountain longleaf pine and south Florida slash pine suggest they can survive fire in the seedling stage. In contrast, loblolly pine and typical slash pine tolerate fire when mature but do not exhibit traits that allow them to survive fire when young, representing a different strategy for survival in frequently burned communities.

Context

Fire is an important driver in the distribution and abundance of southern US pine species, and seedling fire tolerance often determines individual survival under frequent fire regimes.

Aims

We investigated seedling growth, biomass allocation, needle distribution, bark thickness, and total non-structural carbohydrate (TNC) storage in taproots and related them to the expression of fire-tolerance for five species or types, including loblolly pine (Pinus taeda L.), two longleaf pine (P. palustris Mill.) types representing two distinct ecological communities (coastal and mountain) and two slash pine (P. elliottii Englem.) varieties.

Methods

We analyzed the relationship of seedling growth, biomass characteristics, and total non-structural carbohydrate storage between species by using analysis of variance.

Results

Both coastal and mountain longleaf pines had thick bark, long, densely arranged needles, and a grass-stage. South Florida slash pine shared the same suite of traits but, contrary to previous reports, displayed reduced height growth rather than a grass-stage. In contrast, loblolly pine and typical slash pine had faster height growth, more branching, lower needle density, and thinner bark. Both longleaf pines and south Florida slash pine also had higher TNC storage in taproots than either loblolly or typical slash pines.

Conclusion

The relative strength of expression of these fire-adaptation traits among the five species types generally matches the fire-return intervals associated with each species’ habitat, suggesting the importance of fire regimes in determining the distribution and abundance of the studied species.
  相似文献   

5.
To determine the effects of shade on biomass, carbon allocation patterns and photosynthetic response, seedlings of loblolly pine (Pinus taeda L.), white pine (Pinus strobus L.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) were grown without shade or in shade treatments providing a 79 or 89% reduction of full sunlight for two growing seasons. The shade treatments resulted in less total biomass for all species, with loblolly pine showing the greatest shade-induced growth reduction. Yellow-poplar was the only species to show increased stem height growth in the 89% shade treatment. The shade treatments increased specific leaf area of all species. Quantum efficiency, dark respiration and light compensation point were generally not affected by the shade treatments. Quantum efficiency, dark respiration, maximum photosynthesis and light compensation point did not change consistently between the first and second growing seasons. We conclude that differences in shade tolerance among these species are not the result of changes in the photosynthetic mechanism in response to shade.  相似文献   

6.
Historical land use and management practices in the southeastern United States have resulted in the dominance of loblolly pine (Pinus taeda L.) on many upland sites that historically were occupied by longleaf pine (Pinus palustris Mill.). There is currently much interest in restoring high quality longleaf pine habitats to such areas, but managers may also desire the retention of some existing canopy trees to meet current conservation objectives. However, fast-growing natural loblolly pine regeneration may threaten the success of artificially regenerated longleaf pine seedlings. We evaluated the establishment and growth of natural loblolly pine regeneration following different levels of timber harvest using single-tree selection (Control (uncut, residual basal area ∼16 m2/ha), MedBA (residual basal area of ∼9 m2/ha), LowBA (residual basal area of ∼6 m2/ha), and Clearcut (complete canopy removal)) and to different positions within canopy gaps (approximately 2800 m2) created by patch cutting at two ecologically distinct sites within the longleaf pine range: Fort Benning, GA in the Middle Coastal Plain and Camp Lejeune, NC in the Lower Coastal Plain. The density of loblolly pine seedlings was much higher at Camp Lejeune than at Fort Benning at the end of the first growing season after harvesting. Following two growing seasons, there were no significant effects of canopy density or gap position on the density of loblolly pine seedlings at either site, but loblolly pine seedlings were taller on treatments with greater canopy removal. Prescribed fires applied following the second growing season killed 70.6% of loblolly pine seedlings at Fort Benning and 64.3% of seedlings at Camp Lejeune. Loblolly pine seedlings were generally less than 2 m tall, and completeness of the prescribed burns appeared more important for determining seedling survival than seedling size. Silvicultural treatments that include canopy removal, such as patch cutting or clearcuts, will increase loblolly pine seedling growth and shorten the window of opportunity for control with prescribed fire. Therefore, application of prescribed fire every 2-3 years will be critical for control of loblolly pine regeneration during restoration of longleaf pine in existing loblolly pine stands.  相似文献   

7.
Although gravitropism of maize (Zea mays L.) roots is dependent on light, it is not known if light affects the gravitropism of pine radicles. Therefore, seeds of slash pine (Pinus elliottii Englm.) and loblolly pine (Pinus taeda L.) were germinated under constant light or constant darkness. A gravitropic set-point angle (GSA) of 90° indicates the radicle is pointed horizontally while a GSA of 0° indicates the radicle is growing toward the center of the earth. After 20 days from sowing, the GSA was less than 10° in both light and darkness. Therefore, gravitropism of both pine species occurred in the dark. The presence of light initially stimulated gravitropism but this effect was ephemeral. After 25 days from sowing, there was no significant difference in radicle growth among light treatments, suggesting that darkness did not affect pine radicle gravitropism. However, light did increase germination of both species. Radicle length was slightly increased when seeds germinated in the dark.  相似文献   

8.
Nowak J  Friend AL 《Tree physiology》1995,15(9):605-609
To probe variation in Al sensitivity of two co-occurring pine species, seedlings from six full-sib families of loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) were grown in solution culture containing 4.4 mM (high-Al) or 0.01 mM (low-Al) AlCl(3) at pH 4 for 58 days. On average, both pine species had 41% less total dry weight in the high-Al treatment than in the low-Al treatment. Stem volume growth of slash pine was more sensitive to the high-Al treatment than that of loblolly pine. In both species, the high-Al treatment inhibited root dry weight more than shoot dry weight. Within-species variation in Al sensitivity among families was greater in loblolly pine (24 to 52% inhibition of seedling dry weight) than in slash pine (35 to 47% inhibition of seedling dry weight). Foliar Al concentration was positively correlated with Al sensitivity in slash pine but not in loblolly pine; however, in both species, the concentration of Al in roots was 20-fold greater than in foliage.  相似文献   

9.
We studied the effects of broad-spectrum light quality on the interaction between the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch and Scots pine (Pinus sylvestris L.) seedlings and hypocotyl cuttings cultured in vitro. The light sources were cool white (CW), warm white (WW) and red-rich daylight (RD) fluorescent lamps. Inoculation with P. tinctorius enhanced adventitious root formation of the cuttings in all light treatments. Rooting of the inoculated cuttings was highest in WW light (89%), followed by CW (73%) and RD light (66%). During 6 weeks of in vitro culture, rooted cuttings formed only a few lateral roots. The fungus grew over lateral roots, but the Hartig net was absent in all light treatments. In non-inoculated cuttings, neither root formation nor subsequent root growth was affected by light quality. In the seedling experiment, inoculation in the WW treatment resulted in a significantly (P < 0.05) greater number of lateral roots than inoculation in the RD treatment. The percentage of lateral roots covered with fungal hyphae was also highest in WW light (62%), followed by CW (50%) and RD (27%) light. A similar pattern was observed in the intensity of Hartig net formation. We conclude that effects of broad-spectrum light quality on the ectomycorrhizal fungus-root interaction are dependent on the developmental stage of the root.  相似文献   

10.
Thinning implemented with a cut-to-length harvesting system coupled with on-site slash chipping and redistribution and followed by prescribed underburning were assessed for their impacts on a shrub understory in an uneven-aged Sierra Nevada mixed conifer stand. Overstory species consisted of California white fir (Abies concolor var. lowiana [Gord.] Lemm.), Jeffrey pine (Pinus jeffreyi Grev. & Balf.), sugar pine (Pinus lambertiana Dougl.), incense-cedar (Libocedrus decurrens Torr.), and red fir (Abies magnifica A. Murr.), while huckleberry oak (Quercus vacciniifolia Kellogg) was predominant among 10 understory shrubs. Herbaceous species were entirely absent from the site for the 4-yr duration of the study. The mechanized treatments exerted minimal detriment effects on overall understory cover and weight, and for prostrate ceanothus (Ceanothus prostratus Benth.) and creeping snowberry (Symphoricarpos mollis Nutt.)—two of the lesser shrubs—were stimulatory. In contrast, losses to the total understory from the underburn amounted to two-thirds of cover and weight in the absence of the mechanized treatments and more than three-quarters where they had been implemented, with huckleberry oak prevalence especially diminished. For almost all of the understory species individually as well as for the total, greater pretreatment abundance predisposed greater posttreatment prevalence. Results of this study provide insight into the understory impacts of restoration treatments that are deemed especially appropriate for sensitive sites in western U.S. forests.  相似文献   

11.
The upper elevational limits of tree species are thought to be controlled by abiotic factors such as temperature and the soil and atmospheric conditions affecting plant water status. We measured relative water contents (RWC), water potentials (Psi) and cuticular conductances (g(c)) of shoots of four conifer species-eastern hemlock (Tsuga canadensis (L.) Carr.), eastern white pine (Pinus strobus L.), red pine (P. resinosa Ait.) and red spruce (Picea rubens Sarg.)-during two winters on Mt. Ascutney, Vermont, USA. Some micrometeorological measurements are also reported. Eastern hemlock and white pine were studied near their upper elevational limits at a 640-m site, and red pine was studied near its upper elevational limit at 715 m. Red spruce was also studied at the 715-m site, which is in the middle of its elevational range on this mountain. There was no evidence of winter desiccation stress in any species. The observed distribution of seedlings suggested that the upper elevational limits on shade-intolerant eastern white pine and red pine are set by the absence of suitable seed beds after 100 years without fire. Eastern hemlock is able to reproduce in deep shade on organic substrates, but germination at high elevations may be restricted by low temperatures.  相似文献   

12.
The influence of woody and herbaceous plant competition, either alone or in combination, on microclimate and growth of planted eastern white pine (Pinus strobus L.) seedlings was examined over four consecutive growing seasons in a central Ontario clearcut. Treatments that manipulated the comparative abundance of these two plant functional groups significantly affected light availability, soil moisture, and air and soil temperature regimes. These microclimate alterations, coupled with the relative competitiveness of herbaceous and woody vegetation, corresponded to temporal changes in vegetation cover and dominance. The more rapid colonization and growth of the herbaceous plant community, dominated by bracken fern (Pteridium aquilinum) and ericaceous shrubs (Kalmia sp., Vaccinium sp.), resulted in this form of vegetation being a comparatively important early competitor for soil moisture. As the woody plant community, dominated by naturally regenerated trembling aspen (Populus tremuloides Michx.), grew in height and leaf area, it became a comparatively strong competitor for both light and soil moisture. For all vegetation treatments combined, white pine seedling growth responses were strongly correlated with total cover of competing vegetation and its relative influence on above- and belowground microclimatic variables. Higher total cover of competing vegetation was generally associated with lower light and soil moisture availability and cooler soil temperatures. Multiple regression analyses indicated that pine seedling relative height growth increased with soil moisture content and growing season soil heat sum, while seedling relative diameter and relative volume growth increased with light availability.  相似文献   

13.
Pine plantations in the southeastern United States are often created using site preparation treatments to alleviate site conditions that may limit survival or growth of planted seedlings. However, little is understood about how site preparations affect longleaf pine (Pinus palustris P. Miller) seedlings planted on wet sites. In a 2-year study (2004 and 2005) on poorly drained, sandy soils of Onslow County, North Carolina, we examined the effects of common site preparation treatments on microsite conditions and quantified relationships between microsite conditions and longleaf pine seedling survival and growth. Treatments used in the study included site preparations designed to control competing vegetation (chopping and herbicide) combined with those that alter soil conditions (mounding and bedding). During both years, mounding and bedding treatments reduced the amount of moisture within the top 6 cm of soil and increased soil temperatures when compared to flat planting (p < 0.001). Soil moisture was inversely related to seedling mortality in 2004 (r2 = 0.405) and inversely related to root collar diameter in 2005 (r2 = 0.334), while light was positively related to root collar diameter in 2005 (r2 = 0.262). Light availability at the seedling level was highest on treatments that effectively reduced surrounding vegetation. Herbicides were more effective than chopping at controlling vegetation in 2004 (p < 0.001) and 2005 (p = 0.036). Controlling competing vegetation, especially shrubs, was critical for increasing early longleaf pine seedling growth.  相似文献   

14.
The growth response of loblolly pine (Pinus taeda L.), shortleaf pine (Pinus echinata Mill.), Virginia pine (Pinus virginiana Mill.), and white pine (Pinus strobus L.) to weed control and fertilization in the Piedmont of Virginia was assessed. Four different silvicultural treatments were evaluated: (1) check (no treatment); (2) weed control; (3) fertilization; (4) weed control plus fertilization. The weed control treatment included a series of herbicide and mechanical treatments to eliminate competing hardwoods. The fertilizer treatments added N, P, K, and S. Survival and growth was measured annually through age 5. There were significant differences in survival and growth among species. Survival was greatest for loblolly pine, lower in shortleaf and Virginia pine, and lowest in white pine. Fertilization without controlling the competing hardwoods decreased survival in all planted pines due to the increased hardwood competition. Loblolly pine was tallest through the 5-year period, shortleaf and Virginia pine were shorter and white pine was shortest. Silvicultural treatments had no impact on tree height but significantly affected DBH. Weed control increased DBH while fertilization did not. When applied in combination with weed control, there was no additional increase in growth of the pines due to fertilization beyond that from weed control only. Fertilization stimulated the growth of the competing hardwoods which were significantly taller in the fertilized plots.  相似文献   

15.
Genetic variation in a plant species is a key to its ability to survive and evolve in the face of changing environmental pressures. Due to insect and disease impacts, changes in fire regimes, and a changing climate, many populations of high elevation white pine species continue to experience high mortality levels and potentially worrisome decreases in genetic variation. In recent years, some trees rated highly for resistance to the non-native white pine blister rust have been killed by fire or mountain pine beetle. Ex situ genetic conservation offers the possibility to conserve the genetic variation within a species before much of it is lost. For many conifer species, freezer storage of seed offers a relatively inexpensive, long-term method of storing germplasm for future use. However, there is uncertainty concerning how long seed of some conifers can be stored and retain viability. We report here on results of germination testing of the oldest known seedlots of whitebark pine (Pinus albicaulis Engelm.) and foxtail pine (P. balfouriana Grev. & Balf.), some of which had been in storage for several decades. The 52 whitebark pine seedlots averaged 47.7% germination (average seed age of 19.2 years), while the four foxtail pine seedlots had an average germination of 71.3% (average seed age of 15.3 years). Some seedlots of both species had greater than 90% germination. Refinements to the stratification procedure have since been developed which should enhance germination further. A follow-up study examining seedling vigor of long-stored whitebark pine seed is planned.  相似文献   

16.
Half-sib seed of several eastern white pine (Pinus strobus L.) families was used to examine seed mass effects on laboratory germination, and seedling emergence and growth under moderate and low light (47 and 13% full sunlight) in a greenhouse. Percent germination and speed of germination under laboratory conditions were not related to seed mass among half-sib families or multi-family seedlots bulked by seed mass. Percent seedling emergence in the greenhouse was not related to seed mass, but families with heavier seeds exhibited faster emergence. Both rate and percent emergence were significantly increased under low light. Family differences in leaf, stem, root, and total seedling dry mass, primary root length, and the number of first-order-lateral-roots were positively related to seed mass in both light environments. Low light diminished the absolute biomass increment per unit seed mass, but the proportional change in biomass with seed mass was similar between light environments. Rate of emergence also influenced seedling size within families, with earlier emergence increasing seedling dry mass from 7 to 58%, dependent on light environment. Biomass partitioning coefficients were influenced by light environment but largely independent of seed mass.  相似文献   

17.
Recovery of longleaf pine (Pinus palustris P. Mill.) is necessary to arrest the decline of many associated plants and animals, and the establishment of longleaf pine on much of its original range requires artificial regeneration and diligence. In central Louisiana, USA, two fertilization levels (No [NF] or Yes [F-36 kg/ha N and 40 kg/ha P]) in combination with three vegetation treatments (check, two prescribed fires [PF], or multi-year vegetation control by herbicidal and mechanical means [IVM]) were applied to container-grown longleaf pine plantings in two studies. In Study 1 (grass dominated), 6-year-old longleaf pine survival was 52% on the F–checks, 78% on the F–PF plots, and averaged 93% on the other four treatment combinations. Longleaf pine trees on the IVM plots (3.4 m) were significantly taller than on the other two vegetation treatments, and trees on the PF plots (1.8 m) were taller than trees on the check plots (1.2 m). In Study 2 (brush dominated), survival averaged 65% across the six-treatment combinations after 6 years. The longleaf pine trees were 4.7 m tall on the IVM plots and averaged 3.9 m tall on the check and PF plots. Fertilization increased P concentrations in the soil and longleaf pine foliage, while fertilization did not significantly affect longleaf pine height growth. Native fertility was not apparently limiting longleaf pine development contrary to prior research recommendations for these soils. In both studies, the IVM treatment reduced early herbaceous competition and the number and height of arborescent plants. The PF treatment reduced arborescent plant height on the grassy site where fires were more intense than on the brushy site.  相似文献   

18.
Liao  Y. K.  Amerson  H. V. 《New Forests》1995,10(2):165-182
Maturation of slash pine (Pinus elliottii Engelm.) somatic embryos was achieved using two protocols, each starting with a different agar incubation step to deplete plant growth regulators (PGRs) used in previous cultural steps. Strength of maturation medium (single vs. double) was found important in the first protocol to develop normal, mature embryos. In the second protocol, abscisic acid (ABA) concentrations (0, 15 and 30 M) and carbohydrate sources were tested for embryo maturation. Thirty M ABA and 6% maltose were deemed the best combination. Embryo germination was accomplished in a continuously lighted environment and embryos receiving a cold pretreatment (4 °C in darkness for 16 days) germinated better than embryos which did not receive cold pretreatment. With a survival rate of 33% after acclimation in a mist system, more than 25 plants from somatic embryos have been established in a greenhouse. Incompletely germinated embryos (lacking roots) were rooted via adventitious rooting techniques and subsequently established in the greenhouse. All established plants obtained from somatic embryogenesis appear normal in morphology.  相似文献   

19.
We examined the somatic embryogenesis from and histological studies of zygotic embryos of seeds in European Grape 'Moldova' (Vitis vinifera L. 'Moldova'). Primary calli were initiated on Nitsch and Nitsch (NN) medium supplemented with 1.0mg'L-1 2,4-D and 0.5 mg'L-1 6-BA. Embryogenic calli were produced upon transfer to a NN medium with 0.5 mg-L-1 6-BA and 2 mg.L-1 NAA and somatic embryos were obtained on a half strength MS medium without plant growth regulators. During the somatic embryo germination, an addition of 1.0 mg.L-1 6-BA in the medium could accelerate somatic embryos to develop into normal plants and increase the conversion rate from 0 to 43.3%. Histological studies of embryogenic calli and somatic embryos demonstrated dy-namic changes of proteins and starch grains. The developmental processes of somatic embryos were similar to those of zygotic em-bryos, including typical epiderma, cotyledon primordium and vascular tissue.  相似文献   

20.
We examined the somatic embryogenesis from and histological studies of zygotic embryos of seeds in European Grape 'Moldova' (Vitis vinifera L. 'Moldova'). Primary calli were initiated on Nitsch and Nitsch (NN) medium supplemented with 1.0mg'L-1 2,4-D and 0.5 mg'L-1 6-BA. Embryogenic calli were produced upon transfer to a NN medium with 0.5 mg-L-1 6-BA and 2 mg.L-1 NAA and somatic embryos were obtained on a half strength MS medium without plant growth regulators. During the somatic embryo germination, an addition of 1.0 mg.L-1 6-BA in the medium could accelerate somatic embryos to develop into normal plants and increase the conversion rate from 0 to 43.3%. Histological studies of embryogenic calli and somatic embryos demonstrated dy-namic changes of proteins and starch grains. The developmental processes of somatic embryos were similar to those of zygotic em-bryos, including typical epiderma, cotyledon primordium and vascular tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号